Group 27

Prerak Patel

Ben Wasserman

Dev Gurjar

Daniel Jacobs

werty

The next generation keyboard minus the board

Project Concept & Motivation

Problem

 Today, users of tablets are forced to either use onscreen keyboards that consume valuable screen real-estate or physical keyboards that lack portability

Solution

- Twerty provides a portable, space efficient alternative to keyboards for people using tablets.
- Our prototype uses gloves outfitted with sensors that:
 - detect key strokes
 - communicate via Bluetooth
 - provide tactile feedback

Competitive Analysis

	Twerty	The Magic Cube	Keyglove Wearable Input Device	Acceleration Sensing Glove
Keyboard Functionality				
QWERTY Layout				
Tactile Feedback				
Portable and Space Efficient				
Self-Contained				
Comfort				
Multi-surface				
Market Price	Research Product	\$170	Research Product	Research Product

Requirements

Functional

- Tactile Feedback Feel the press of a button with each keystroke
- Platform Independence Connect via Bluetooth to any Tablet or Phone
- Accurate Typing Built it Probabilistic Autocorrect for typing accuracy

Non-Functional

- Typing speed
 - >40 wpm (average typing speed of iPad)
- Multi-surface
- Learning curve
 - 30 second rule

Technical Specifications

Hardware (per glove)

- o Atmel AVR 128RF 16MHz, 38GPIO, ZigBee Wireless
- 5x Flex Sensors
- o 3-Axis Accelerometer
- 5x Buttons
- Bluetooth Modem (only on one glove)

Software

- Probabilistic Autocorrect
- Android Keyboard App

Protocols

- Bluetooth Stack
 - SPP and HID profiles

Architecture

Risks & Mitigation

Risk	Mitigation	
Users may forget QWERTY keyboard layout	Provide a key map image for users to type on to remove anxiety about forgetting key layout	
Users may not follow "standard" typing methods	Use accelerometers to detect when hands are moved from the home row, to detect when keys should be offset	
Data from the gloves may not uniquely identify the key pressed	Use a Probabilistic Autocorrect to detect errors in key input	

Questions?