Welcome To... The New...

18-600 "Foundations of Computer Systems" (Fall 2016)

Instructors:

John P. Shen & Zhiyi Yu

Head TAs:

Jenna MacCarley & Preeti Murthy

8/29/2016 (©J.P. Shen)

18-600 Lecture #1

•

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

18-600 Foundations of Computer Systems

Lecture 1: "Course Introduction & Overview"

John P. Shen & Zhiyi Yu August 29, 2016

- Required Reading Assignment:
 - Chapter 1 of CS:APP (3rd edition) by Randy Bryant & Dave O'Hallaron
- Assignments for This Week:
 - Check out our Piazza site http://piazza.com/cmu/fall2016/18600/home
 - Complete the short survey: https://goo.gl/forms/mX2inGxYVdaqyk8b2
 - If you are still deciding on taking this course, please decide this week.

8/29/2016 (©J.P. Shen)

18-600 Lecture #1

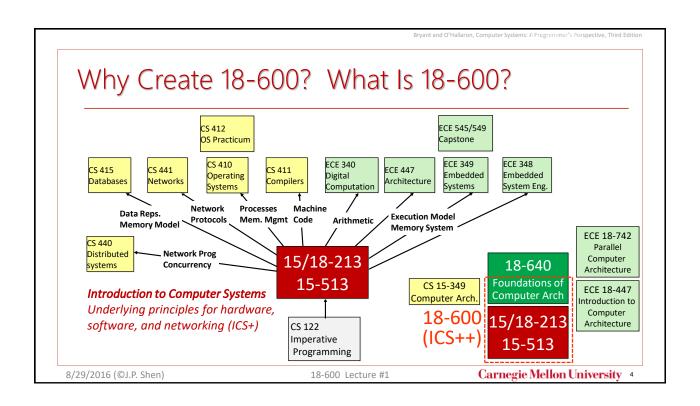
18-600 Foundations of Computer Systems

Lecture 1: "Course Introduction & Overview"

1. Course Introduction

- a. The New 18-600 FCS
- b. Teaching & Support Staff
- c. Course Organization
- d. Course Policy

2. Course Overview


- a. Tour of Computer Systems
- b. Lab Assignments Overview

8/29/2016 (©J.P. Shen)

18-600 Lecture #1

Carnegie Mellon University ³

Course Assumptions and Expectations

Who should take 18-600?

- Graduate students (MS/PhD in ECE)
 - Applications and systems programming; Broad computing systems expertise
 - Computer systems design & development; Strong computer architect's mindset

Assumed undergraduate background:

- HLL programming, and some assembly language exposure
- Digital logic design, and computer organization notions
- C/C++ programming, and Unix operating system exposure

Course expectations:

- > Focusing on foundational principles and key insights; in-class interactions encouraged
- > Emphasis on hands-on lab assignments to gain deeper understanding and personal skills
- Assume self motivated and disciplined students with professional integrity and attitude

8/29/2016 (©J.P. Shen)

18-600 Lecture #1

Carnegie Mellon University 5

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

18-600 Cast of Characters:

> Instructors:

- John P. Shen (SV)
- Zhiyi Yu (GZ)

Academic Services Assistants:

- Michelle Mahouski (PGH)
- Brittany Jade Reves (SV)

JIE Course Coordinator:

Xiaobai Chen (GZ) <chenxb29@mail2.sysu.edu.cn>

Carnegie Mellon University 6

8/29/2016 (@J.P. Shen)

18-600 Lecture #1

18-600 Cast of Characters:

Head Teaching Assistants:

- Jenna MacCarley (SV) (Sec. SB)
- Preeti Murthy (PGH) (Sec. B)

> Teaching Assistants:

- Mila Kankanala (PGH) (Sec. A)
- Steffi Dsouza (PGH) (Sec. A)
- Kevin Xu (SV) (Sec. SA)
- Abhinav Jauhri (SV) (Sec. SA)
- Kangyi Lu (PGH) (Sec. GZ)
- Zhen Hu (PGH)) (Sec. GZ)

Carnegie Mellon University 7

8/29/2016 (©J.P. Shen)

18-600 Lecture #1

Prof. Zhiyi Yu:

Research Interests:

• Digital VLSI and Computer Architecture

SYSU-CMU Joint Institute of Engineering
 Microelectronics Department, Fudan University, China
 IntellaSys Corporation, USA
 2005-2014
 2007-2008

• Ph.D. in Electrical and Computer Engineering, 2007

University of California, Davis

M.S. in Electrical Engineering, Fudan University, China
B.S. in Electrical Engineering, Fudan University, China
2000

8/29/2016 (©J.P. Shen) 18-600 Lecture #1 Carnegie Mellon University 8

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Prof. John P. Shen:

- Academia (15 years)
 - Carnegie Mellon University
 - First Half

Computer Aided Design

- Sabbatical at Stanford Second Half
 - Sabbatical at Intel

Computer Architecture

- ➤ Industry (15 years)
 - Intel. Research Lab
 - Microarchitecture Lab

Microprocessor Design

- Nokia, Research Center
 - North America Lab

Mobile Computing Systems

- > Academia (Fall 2015)
 - Carnegie Mellon University (SV Campus)

8/29/2016 (©J.P. Shen)

18-600 Lecture #1

Carnegie Mellon University 9

Textbooks: Two Required, One Optional

- Randal E. Bryant and David R. O'Hallaron,
 - Computer Systems: A Programmer's Perspective, Third Edition (CS:APP3e), Pearson, 2016
 - http://csapp.cs.cmu.edu
 - This book really matters for the course!
 - · How to solve labs
 - Practice problems typical of exam problems
- Brian Kernighan and Dennis Ritchie,
 - The C Programming Language, Second Edition, Prentice Hall, 1988
 - Still the best book about C, from the originators
- [Optional] John P. Shen and Mikko Lipasti, (supplement to CS:APP Chapter 4)
 - Modern Processor Design: Fundamentals of Superscalar Processors, 2005; reissued by Waveland Press Inc., 2013. ISBN 10: 1478607831, ISBN 13: 9781478607830

8/29/2016 (@J.P. Shen)

18-600 Lecture #1

Course Schedule - Fall 2016

Class Schedule: (CST=UTC+08, EDT=UTC-04, PDT=UTC-07, EST=UTC-05, PST=UTC-08)

Lectures:

Lectures, Section A:

MW, 8:00pm to 9:50pm (ET), DH A302

Lectures, Section B:

MW, 8:00pm to 9:50pm (ET), DH A302

Lectures, Section SA:

MW, 5:00pm to 6:50pm (PT), B23 118

Lectures, Section SB:

MW, 5:00pm to 6:50pm (PT), B23 109/110

Lectures, Section GZ:

TR, 8:00am to 9:50am (CST), JIE 214

Recitation:

Recitation, Section A:

T, 8:00pm to 9:20pm (ET), HH 1107

Recitation, Section B:

T, 8:00pm to 9:20pm (ET), DH A302

Recitation, Section SA:

T, 4:30pm to 5:50pm (PT), B23 118

Recitation, Section SB:

T, 4:30pm to 5:50pm (PT), B23 109/110

Recitation, Section GZ:

W, 8:00am to 9:20am (CST), JIE 214

8/29/2016 (©J.P. Shen)

18-600 Lecture #1

Carnegie Mellon University 11

Course Components

- Lectures (27)
 - · Higher level concepts
- Recitations (14)
 - Applied concepts, important tools and skills for labs, clarification of lectures, exam coverage
- Labs (7)
 - The heart of the course
 - 1-2 weeks each
 - Provide in-depth understanding of an aspect of systems
 - · Programming and measurement
- Exams (Midterm + Final)
 - Test your understanding of concepts & mathematical principles

8/29/2016 (@J.P. Shen)

18-600 Lecture #1

Course Grading Distribution

RECITATIONS (Led by TA's)	LAB Assignments	50%	(7) Individual lab assignments with varying weights.
LECTURES (Instructors)	Mid-Term EXAM	25%	In class Exam covering Lectures 1-15, and Lab Assignments 1-4.
	Final EXAM	25%	In class Exam covering Lectures 16-27, and Lab Assignments 5-7.
EXTRA CREDITS	Class Participation Online Contribution	5%	Active participation in lectures and recitations. Active contribution in Piazza Q&A discussions.

8/29/2016 (©J.P. Shen) 18-600 Lecture #1 Carnegie Mellon University 13

Course Policies: Labs And Exams

- Lab work
 - You must work alone on all lab assignments
- Hand-ins
 - Labs are due at 11:59pm (PT) usually on a Thursday or Monday
 - Electronic handins using Autolab (no exceptions!)
- Exams
 - Exams will be held in class
- Appealing grades
 - Talk to one of the head TAs first with possible escalation to the instructors

8/29/2016 (©J.P. Shen)

18-600 Lecture #1

Cheating: Description

- Please pay close attention, especially if this is your first semester at CMU
- What is cheating?
 - Sharing code: by copying, retyping, looking at, or supplying a file
 - Describing: verbal description of code from one person to another.
 - Coaching: helping your friend to write a lab, line by line
 - · Searching the Web for solutions
 - Copying code from a previous course or online solution
 - You are only allowed to use code we supply, or from the CS:APP website
- What is NOT cheating?
 - · Explaining how to use systems or tools
 - · Helping others with high-level design issues
- See the course syllabus for details.
 - · Ignorance is not an excuse

8/29/2016 (©J.P. Shen)

18-600 Lecture #1

Carnegie Mellon University

Cheating: Consequences

- Penalty for cheating:
 - Removal from course with failing grade (no exceptions!)
 - · Permanent mark on your record
 - Your instructors' personal contempt
- Detection of cheating:
 - We have sophisticated tools for detecting code plagiarism
 - Last Fall, 20 students in 213/513 were caught cheating and failed the course.
 - · Some were expelled from the University
- Don't do it!
 - Start early
 - · Ask the staff for help when you get stuck

8/29/2016 (@J.P. Shen)

18-600 Lecture #1

Getting Help

- Class Web page: http://ece.cmu.edu/~ece600/
 - · Complete schedule of lectures, exams, and assignments
 - · Copies of lectures, assignments, exams, solutions
 - · Clarifications to assignments
 - The afs directory for 18-600 is at: /afs/ece.cmu.edu/class/ece600
- We will use Piazza in this course for communication: http://piazza.com/cmu/fall2016/18600/home
- Office Hours:
 - Recitations: other than presenting planned material there is time for Q&A
 - Each TA will have weekly office hours beyond the recitation sessions (TBA)
 - If necessary send email to your TA to arrange a special help session

8/29/2016 (©J.P. Shen)

18-600 Lecture #1

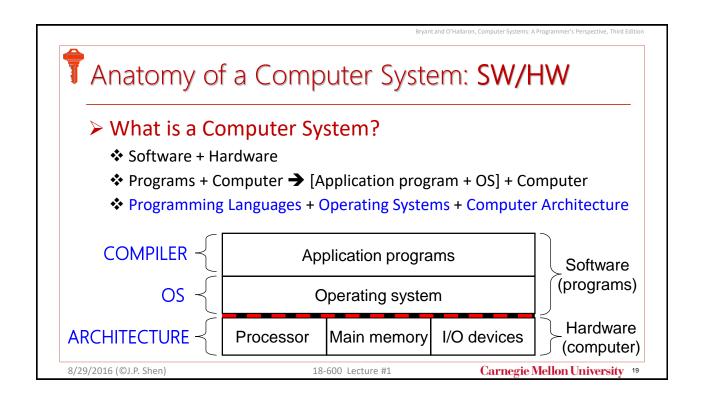
Carnegie Mellon University 17

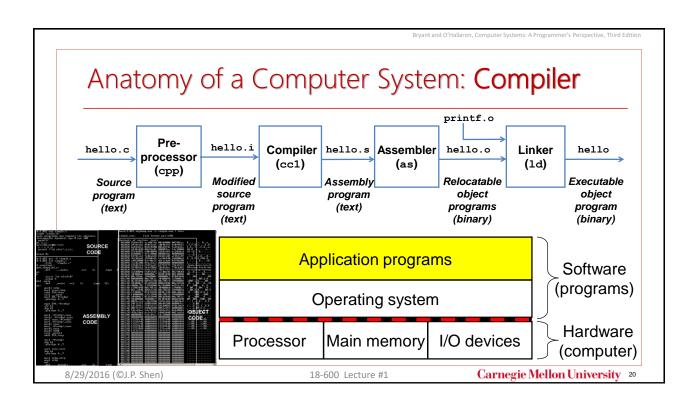
Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

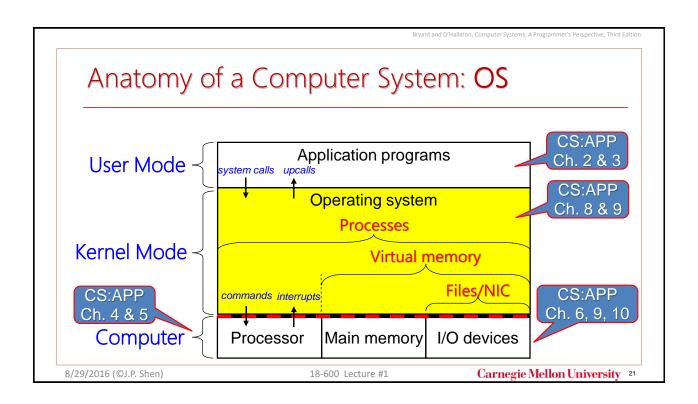
18-600 Foundations of Computer Systems

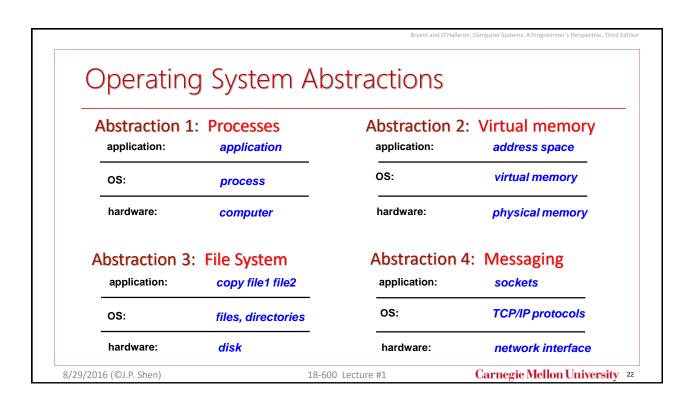
Lecture 1: "Course Introduction & Overview"

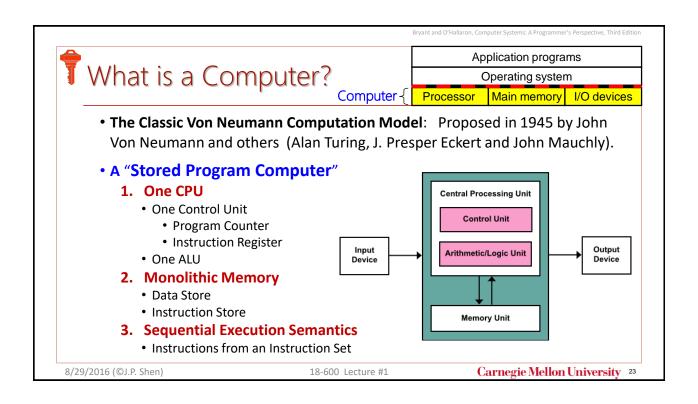
- 1. Course Introduction
 - a. Birth of the New 18-600
 - b. Teaching & Support Staff
 - c. Course Organization
 - d. Course Policy

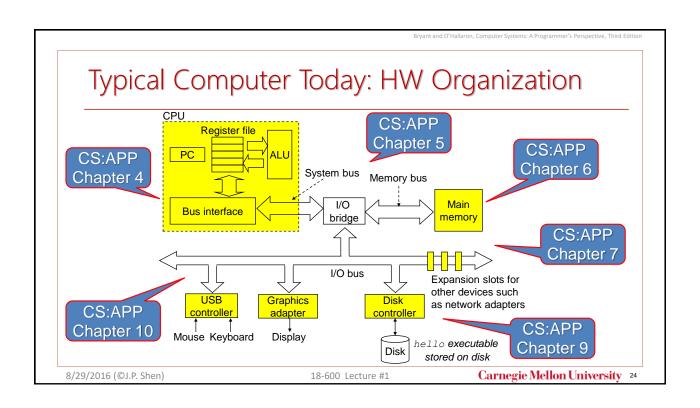

2. Course Overview

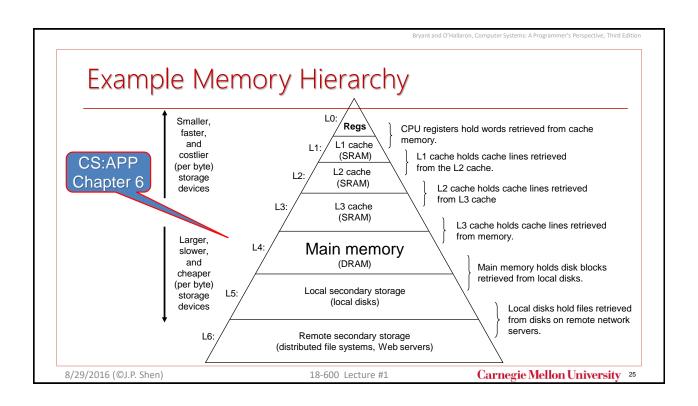

- a. Tour of Computer Systems
- b. Lab Assignments Overview

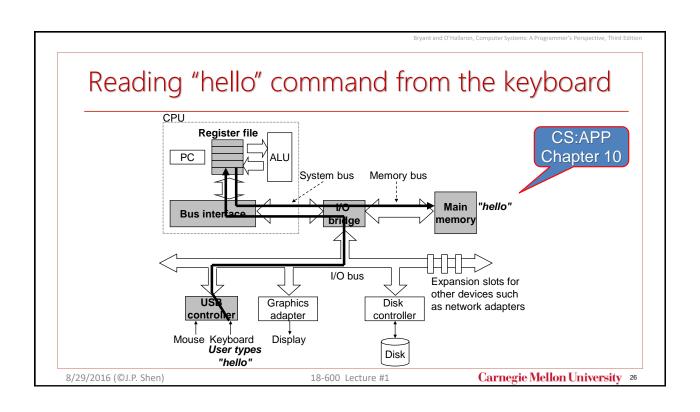


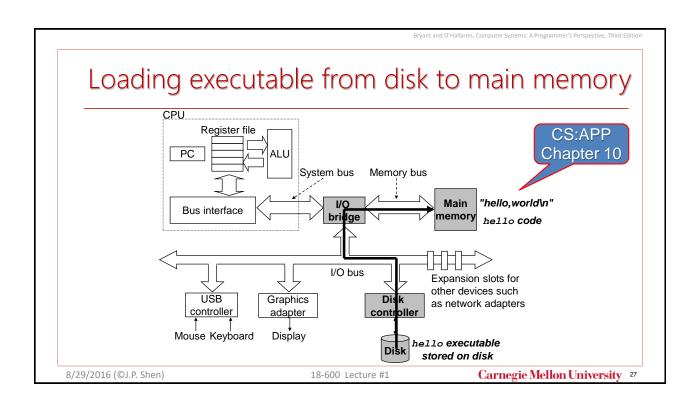

8/29/2016 (©J.P. Shen)

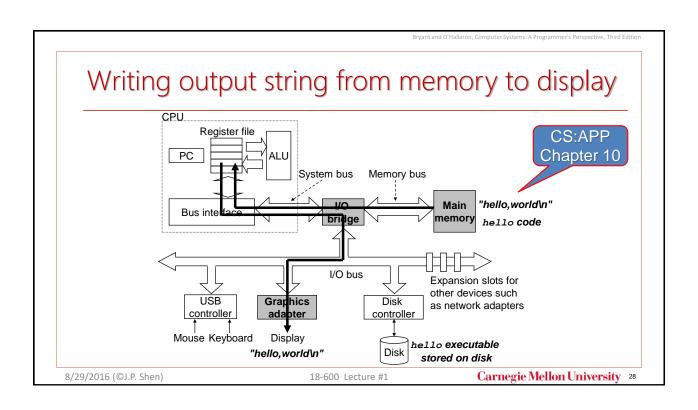

18-600 Lecture #1

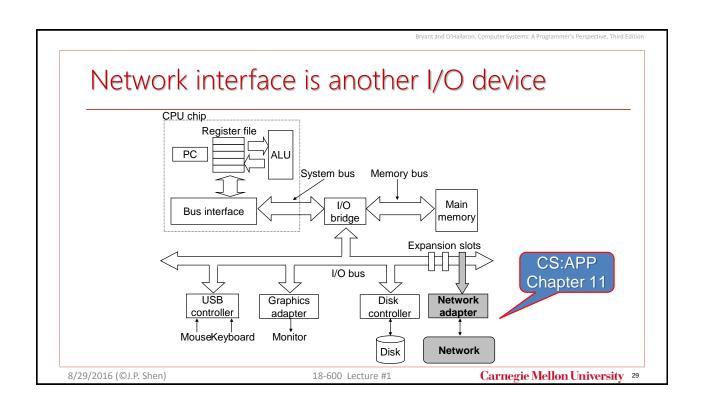


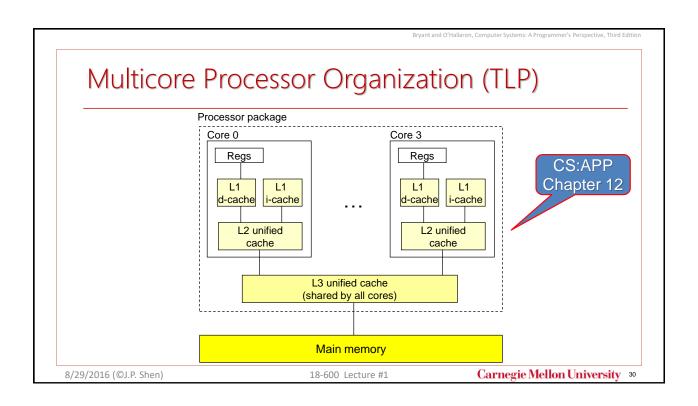












Lab Assignments Overview

7 Lab Assignments

- L1 (Data Lab): Manipulating bits
- L2 (Attack Lab): The basics of code injection attacks
- L3 (Arch Lab): Pipelined processor and performance improvements
- L4 (Cache Lab): Building a cache simulator and optimizing for locality
- L5 (Shell Lab): Writing your own Unix shell.
- L6 (Malloc Lab): Writing your own malloc package
- L7 (Proxy Lab): Writing your own Web proxy

8/29/2016 (©J.P. Shen)

18-600 Lecture #1

Carnegie Mellon University 31

Data and Programs

• Topics

• Bits operations, arithmetic, assembly language programs

• Representation of C control and data structures

• Includes aspects of architecture and compilers

• Assignments

• L1 (Data Lab): Manipulating bits

• L2 (Attack Lab): The basics of code injection attacks

8/29/2016 (©J.P. Shen)

18-600 Lecture #1

Carnegie Mellon University

22

Processor and Memory Hierarchy

Topics

- Pipelined processor design and performance
- Memory technology, memory hierarchy, caches, disks, locality
- Includes aspects of architecture and OS

CS:APP Ch. 4 & 5

Assignments

- L3 (Arch Lab): Pipeline processor design and performance improvements
- L4 (Cache Lab): Building a cache simulator and optimizing for locality.
 - Learn how to exploit locality in your programs.

8/29/2016 (©J.P. Shen)

18-600 Lecture #1

Carnegie Mellon University 33

Exceptional Control Flow

Topics

- Hardware exceptions, processes, process control, Unix signals, nonlocal jumps
- Includes aspects of compilers, OS, and architecture

Assignments

CS:APP Ch. 8 & 10

- L5 (Shell Lab): Writing your own Unix shell.
 - A first introduction to concurrency

8/29/2016 (©J.P. Shen)

18-600 Lecture #1

Virtual Memory

Topics

- Virtual memory, address translation, dynamic storage allocation
- Includes aspects of architecture and OS

Assignments

- L6 (Malloc Lab): Writing your own malloc package
 - · Get a real feel for systems-level programming

CS:APP Ch. 9

8/29/2016 (©J.P. Shen)

18-600 Lecture #1

Carnegie Mellon University 35

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Networking and Concurrency

Topics

- High level and low-level I/O, network programming
- Internet services, Web servers
- concurrency, concurrent server design, threads
- I/O multiplexing with select
- Includes aspects of networking, OS, and architecture

Assignments

• L7 (Proxy Lab): Writing your own Web proxy

CS:APP Ch. 11 & 12

• Learn network programming and more about concurrency and synchronization.

8/29/2016 (©J.P. Shen)

18-600 Lecture #1

Timeliness on Lab Assignments

- Grace Days
 - 5 grace days total for the semester
 - Limit of 2 grace days per lab used automatically
 - Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks, etc.
 - Save them until late in the semester!
- Lateness Penalties
 - Once grace day(s) are used up, will get penalized 15% per day late
 - No hand-ins later than 3 days after due date
- Advice
 - Once you start running late, it's really hard to catch up!!!

8/29/2016 (©J.P. Shen)

18-600 Lecture #1

Carnegie Mellon University 37

18-600 Foundations of Computer Systems

Lecture 2: "Computer Systems Big Picture"

John P. Shen & Zhiyi Yu August 31, 2016

Next Time

- Recommended References:
 - Chapters 1 and 2 of Shen and Lipasti (SnL).
 - "Amdahl's and Gustafson's Laws Revisited" by Andrzej Karbowski. (2008)

Electrical & Computer ENGINEERING

8/31/2016 (©J.P. Shen)

18-600 Lecture #2