Team11:

Reality Translator

Eugene Bin, Liang Yeet Ooi, Samantha Tan, Jungmin Yoon

Team Members

jebroni99@gmail.com

Liang Yeet Ooi

Samantha Tan
samanthatan@cmu.edu

Jungmin Yoon cheeki101@gmail.com

Our Websiite:

http://www.ece.cmu.edu/~ece549/spring12/team11/

Concept

• Imagine putting on sunglasses and suddenly being able to understand any language you see, Reality Translator(RT) does exactly that! RT will integrate virtual reality sunglasses, a camera, and a WiFi/Bluetooth-enabled smart phone to translate languages and to emulate augmented reality.

Goals

- Reality Translator translates and renders translations on the glasses in near instant real time.
- Reality Translator emphasizes on ease of use –
 allowing for portability and inconspicuous hands free use
- Timing Requirement: The delay between processing the image and rendering translated text is less than 2 seconds.

Architecture

Components

- NTSC to Raw converter
 - MAXIM MAX9526EVKIT+
- TTL NTSC JPEG camera
- LPC Microcontroller
- NTSC Overlay
 - o Using MAX7456
- Vuzix Wrap 920 Virtual Reality Glasses
 - o 640x480 pixels
 - o Truecolor
- Bluetooth Dongle
 - o 1.5 Mb/s
- OCR
 - o Tesseract
- JAVA
 - Android app

Experiment

Tests

- Power Directly measured as product runs
 - The device must be usable for an acceptable length of time(2hrs)!
- Accuracy How many words is the software able to correctly recognize
 - The translations + character detection must be correct!
 - Tested on a small set of images to measure and improve accuracy
- Latency Time between camera beginning sending image and glasses receiving translated text.
 - Service must be as fast as possible for maximum enjoyment!

Experiment Results

Insight from Measurements

- Latency increased from idle to image processing case is noticeably small
 - Latency from image processing still ~1 second
- Latency from Bluetooth transfer is significantly big
 - Makes up for 40%+ of the total latency
- Accuracy varies with font, size, and color of text
 - Overall accuracy rises as image size grows, with an upper bound
 - Accuracy >90% for black san serif fonts
 - <20% for anything different</p>
 - Edge detection worsens accuracy significantly
- Power consumption reasonable (approx. 2 hours)
 - No changes needed

Performance

- Minimizing Bluetooth latency
 - Increased baud rate for data transfer
 - Attempt to speed up transfer time
 - However no significant improvement
- Improving accuracy
 - Increase image by 100% + sharpen
 - Results indicate larger images increases OCR
 - Limited enlargement by android's stack space
 - Ignore all symbols prior to applying dictionary
 - Most of the text from OCR were random symbols that are rare in everyday text, so parse them out

Open Issues

- Current issues:
 - Camera freezes as it's transferring data
 - OCR... open ended problem
- Extra features wishlist:
 - Add Lucas Kanade tracker or gyro
 - More language support (ie. Japanese)
 - A good method of packaging

Conclusion

- Things we learned
 - Developing on LPC controller
 - Bluetooth protocol
 - Text overlay
 - Android development
 - Image processing
- Accomplishments
 - Successfully integrating software with hardware
- What would we have done differently
 - Use different hardware
 - Camera + overlay chip not optimal for our project
 - Invest more time on more efficient image processing algorithms