

# Ryan Cahoon, Mike Ralph, Yiling Tay, Yumin Wong

Priya Narasimhan, Rajeev Gandhi

## Motivation

People today have the chance to experience augmented reality through current smart phone apps but they are usually fixed in content and non-interactive.

Our prototype will provide users with a rich multimedia environment:

- Draw 3D objects in space, in front of the Kinect
- View them on different surfaces conveniently on their phone



## Architecture



- The Kinect detects the bright LED light of our remote/drawing tool, reads the points and packs them into data packets.
- Data packets are sent from the Kinect and read by the Server via USB Connection.
- The server forwards the packets to the Android phone via Wi-fi connection. The phone reads and unpacks the data packets into points for rendering on its screen.

## System Components

#### Hardware

- Android: T-Mobile G1, Firmware version 1.6, updated to 2.1
- Drawing Tool/Remote Control: JeeNode Main MCU, JeeLink Server Interface, JeeLabs Power Supply Board, USB BUB Board, LEDs



Software





- Languages: C/C++, Java
- 3D rendering using OpenGL
- Android OS





#### Communication Protocols

- Wi-fi network for phones to share information
- 3G network for phones without Wi-fi
- USB communication between Kinect and server

## Results

### General Latency

- Tracking phone location: ~ 2.3 fps
- Graphics rendering: ~ 18.4 fps
- Kinect: not a limiting factor since it is connected via USB

Latency in forwarding of points from the Kinect to the Android phone

- Initial spike: ~ 4.8s lag due to the initial set-up of the Android phone and commencement of the rendering of points
- Constant lag: plateaus at ~1.9s due to sending of data packets over the network



Data Packet Seq Id