8/31/2016

18-600 Foundations of Computer Systems

Lecture 2:
“Computer Systems Big Picture”

John P. Shen & Zhiyi Yu
August 31, 2016

» Recommended References:

<+ Chapters 1 and 2 of Shen and Lipasti (SnL). Electrical & Com uter
% “Amdahl’s and Gustafson’s Laws Revisited” by Andrzej Karbowski. (2008) E N G I N E E R I N G

8/31/2016 (©J.P.Shen) 18-600 Lecture #2 Carnegie Mellon University :

18-600 Foundations of Computer Systems

Lecture 2:
“Computer Systems Big Picture”

1. Instruction Set Architecture (ISA)
a. Hardware / Software Interface
b. Dynamic / Static Interface (DSI)
c. Instruction Set Architecture Examples
2. Historical Perspective on Computing
a. Major Epochs of Modern Computers
b. Computer Performance Iron Law (#1)
3. “Economics” of Computer Architecture
a. Amdahl’s Law and Gustafson’s Law () Electrical & Computer

b. Moore’s Law and Bell’s Law ENGl NEER' NG

8/31/2016 (©J.P.Shen) 18-600 Lecture #2 “arnegie Mellon University 2

8/31/2016

Anatomy of Engineering Design

f SPECIFICATION ﬁ

Synthesis Analysis

&> IMPLEMENTATION :ﬁ

Behavioral description of “What does it do?”

Search for possible solutions; pick best one. Creative process

Specification:
Synthesis:
Implementation: Structural description of “How is it constructed?”

Validate if the design meets the specification.
“Does it do the right thing?” + “How well does it perform?”

Carnegie Mellon University 3
= 2

Analysis:

8/31/2016 (©J.P. Shen) 18-600 Lecture #2

Lecture 2: “Computer Systems Big Picture”

1. Instruction Set Architecture (ISA)

a. Hardware / Software Interface
b. Dynamic / Static Interface (DSI)
c. Instructure Set Architecture Examples

ectrical & Computer
) ENGINEERING

Carnegie Mellon University 4

8/31/2016 (©J.P.Shen) 18-600 Lecture #2

8/31/2016

%The Von Neumann Stored Program Computer

* The Classic Von Neumann Computation Model: Proposed in 1945 by John
Von Neumann and others (Alan Turing, J. Presper Eckert and John Mauchly).

* A “Stored Program Computer”

1. One CPU Central Processing Unit
* One Control Unit
* Program Counter

Control Unit

* Instruction Register input P Output
* One ALU Device gie 5n Device
2. Monolithic Memory
* Data Store
e Instruction Store
3. Sequential Execution Semantics
* Instructions from an Instruction Set
8/31/2016 (©J.P.Shen) 18-600 Lecture #2 Carnegie Mellon University s

[Gerrit Blaauw & Fred Brooks, 1981]

Instruction Set Processor Design

ARCHITECTURE (ISA) programmer/compiler view
* Functional programming model to application/system programmers

* Opcodes, addressing modes, architected registers, IEEE floating point

IMPLEMENTATION (parchitecture) processor designer view
* Logical structure or organization that performs the ISA specification

* Pipelining, functional units, caches, physical registers, buses, branch predictors

REALIZATION (Chip) chip/system designer view
* Physical structure that embodies the implementation

* Gates, cells, transistors, wires, dies, packaging

8/31/2016 (©J.P.Shen) 18-600 Lecture #2 Carnegie Mellon University ¢

8/31/2016

Computer Instruction Set Architecture

souLcs
CODE

Application Software
» Program development
» Program compilation

ASSEMBLY
CODE|

Program
Development

== SPECIFICATION

Instruction Set Architecture (ISA)

Computer

Processor

Hardware Technology
» Program execution
« Computer performance

Control

Datapath

Processor
Design

Memory

Devices

IMPLEMENTATION

8/31/2016 (©J.P.Shen) 18-600 Lecture #2

Carnegie Mellon University 7

? Computer Dynamic-Static Interface

x86 Machine Primitives

Von Neumann Machine

Transistors & Devices

Quantum Physics

PROGRAM Architectural state requirements:
» Support sequential instruction execution semantics.
» Support precise servicing of exceptions & interrupts.

INgeplit=la it = IR = Exposed to SW

te i oI Dynamic/Static Interface (DSI1)=(ISA)
EU
l' Hidden in HW

Buffering needed between arch and uarch states:
MACHINE

“static”

dynami

* Allow uarch state to deviate from arch state.
* Able to undo speculative uarch state if needed.

DSI = ISA = a contract between the program and the machine.

8/31/2016 (©J.P.Shen)

18-600 Lecture #2 Carnegie Mellon University s

8/31/2016

RISC vs. CISC

[Josh Fisher, HP]

Transition from CISC to RISC:

> >
2, =
= TE T
=2 2= R
cisC E 1 R
High | & CISC |:& 2| Micro-| & & |Execution
Level | © | Object|s==|Code | E=[Hardwarg
Lang. =i Code it Stream i
z
- DBI =N
RISC 2 ; 22
= H 1=
H =
High g RISC | o «E‘é Executior
Level | © Obéect : Missing = = |Hardwartg
Lang. m==» Code
g : Micro-
; Code
8/31/2016 (©1J.P. Shen) 18-600 Lecture #2 Carnegie Mellon University
>
=
= To
) g =
RISC T ; £5
High | & |RisC | i 8T |Execution
Level | © | Object| 3 S |Hardwarg
Lang. me==p- Code =
| TSI VoY T, -
i
RISC? E T PP
i E =
CISC? | high | E o Com- | 22 = |[Execution
VLIW? | Level | © |Missing \%"i@ 1= T [Hardwars
Lang. rtica |-
g Macro Micro | =
Code Code |=

© 8/31/2016 (©V.P. Shen)

18-600 Lecture #2

Carnegie Mellon University 10

8/31/2016

[B. Rau & J. Fisher, 1993]

HW vs. SW & Dynamic vs. Static Design Space

Hardware

Gront end & Optimiz@

! (Superscalar) ¥

' -
(Determine Depend.> ' Dependence | (Petermine Depend.)
| ' Architecture
(Dataflow) vl
Y
; Determine IndepencD
CDetermlne Independ) :Independence
1 Architecture

. VLIW
: Independence
+ Architecture
(Attached
Array
Processor)

Bind Resources >

4
Execute >

8/31/2016 (©1J.P. Shen) 18-600 Lecture #2 Carnegie Mellon University 1

C Bind Resources >
[

Compiler

Commercially Successful ISAs

PROGRAM Instruction Set Definition: Intel x86

 Architecture State: Reg & Memory
Op-code & Operand types

Operand Addressing modes A R M
Control Flow instructions

Architecture

ARCHITECTURE Instruction Set Architecture (ISA) MIRPS
TECHNOLOGIES

Program Execution:

» Load program into Memory S P RC

« Fetch instructions from Memory

» Exeucte Instructions in CPU

MACHINE « Update Architecture State " pawe, p "

8/31/2016 (©J.P.Shen) 18-600 Lecture #2 Carnegie Mellon University 12

i

“static”

“dynamic”

8/31/2016

Lecture 2: “Computer Systems Big Picture”

2. Historical Perspective on Computing

a. Major Epochs of Modern Computers
b. Computer Performance Iron Law (#1)

ectrical & Computer
) ENCINERRING

8/31/2016 (©1J.P. Shen) 18-600 Lecture #2 Carnegie Mellon University 13

Seven Decades of Modern Computing . . .

8/31/2016 (©J.P.Shen) 18-600 Lecture #2 Carnegie Mellon University 1

8/31/2016

Historical Perspective on the Last Five Decades

The Decade of the 1960's: "Computer Architecture Foundations"

- Von Neumann computation model, programming languages, compilers, OS’s
- Commercial Mainframe computers, Scientific numerical computers

The Decade of the 1970's: "Birth of Microprocessors"
- Programmable controllers, bit-sliced ALU’s, single-chip processors

- Emergence of Personal Computers (PC)

The Decade of the 1980's: "Quantitative Architecture"
- Instruction pipelining, fast cache memories, compiler considerations

- Widely available Minicomputers, emergence of Personal Workstations

The Decade of the 1990's: "Instruction-Level Parallelism"
- Superscalar, speculative microarchitectures, aggressive compiler optimizations
- Widely available low-cost desktop computers, emergence of Laptop computers

The Decade of the 2000's: "Mobile Computing Convergence"
- Multi-core architectures, system-on-chip integration, power constrained designs
- Convergence of smartphones and laptops, emergence of Tablet computers
8/31/2016 (©1J.P. Shen) 18-600 Lecture #2 Carnegie Mellon University 15

Intel 4004, circa 1971

The first single chip CPU

* 4-bit processor for a calculator.

* 1K data memory

* 4K program memory

* 2,300 transistors

* 16-pin DIP package

* 740kHz (eight clock cycles per CPU
cycle of 10.8 microseconds)

* ~100K OPs per second

ol TMun & Cr

Molecular Expressions: Chipshots

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 Carnegie Mellon University 16

8/31/2016

Intel Itanium 2, circa 2002

Performance leader in floating-point apps

* 64-bit processor

* 3 MByte in cache!!

* 221 million transistor

* 1 GHz, issue up to 8 instructions

per cycle
In ~30 years, about 100,000 fold

growth in transistor count!

http://cpus.hp.com/images/die_photos/McKinley_die.jpg

8/31/2016 (©1J.P. Shen) 18-600 Lecture #2 Carnegie Mellon University 17

[John Crawford, Intel, 1993]

Performance Growth in Perspective

* Doubling every 18 months (1982-2000):
* total of 3,200X
* Cars travel at 176,000 MPH; get 64,000 miles/gal.
* Air travel: L.A. to N.Y. in 5.5 seconds (MACH 3200)
* Wheat yield: 320,000 bushels per acre

* Doubling every 24 months (1971-2001):
* total of 36,000X
* Cars travel at 2,400,000 MPH; get 600,000 miles/gal.
* Air travel: L.A. to N.Y. in 0.5 seconds (MACH 36,000)
* Wheat yield: 3,600,000 bushels per acre

Unmatched by any other industry!!

8/31/2016 (©J.P.Shen) 18-600 Lecture #2 Carnegie Mellon University 1s

8/31/2016

Convergence of Key Enabling Technologies

CMOS VLSI:

* Submicron feature sizes: 0.3u = 0.25u = 0.18u = 0.13u = 90n = 65n = 45n = 32nm...
* Metal layers:3 >4 ->5 - 6 - 7 (copper) - 12 ...

* Power supply voltage: 5V - 3.3V - 2.4V - 1.8V > 1.3V > 1.1V ...

e CAD Tools:

* Interconnect simulation and critical path analysis
* Clock signal propagation analysis
* Process simulation and yield analysis/learning

* Microarchitecture:

* Superpipelined and superscalar machines

* Speculative and dynamic microarchitectures

* Simulation tools and emulation systems

* Compilers:

* Extraction of instruction-level parallelism

* Aggressive and speculative code scheduling

* Object code translation and optimization

8/31/2016 (©J.P. Shen)

18-600 Lecture #2

Carnegie Mellon University 19
= o

“Iron Law" of Processor Performance

1/ComputerPerformance = ----- Time__
Program
_ | Instructions Cycles X Time
Program Instruction Cycle
(inst. count) (CPI) (cycle time)

Architecture = Implementation - Realization

Compiler Designer

8/31/2016 (©J.P.Shen)

Processor Designer

18-600 Lecture #2

Chip Designer

* |In the 1980’s

(decade of
pipelining):
e CPI: 5.0 > 1.15

¢ |n the 1990’s

(decade of
superscalar):

* CPI: 1.15> 0.5
(best case)

¢ In the 2000’s:

* we learn the
power lesson

* ILP > TLP

Carnegie Mellon University 20

10

8/31/2016

%Iron Law #1 — Processor (Latency) Performance

<+ Time to execute a program: T (latency)

_instructions 5 cycles 9 time

program instruction cycle

T

T = PathLengthx CPI x CycleTime

<+ Processor performance: Perf=1/T

1 Frequency

Perf,,, =————— ———— = ——————— =
“PY" " PathLengthx CPI xCycleTime | PathLengthx CPI

8/31/2016 (©1J.P. Shen) 18-600 Lecture #2 Carnegie Mellon University 2

Landscape of Processor Families [SPECint92]

SPECInte2
50 100

SPECInt92 / MHz

0 50 100 150 200 250 300 350 100
Speed (MHz) Source ISCA 95,p. 174

8/31/2016 (©J.P.Shen) 18-600 Lecture #2 Carnegie Mellon University 22

11

8/31/2016

Landscape of Processor Families [SPECint95]

0.08
30 35 40 45 50 55 60 SPECint95
007 25
20 \
0.06 15
264
10 PIlI
§ 005 \ Athlon N
s 5 e
o) ‘/.\l—f P“.r N - - S
2 oos | \Ppm Pl Athion
O \ \
o ee—ad 164
% 0.03 I pentium
0.02 |
064 -& Alpha
001 | —+ AMD-x86
—=— Intel-x86
0
80 180 280 380 480 580 680 780 880 980
Frequency (MHZ) ** Data SOUICe VW, SPec.org

8/31/2016 (©J.P. Shen)

18-600 Lecture #2

Carnegie Mellon University 23

SPECint2000/MHz

8/31/2016 (©J.P.Shen)

 Landsc

05

ape of Processor Families [SPECint2000]

\ \ \ —=— Intel-x86
300 400 500 600700 800 SPECint 2000 o AVDOB6
200 —a— Alpha

—&— PowerPC
—e— Sparc
—a— |IPF

100

50
25

26>B\

Plil-Xeon

2000 2500

** Data SOUIce VWW.SPec.org

1000 1500

Frequency (MHz)
18-600 Lecture #2

Carnegie Mellon University 2

12

8/31/2016

[John DeVale & Bryan Black, 2005]

Landscape of Processor Families [SPECthOOO]

1700 1900 SpecINT 2000

1100 - Intel-x86

0s | PerformancecpU :M\
) ¢ ~ PathLengthx CPI &

SPECint2000/MHz

0 500 1000 1500 2000 2500 3000 3500

Source: WVV\N.SPEC.OI’Q Frequency (MHZ) ** Data SOUrce WWw.spec.org
8/31/2016 (©1J.P. Shen) 18-600 Lecture #2 Carnegie Mellon University 2

Lecture 2: "Computer Systems Big Picture”

3. “Economics” of Computer Architecture

a. Amdahl’s Law and Gustafson’s Law
b. Moore’s Law and Bell’s Law

ectrical & Computer
) ENGINEERING

8/31/2016 (©J.P.Shen) 18-600 Lecture #2 Carnegie Mellon University 26

13

8/31/2016

“Economics” of Computer Architecture

* Exercise in engineering tradeoff analysis
* Find the fastest/cheapest/power-efficient/etc. solution
* Optimization problem with 10s to 100s of variables
* All the variables are changing
* At non-uniform rates
* With inflection points
* Only one guarantee: Today’s right answer will be wrong tomorrow

» Two Persistent high-level “forcing functions”:
» Application Demand (PROGRAM)
» Technology Supply (MACHINE)

8/31/2016 (©J.P.Shen) 18-600 Lecture #2 Carnegie Mellon University 27

% Foundational “Laws" of Computer Architecture

» Application Demand (PROGRAM)

* Amdahl’s Law (1967)

* Speedup through parallelism is limited by the sequential bottleneck
* Gustafson’s Law (1988)

* With unlimited data set size, parallelism speedup can be unlimited

» Technology Supply (MACHINE)

* Moore’s Law (1965)

* (Transistors/Die) increases by 2x every 18 months
* Bell’s Law (1971)

* (Cost/Computer) decreases by 2x every 36 months

8/31/2016 (©J.P.Shen) 18-600 Lecture #2 Carnegie Mellon University 2

14

8/31/2016

Amdahl’s Law

* Speedup = (Execution time on Single CPU)/(Execution on N parallel processors)

* t. /tp (Serial time is for best serial algorithm)
A

N
No. of
Processors
« h—f1-h_. f
1
1-1 _ Time
* h = fraction of time in serial code
« f =fraction that is vectorizable or parallelizable
* N = max speedup for f 1
P P Speedup = —
* Overall speedup 2> - @a- f)+W
8/31/2016 (©J.P.Shen) 18-600 Lecture #2 Carnegie Mellon University 20

Amdahl’s Law lllustrated

* Speedup = tlmewithout enhancement/ tlmewith enhancement

* If an enhancement speeds up a fraction f of a task by a factor of N

. time,,, = time,-((1-f) + f/N)
‘ SoveraII =1 / ((l'f) + f/N)
time,;q
(1-) f
time, o,
(1-9) N
' 8/31/2016 (©J.P. Shen) 18-600 Lecture #2 Carnegie Mellon University w0

15

8/31/2016

”Tyrarmy O]c Amdahl's Law" [Bob Colwell, CMU-Intel-DARPA]

w0l K Suppose that a computation has a
4% serial portion, what is the limit of
0] | speedup on 16 processors?
* 1/((0.04) + (0.96/16)) = 10

/ * What is the maximum speedup?
ol a * 1/0.04 = 25 (with N = o)

-

P (speedup)
<

0 0.2 0.4 0.6 0.8 1

f (vectorizability)

8/31/2016 (©1J.P. Shen) 18-600 Lecture #2 Carnegie Mellon University 3

Fromm Amdahl’s Law to Gustafson's Law

* Amdahl’s Law works on a fixed problem size
* This is reasonable if your only goal is to solve a problem faster.
* What if you also want to solve a larger problem?
* Gustafson’s Law (Scaled Speedup)
* Gustafson’s Law is derived by fixing the parallel execution time (Amdahl fixed
the problem size -> fixed serial execution time)
* For many practical situations, Gustafson’s law makes more sense
* Have a bigger computer, solve a bigger problem.

* “Amdahl’s Law turns out to be too pessimistic for high-performance computing.”

8/31/2016 (©J.P.Shen) 18-600 Lecture #2

Carnegie Mellon University 32

16

8/31/2016

Gustafson’s Law

* Fix execution of the computation on a single processor as

* s+ p = serial part + parallelizable part =1
* Speedup(N) = (s + p)/(s + p/N)
=1/(s+(1-s)/N)=1/((1-p) + p/N) €& Amdahl’s law
* Now let 1 = (a + b) = execution time of computation on N processors (fixed)
where a = sequential time and b = parallel time on any of the N processors
* Time for sequential processing = a + (bxN) and Speedup = (a + bxN)/(a + b)
* Let a = a/(a+b) be the sequential fraction of the parallel execution time
 Speedup,.eq(N) = (a + bxN)/(a + b) = (a/(a+b) + (bxN)/(a+b)) = a + (1- &)N
* If ais very small, the scaled speedup is approximately N, i.e. linear speedup.

8/31/2016 (©1J.P. Shen) 18-600 Lecture #2 Carnegie Mellon University 33

Two Laws on Algorithm and Performance

Amdahl’s Law Gustafson’s Law
Speedup(N),,c =f;(1f) Speedup(N)c = f *+(1—- f*)N
() +(j P f* = sequential fraction of
Il N A total parallel execution time
f = sequential % Q//@
4.
)
A, %
O 7]
o 0// @
£ . £
= % =
c <9(<, c
o 7 o
5 % 5
0)
z s
. Parallelism (N) . Parallelism (N)
8/31/2016 (©J.P.Shen) 18-600 Lecture #2 Carnegie Mellon University 34

17

8/31/2016

Two “Gordon” Laws of Computer Architecture

» Gordon Moore’s Law (1965)
* (Transistors/Die) increases by 2X every 18 months
* Constant price, increasing performance
* Has held for 40+ years, and will continue to hold

» Gordon Bell’s Law (1971)
* (Cost/Computer) decreases by 2X every 36 months (~ 10X per decade)
* Constant performance, decreasing price
* Corollary of Moore’s Law, creation of new computer categories

“In a decade you can buy a computer for less than its sales tax today.” — Jim Gray

We have all been living on this exponential curve and assume it...

8/31/2016 (©1J.P. Shen) 18-600 Lecture #2 Carnegie Mellon University 35

Moore's Law Trends

Historical Specint2000 Performance

10000

Py
1000 —aintel .
——— 2%/18 months. /{
- — - 2x/24 months e
100 S

Specint2000

a1
1980

1985 1990 1995

Year

* Moore’s Law for device integration
* Chip power consumption

* Single-thread performance trend

© 8/31/2016 (©.P. Shen)

2000 2005 2010

[source: Intel]

18-600 Lecture #2 Carnegie Mellon University 36

18

8/31/2016

Bell's Law Trends

Bell' Law of

OMpuyter ¢

Te
(rh,,(””r

er(l(l(' F
BY enabl T ,‘, (J([I‘("‘(J(‘:

easi
C(g : ,
Nstant Performance

Ce
29

Y €nab)

i, ormance
2, decreas

INg price

Log price

Log price
N
: 37z

-
O
Towe WanPhone; 3 yrs - 10x/decade; 1/1.26 = &

T — WA VTS ~100x/decade; 1/1.6 = 82

ll‘-b/lm- 100/ dacade; .
e ""‘"—'szxlf.:, 2X/3year = 10X/decade

* 4X/3years = 100X/decade

8/31/2016 (©1J.P. Shen) 18-600 Lecture #2 Carnegie Mellon University 37

[Bob Colwell CRA Grand Challenges panel 2005]

Know Your “Supply & Demand Curves”

$S%

2004

“Speed at any price” “What's in it for me?” -buyer

Cell phones
Ray tracing
Portable computing

Time
«—— “PCera” Ubig. comp. —
8/31/2016 (©J.P.Shen) 18-600 Lecture #2 Carnegie Mellon University 3

19

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=j3Ij11AVdCqJmM&tbnid=pJHZS-o_FrOAVM:&ved=0CAUQjRw&url=http://research.microsoft.com/en-us/um/people/gbell/&ei=IqKvUtiZF4LroASb2oKQAw&bvm=bv.57967247,d.cGU&psig=AFQjCNG7X8M8fZ6hJh3eQFOotEk_X6DCcQ&ust=1387328343731838

8/31/2016

Moore's Law and Bell's Law are Alive and Well

Cross Over Point in 2013 !!!

2,000,000,000 —]| == Desktop
== Windows
Requirements
1,000,000,000 —
=== |aptop
=== Phone
€
S 100,000,000 —
S
S
= 10,000,000 —
1,000,000 I T T]
1990 1995 2000 2005 2010 2015
Date of Introduction
8/31/2016 (©1J.P. Shen) 18-600 Lecture #2 Carnegie Mellon University 3

18-600 Foundations of Computer Systems

Lecture 3:
“Bits, Bytes, and Integers”

John P. Shen & Zhiyi Yu

~ Next Time ...

» Required Reading Assighment:
* Chapter 2 of CS:APP (3" edition) by Randy Bryant & Dave O’Hallaron

> Assignments for This Week: {) Electrical & Computer
% Lab#1 ENGINEERING
9/7/2016 (©Zhiyi Yu & John Shen) 18-600 Lecture #3 Carnegie Mellon University 2

20

