
8/31/2016

1

Lecture 2:
“Computer Systems Big Picture”

John P. Shen & Zhiyi Yu
August 31, 2016

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 1

18-600 Foundations of Computer Systems

 Recommended References:
 Chapters 1 and 2 of Shen and Lipasti (SnL).
 “Amdahl’s and Gustafson’s Laws Revisited” by Andrzej Karbowski. (2008)

CS: AAP

CS: APP

18-600

Lecture 2:
“Computer Systems Big Picture”

1. Instruction Set Architecture (ISA)
a. Hardware / Software Interface
b. Dynamic / Static Interface (DSI)
c. Instruction Set Architecture Examples

2. Historical Perspective on Computing
a. Major Epochs of Modern Computers
b. Computer Performance Iron Law (#1)

3. “Economics” of Computer Architecture
a. Amdahl’s Law and Gustafson’s Law
b. Moore’s Law and Bell’s Law

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 2

18-600 Foundations of Computer Systems

8/31/2016

2

18-600 Lecture #28/31/2016 (©J.P. Shen) 3

Anatomy of Engineering Design

Specification: Behavioral description of “What does it do?”

Synthesis: Search for possible solutions; pick best one. Creative process

Implementation: Structural description of “How is it constructed?”

Analysis: Validate if the design meets the specification.

“Does it do the right thing?” + “How well does it perform?”

1. Instruction Set Architecture (ISA)

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 4

a. Hardware / Software Interface

b. Dynamic / Static Interface (DSI)

c. Instructure Set Architecture Examples

Lecture 2: “Computer Systems Big Picture”

8/31/2016

3

The Von Neumann Stored Program Computer

18-600 Lecture #28/31/2016 (©J.P. Shen) 5

• The Classic Von Neumann Computation Model: Proposed in 1945 by John
Von Neumann and others (Alan Turing, J. Presper Eckert and John Mauchly).

• A “Stored Program Computer”
1. One CPU

• One Control Unit
• Program Counter
• Instruction Register

• One ALU

2. Monolithic Memory
• Data Store
• Instruction Store

3. Sequential Execution Semantics
• Instructions from an Instruction Set

ARCHITECTURE (ISA) programmer/compiler view
• Functional programming model to application/system programmers

• Opcodes, addressing modes, architected registers, IEEE floating point

IMPLEMENTATION (μarchitecture) processor designer view
• Logical structure or organization that performs the ISA specification

• Pipelining, functional units, caches, physical registers, buses, branch predictors

REALIZATION (Chip) chip/system designer view
• Physical structure that embodies the implementation

• Gates, cells, transistors, wires, dies, packaging

Instruction Set Processor Design

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 6

[Gerrit Blaauw & Fred Brooks, 1981]

8/31/2016

4

Computer
Engineering

Application Software
• Program development
• Program compilation

Hardware Technology
• Program execution
• Computer performance

Computer Instruction Set Architecture

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 7

Instruction Set Architecture (ISA) SPECIFICATION

IMPLEMENTATION

Software
Engineering

P
ro

ce
ss

o
r

D
e

si
gn

P
ro

gr
am

D
e

ve
lo

p
m

en
t

CS: APP

CS: AAP

Quantum Physics

Transistors & Devices

Logic Gates & Memory

Von Neumann Machine

x86 Machine Primitives

Visual C++

Firefox, MS Excel

Windows

Computer Dynamic-Static Interface

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 8

Dynamic/Static Interface (DSI)=(ISA)

“s
ta

ti
c”

“d
yn

am
ic

”

Architectural State

Microarchitecture State

MACHINE

PROGRAM

Exposed to SW

Hidden in HW

Buffering needed between arch and uarch states:

• Allow uarch state to deviate from arch state.

• Able to undo speculative uarch state if needed.

Architectural state requirements:

• Support sequential instruction execution semantics.

• Support precise servicing of exceptions & interrupts.

ARCHITECTURE

DSI = ISA = a contract between the program and the machine.

8/31/2016

5

18-600 Lecture #28/31/2016 (©J.P. Shen) 9

RISC vs. CISC Transition from CISC to RISC:

[Josh Fisher, HP]

High
Level
Lang.

CISC
Object
Code

Micro-
Code
Stream

Execution
Hardware

High
Level
Lang.

RISC
Object
Code

Execution
HardwareMissing

DSI

CISC

RISC

Micro-
Code

18-600 Lecture #28/31/2016 (©J.P. Shen) 10

Another way to view RISC

High
Level
Lang.

RISC
Object
Code

Execution
Hardware

High
Level
Lang.

Com-
piled
Vertical

Execution
Hardware

Micro

DSI

RISC

RISC?
CISC?

MissingVLIW?

Macro
Code Code

8/31/2016

6

18-600 Lecture #28/31/2016 (©J.P. Shen) 11

HW vs. SW & Dynamic vs. Static Design Space
[B. Rau & J. Fisher, 1993]

Front end & Optimizer

Determine Depend.

Determine Independ.

Bind Resources

Execute

Bind Resources

Hardware

Compiler

Sequential

(Superscalar)

Dependence
Architecture

(Dataflow)

Independence
Architecture

(Attached

Array

Processor)

Independence
Architecture

VLIW

Determine Independ.

Determine Depend.

Commercially Successful ISA’s

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 12

“s
ta

ti
c”

“d
yn

am
ic

”

MACHINE

PROGRAM

ARCHITECTURE Instruction Set Architecture (ISA)

Program Execution:
• Load program into Memory
• Fetch instructions from Memory
• Exeucte Instructions in CPU
• Update Architecture State

Instruction Set Definition:
• Architecture State: Reg & Memory
• Op-code & Operand types
• Operand Addressing modes
• Control Flow instructions

8/31/2016

7

2. Historical Perspective on Computing

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 13

a. Major Epochs of Modern Computers

b. Computer Performance Iron Law (#1)

Lecture 2: “Computer Systems Big Picture”

Eniac (1946)

Seven Decades of Modern Computing . . .

Mainframes

Minicomputers

Personal Computers

Laptop Computers

???

18-600 Lecture #2 148/31/2016 (©J.P. Shen)

Mobile Computers

8/31/2016

8

• The Decade of the 1970's: "Birth of Microprocessors"
• Programmable controllers, bit-sliced ALU’s, single-chip processors
• Emergence of Personal Computers (PC)

• The Decade of the 1980's: "Quantitative Architecture"
• Instruction pipelining, fast cache memories, compiler considerations
• Widely available Minicomputers, emergence of Personal Workstations

• The Decade of the 1990's: "Instruction-Level Parallelism"
• Superscalar, speculative microarchitectures, aggressive compiler optimizations
• Widely available low-cost desktop computers, emergence of Laptop computers

• The Decade of the 2000's: "Mobile Computing Convergence"
• Multi-core architectures, system-on-chip integration, power constrained designs
• Convergence of smartphones and laptops, emergence of Tablet computers

Historical Perspective on the Last Five Decades

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 15

• The Decade of the 1960's: "Computer Architecture Foundations"
• Von Neumann computation model, programming languages, compilers, OS’s
• Commercial Mainframe computers, Scientific numerical computers

Intel 4004, circa 1971

The first single chip CPU

• 4-bit processor for a calculator.

• 1K data memory

• 4K program memory

• 2,300 transistors

• 16-pin DIP package

• 740kHz (eight clock cycles per CPU
cycle of 10.8 microseconds)

• ~100K OPs per second

Molecular Expressions: Chipshots

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 16

8/31/2016

9

Performance leader in floating-point apps

• 64-bit processor

• 3 MByte in cache!!

• 221 million transistor

• 1 GHz, issue up to 8 instructions
per cycle

In ~30 years, about 100,000 fold
growth in transistor count!

Intel Itanium 2, circa 2002

http://cpus.hp.com/images/die_photos/McKinley_die.jpg

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 17

Performance Growth in Perspective

• Doubling every 18 months (1982-2000):
• total of 3,200X

• Cars travel at 176,000 MPH; get 64,000 miles/gal.

• Air travel: L.A. to N.Y. in 5.5 seconds (MACH 3200)

• Wheat yield: 320,000 bushels per acre

• Doubling every 24 months (1971-2001):
• total of 36,000X

• Cars travel at 2,400,000 MPH; get 600,000 miles/gal.

• Air travel: L.A. to N.Y. in 0.5 seconds (MACH 36,000)

• Wheat yield: 3,600,000 bushels per acre

Unmatched by any other industry!!

[John Crawford, Intel, 1993]

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 18

8/31/2016

10

Convergence of Key Enabling Technologies

• CMOS VLSI:
• Submicron feature sizes: 0.3u → 0.25u → 0.18u → 0.13u → 90n → 65n → 45n → 32nm…
• Metal layers: 3 → 4 → 5 → 6 → 7 (copper) → 12 …
• Power supply voltage: 5V → 3.3V → 2.4V → 1.8V → 1.3V → 1.1V …

• CAD Tools:
• Interconnect simulation and critical path analysis
• Clock signal propagation analysis
• Process simulation and yield analysis/learning

• Microarchitecture:
• Superpipelined and superscalar machines
• Speculative and dynamic microarchitectures
• Simulation tools and emulation systems

• Compilers:
• Extraction of instruction-level parallelism
• Aggressive and speculative code scheduling
• Object code translation and optimization

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 19

18-600 Lecture #28/31/2016 (©J.P. Shen) 20

“Iron Law” of Processor Performance

1/ComputerPerformance = ---------------
Time

Program

= ------------------ X ---------------- X ------------
Instructions Cycles

Program Instruction

Time

Cycle

(inst. count) (CPI) (cycle time)

Architecture  Implementation Realization

Compiler Designer Processor Designer Chip Designer

• In the 1980’s
(decade of
pipelining):

• CPI: 5.0  1.15

• In the 1990’s
(decade of
superscalar):

• CPI: 1.15  0.5
(best case)

• In the 2000’s:

• we learn the
power lesson

• ILP  TLP

8/31/2016

11

Iron Law #1 – Processor (Latency) Performance

18-600 Lecture #28/31/2016 (©J.P. Shen) 21

 Time to execute a program: T (latency)

 Processor performance: Perf = 1/T

cycle

time

ninstructio

cycles

program

nsinstructio
T 

CycleTimeCPIPathLengthT 

CPIPathLength

Frequency

CycleTimeCPIPathLength
PerfCPU







1

18-600 Lecture #28/31/2016 (©J.P. Shen) 22

Landscape of Processor Families [SPECint92]

8/31/2016

12

Landscape of Microprocessor Families (SPECint95)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

80 180 280 380 480 580 680 780 880 980

Frequency (MHz)

S
P

E
C

in
t9

5
/M

H
z

Alpha

AMD-x86

Intel-x86

** Data source www.spec.org

5

10

15

20

25
30 35 40 45 50 55 60 SPECint 95

064

164

264

Athlon

AthlonPPro

Pentium

PII
PIII

PIII

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 23

Landscape of Processor Families [SPECint95]

Landscape of Microprocessor Families (SPECint2K)

0

0.5

1

0 500 1000 1500 2000 2500

Frequency (MHz)

S
P

E
C

in
t2

0
0
0
/M

H
z

Intel-x86

AMD-x86

Alpha

PowerPC

Sparc

IPF

800 SPECint 2000700600500400300
200

100
50

PIII-Xeon

Pentium 4

Athlon

264C

Sparc-III

264A

604e Itanium

** Data source www.spec.org

264B

25

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 24

Landscape of Processor Families [SPECint2000]

8/31/2016

13

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 25

Landscape of Microprocessor Families

0

0.5

1

0 500 1000 1500 2000 2500 3000 3500

Frequency (MHz)

S
P

E
C

in
t2

0
0
0
/M

H
z

Intel-x86

AMD-x86

Power

Itanium

700
500

300

100

PIII

P4

Athlon

** Data source www.spec.org

Power4

NWD

900

1100
1900 SpecINT 2000 1300

1500

Opteron

800 MHz

Extreme

Power 3

Power5

PSC

DTN

1700

Itanium

Source: www.SPEC.org

CPIPathLength

Frequency
ePerformanc CPU




Deeper pipelining

W
id

er

p
ip

el
in

e

Landscape of Processor Families [SPECint2000]
[John DeVale & Bryan Black, 2005]

3. “Economics” of Computer Architecture

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 26

a. Amdahl’s Law and Gustafson’s Law

b. Moore’s Law and Bell’s Law

Lecture 2: “Computer Systems Big Picture”

8/31/2016

14

“Economics” of Computer Architecture

• Exercise in engineering tradeoff analysis
• Find the fastest/cheapest/power-efficient/etc. solution
• Optimization problem with 10s to 100s of variables

• All the variables are changing
• At non-uniform rates
• With inflection points
• Only one guarantee: Today’s right answer will be wrong tomorrow

 Two Persistent high-level “forcing functions”:
 Application Demand (PROGRAM)
 Technology Supply (MACHINE)

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 27

Foundational “Laws” of Computer Architecture

 Application Demand (PROGRAM)
• Amdahl’s Law (1967)

• Speedup through parallelism is limited by the sequential bottleneck

• Gustafson’s Law (1988)
• With unlimited data set size, parallelism speedup can be unlimited

 Technology Supply (MACHINE)
• Moore’s Law (1965)

• (Transistors/Die) increases by 2x every 18 months

• Bell’s Law (1971)
• (Cost/Computer) decreases by 2x every 36 months

18-600 Lecture #28/31/2016 (©J.P. Shen) 28

8/31/2016

15

Amdahl’s Law

• h = fraction of time in serial code

• f = fraction that is vectorizable or parallelizable
• N = max speedup for f

• Overall speedup  

No. of
Processors

N

Time

1
h 1 - h

1 - f

f

N

f
f

Speedup





)1(

1

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 29

• Speedup = (Execution time on Single CPU)/(Execution on N parallel processors)

• ts /tp (Serial time is for best serial algorithm)

Amdahl’s Law Illustrated

• Speedup = timewithout enhancement / timewith enhancement

• If an enhancement speeds up a fraction f of a task by a factor of N

• timenew = timeorig·((1-f) + f/N)

• Soverall = 1 / ((1-f) + f/N)

1

timeorig

f(1 - f)

timeorig

(1 - f)

timenew

f/N

f(1 - f)

timeorig

(1 - f)

timenew

f/N

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 30

8/31/2016

16

“Tyranny of Amdahl’s Law” [Bob Colwell, CMU-Intel-DARPA]

f (vectorizability)

P
 (

s
p
e
e

d
u
p
)

P
1

1 f– 
f

50

 
 +

---------------------------------=

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 31

• Suppose that a computation has a
4% serial portion, what is the limit of
speedup on 16 processors?

• 1/((0.04) + (0.96/16)) = 10

• What is the maximum speedup?

• 1/0.04 = 25 (with N  )

From Amdahl’s Law to Gustafson’s Law

• Amdahl’s Law works on a fixed problem size

• This is reasonable if your only goal is to solve a problem faster.

• What if you also want to solve a larger problem?

• Gustafson’s Law (Scaled Speedup)

• Gustafson’s Law is derived by fixing the parallel execution time (Amdahl fixed
the problem size -> fixed serial execution time)

• For many practical situations, Gustafson’s law makes more sense

• Have a bigger computer, solve a bigger problem.

• “Amdahl’s Law turns out to be too pessimistic for high-performance computing.”

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 32

8/31/2016

17

Gustafson’s Law

• Fix execution of the computation on a single processor as

• s + p = serial part + parallelizable part = 1

• Speedup(N) = (s + p)/(s + p/N)

= 1/(s + (1 – s)/N) = 1/((1-p) + p/N)  Amdahl’s law

• Now let 1 = (a + b) = execution time of computation on N processors (fixed)
where a = sequential time and b = parallel time on any of the N processors

• Time for sequential processing = a + (b×N) and Speedup = (a + b×N)/(a + b)

• Let α = a/(a+b) be the sequential fraction of the parallel execution time

• Speedupscaled(N) = (a + b×N)/(a + b) = (a/(a+b) + (b×N)/(a+b)) = α + (1- α)N

• If α is very small, the scaled speedup is approximately N, i.e. linear speedup.

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 33

Two Laws on Algorithm and Performance

 







 










N

ff
Speedup(N)MC

1

1

1

f = sequential %

Parallelism (N)

Ex
ec

u
ti

o
n

 T
im

e

f

Ex
ec

u
ti

o
n

 T
im

e

Parallelism (N)f*

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 34

Amdahl’s Law Gustafson’s Law
NffNSpeedup MC *)1(*)(

f* = sequential fraction of
total parallel execution time

8/31/2016

18

Two “Gordon” Laws of Computer Architecture

 Gordon Moore’s Law (1965)
• (Transistors/Die) increases by 2X every 18 months

• Constant price, increasing performance

• Has held for 40+ years, and will continue to hold

 Gordon Bell’s Law (1971)
• (Cost/Computer) decreases by 2X every 36 months (~ 10X per decade)

• Constant performance, decreasing price

• Corollary of Moore’s Law, creation of new computer categories

“In a decade you can buy a computer for less than its sales tax today.” – Jim Gray

We have all been living on this exponential curve and assume it…
18-600 Lecture #28/31/2016 (©J.P. Shen) 35

Moore’s Law Trends

• Moore’s Law for device integration
• Chip power consumption
• Single-thread performance trend [source: Intel]

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 36

8/31/2016

19

Bell’s Law Trends

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 37

• 2X/3year = 10X/decade
• 4X/3years = 100X/decade

Know Your “Supply & Demand Curves”

“PC era” Ubiq. comp.

2004

Time

$$$

Cell phones
Ray tracing

Portable computing

“Speed at any price” “What’s in it for me?” -buyer

[Bob Colwell CRA Grand Challenges panel 2005]

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 38

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=j3Ij11AVdCqJmM&tbnid=pJHZS-o_FrOAVM:&ved=0CAUQjRw&url=http://research.microsoft.com/en-us/um/people/gbell/&ei=IqKvUtiZF4LroASb2oKQAw&bvm=bv.57967247,d.cGU&psig=AFQjCNG7X8M8fZ6hJh3eQFOotEk_X6DCcQ&ust=1387328343731838

8/31/2016

20

Moore’s Law and Bell’s Law are Alive and Well

Cross Over Point in 2013 !!!

1,000,000

10,000,000

100,000,000

1,000,000,000

2,000,000,000

8/31/2016 (©J.P. Shen) 18-600 Lecture #2 39

Lecture 3:
“Bits, Bytes, and Integers”

John P. Shen & Zhiyi Yu
September 7, 2016

9/7/2016 (©Zhiyi Yu & John Shen) 18-600 Lecture #3 40

18-600 Foundations of Computer Systems

 Required Reading Assignment:
• Chapter 2 of CS:APP (3rd edition) by Randy Bryant & Dave O’Hallaron

 Assignments for This Week:
 Lab #1

