
ATOM

User Manual

March, 1994
Digital Equipment Corporation
Maynard, Massachusetts

1. Introduction
Program Analysis tools are extremely important for computer architects and software engineers.

Computer architects use them to test and measure new architectural designs, while software engineers
use them to identify critical pieces of code in programs or to examine how well a branch prediction or
instruction scheduling algorithm is performing. Although each of these tools appears quite different, each
can be implemented simply and efficiently through code instrumentation.

ATOM provides a flexible code instrumentation interface that is capable of building a wide variety of
interesting tools.

2. Motivation
Commercial applications are frequently large poorly understood programs. Performance depends on

many factors: program organization, algorithms, compilers, operating systems, libraries, microprocessors
details, memory system organization, etc. The key to improving performance is to understand the
dynamic behavior of these programs. Unfortunately, gathering statistics about program behavior is often
difficult, if not impossible.

For example, even determining the order procedures are called during the execution of simple
programs is extremely difficult. Program call trees can be complicated, and programs often make calls to
library routines, which call other libraries. Conceptually, this information can be found by modifying each
procedure in the user program to print the procedure name. When the program is recompiled and
executed, a trace of procedure names will be printed. If the user program calls the math library, the math
library would also need to be modified. Unfortunately, hand instrumenting breaks down for the standard
IO library, since instrumenting the printing routines with print statements is not possible.

Often important information cannot be gathered by hand instrumented source code. An instruction
cache simulator needs the address of every instruction executed, and this information is not available at
the source level. Hand instrumentation of the assembly language instructions is very difficult, and the
result would change the instruction addresses, and therefore disturb the cache model.

ATOM provides the power and flexibility of hand instrumented code without these drawbacks. Special
purpose tools are easily constructed that can be applied to any application program. These tools can be
built simply and efficiently using the ATOM procedural interface.

3. Application Program
ATOM takes as input a specially linked application program. To illustrate the process, consider a

simple application program called helloworld.c.

#include <stdio.h>
main()
{

printf("Hello World\n");
}

To prepare the application for applying ATOM based tools, the application is linked using the -Wl,-r
-non_shared flags to cc or f77.

> cc -Wl,-r -non_shared helloworld.c -o helloworld.rr

1

ATOM USER MANUAL

The -Wl,-r argument passes the -r switch to the linker to indicate that relocation information should be
included in the output file. The -non_shared switch chooses non-shared rather than shared libraries.
The output of this compile step is placed by convention in a relocatable object file with the .rr extension.

ATOM provides a long and growing list of standard analysis and performance tools. A partial list is
shown below.

Tool Description
iprof instruction profiling tool
liprof instruction profiling tool at basic block level
pipe pipeline stall tool
lpipe pipeline stall at basic block level
syscall system call summary tool
memsys memory system bandwidth tool
lmemsys low level memory system bandwidth tool
io input/output summary tool
io2 new input/output summary tool
unalign byte and short data profile
gprof gprof profiling tool
3rd memory checker and leak finder (a-la-Purify)
pixie superset of the pixie
heapcheck leak detection tool

The following command can be used to apply the syscall tool to the helloworld.rr application.

> atom helloworld.rr -tool syscall -o helloworld.syscall

By convention, the output file name is formed by concatenating the original executable name with the
tool name. Each time helloworld.syscall is executed, a syscall.out file is created.

> helloworld.syscall
Hello World
> more syscall.out
System Call Calls Time(ms)
write 1 4.4
close 3 0.0
ioctl 1 0.2

Total 4.6

The original uninstrumented executable can be created directly from the relocatable object file using
the standard linker.

> ld helloworld.rr -o helloworld

4. Introductory Tools
Fundamentally, there will always be more problems than tools. ATOM allows provides a rich set of tool

building primitives that can be applied to a very wide range of problems. This section describes three
basic tools: procedure tracing, instruction profiling, and instruction and data address tracing.

An ATOM based tool requires the tool builder to specify two files, the instrumentation file and the
analysis file. The instrumentation file defines where procedure calls are to be added to the application
program, and the analysis file defines those procedures and the data structures that are necessary to
record the and print the results. Both files are written in C.

2

ATOM USER MANUAL

4.1. Procedure Tracing
The ptrace tool prints the names of each procedure called in the order the procedures are executed.

This process requires instrumenting the application program to add a procedure call at the start of every
procedure in the application program to print the name of the procedure each time the procedure is
executed.

By convention the instrumentation for the ptrace tool is placed in the file ptrace.inst.c.

1 #include <stdio.h>
2 #include <instrument.h>
3
4 Instrument()
5 {
6 Proc *proc;
7 AddCallProto("ProcTrace(char *)");
8
9 for (proc = GetFirstProc(); proc != NULL; proc = GetNextProc(proc))
10 {
11 AddCallProc(proc,ProcBefore,"ProcTrace",ProcName(proc));
12 }
13 }

ATOM links the instrumentation routine with the ATOM library to create an executable that reads the
application program, calls the Instrument procedure to modify the application program, and produces the
instrumented executable.

Statement 2 includes the definitions for the ATOM procedural interface and data structures. Statement
4 defines the required Instrument procedure, which defines the interface to each analysis procedure and
places calls to those procedures at the correct positions.

Statement 7 calls AddCallProto to defines the ProcTrace analysis procedure. ProcTrace is defined to
take a single argument of type pointer to character.

Statement 9 uses GetFirstProc and GetNextProc to step through each procedure in the application
program. Since this is a fully linked program, these procedures include both user defined procedures,
and all the procedures defined in any libraries. For each procedure, statement 11 calls AddCallProc,
which adds call to the procedure pointed to by proc. The ProcBefore argument indicates that the
procedure call is to be added before the procedure starts execution. The name of the procedure to call
"ProcTrace". The final argument passed is the string returned by ProcName, which when given a pointer
to a procedure, returns the procedure name.

This tool is not complete without the definition of the ProcTrace procedure, defined in the file
ptrace.anal.c.

1 #include <stdio.h>
2
3 void ProcTrace(char *name)
4 {
5 fprintf(stderr,"%s\n",name);
6 }

ProcTrace prints to standard error the character string passed as an argument. Notice that in
statement 3, the type returned by the procedure is void. Analysis procedures are forbidden from returning

3

ATOM USER MANUAL

a value to the application program.

The ptrace tool is applied to the helloworld application as shown below.

> atom helloworld.rr ptrace.inst.c ptrace.anal.c -o helloworld.ptrace

The instrumented application program is placed in the file helloworld.ptrace. The result of running this
tool may be somewhat surprising.

> helloworld.ptrace
__start
main
printf
_doprnt
__getmbcurmax
strchr
strlen
memcpy
fwrite
_wrtchk
_findbuf
__geterrno
__isatty
__ioctl
__seterrno
memcpy
memchr
_xflsbuf
__write
hello world
exit
__ldr_atexit
__ldr_context_atexit
_cleanup
fclose
fflush
__close
fclose
fflush
__close
fclose
__close

This tool is deceptively simple, yet there are many fundamental concepts at work. Only the procedure
calls in the original application program are instrumented. The call to ProcTrace did not occur in the
original application, and therefore it does not appear in a trace of the application procedures executed.
Likewise, the procedure calls that output the names of each procedure are also not included. If the
application and the analysis program both call printf, ATOM links in two copies, and only instruments the
copy that occurs in the application program. ATOM also correctly deciphers procedures that have
multiple entry points, placing a call to the ProcTrace routine at each of the potential entry points.

4.2. Profile Tool
The prof tool is useful for finding critical sections of code. This tool instruments an application such that

each time the application is run, a file called prof.out is created that contains the number of instructions
that are executed. Here is the output of applying the prof tool to helloword.rr and executing the
helloworld.prof program.

4

ATOM USER MANUAL

> more prof.out
ProcedureInstructions Percentage

__start 157 11.418
main 14 1.018

exit 22 1.600
printf 38 2.764

memcpy 50 3.636
__ldr_atexit 16 1.164

_cleanup 169 12.291
fclose 176 12.800
fflush 91 6.618

_xflsbuf 68 4.945
_wrtchk 35 2.545
_findbuf 59 4.291

_exit 2 0.145
_doprnt 132 9.600

__ldr_context_atexit 11 0.800
__geterrno 5 0.364
__seterrno 7 0.509

__close 12 0.873
__write 4 0.291
__isatty 17 1.236

strlen 26 1.891
__getmbcurmax 7 0.509

strchr 93 6.764
fwrite 118 8.582

__ioctl 4 0.291
memchr 42 3.055

Total 1375

This tool requires that the number of instructions in the program be counted. The most efficient place
to compute instruction counts is inside each basic block. Each time a basic block is executed, a fixed
number of instructions are executed. This information can be communicated to the analysis procedures
by adding a procedure call to an analysis routine inside of each basic block that passes a the procedure
number and the number of instructions in the basic block as arguments.

The prof.inst.c instrumentation procedure is shown below.

5

ATOM USER MANUAL

1 #include <stdio.h>
2 #include <instrument.h>
3
4 Instrument()
5 {
6 Proc *proc;
7 Block *block;
8 Inst *inst;
9 int number = 0;
10
11 AddCallProto("OpenFile(int)");
12 AddCallProto("ProcedureCount(int,int)");
13 AddCallProto("ProcedurePrint(int,char *)");
14 AddCallProto("CloseFile()");
15
16 AddCallProgram(ProgramBefore,"OpenFile",GetProgramInfo(ProgramNumberProcs));
17 for (proc = GetFirstProc(); proc != NULL; proc = GetNextProc(proc))
18 {
19 for (block = GetFirstBlock(proc); block != NULL; block = GetNextBlock(block))
20 {
21 AddCallBlock(block,BlockBefore,"ProcedureCount",
22 number,GetBlockInfo(block,BlockNumberInsts));
23 }
24 AddCallProgram(ProgramAfter,"ProcedurePrint",number,ProcName(proc));
25 number++;
26 }
27 AddCallProgram(ProgramAfter,"CloseFile");
28 }

Statements 11 through 14 define the interface to the analysis procedures. In statement 16, the
application is instrumented with a call to the OpenFile procedure before the first instruction in the
application program is executed. The argument is defined in statement 11 to be an integer, and the value
of this argument is provided by a call to the GetProgramInfo procedure. The information requested is
the ProgramNumberProcs, which returns the number of procedures in the application program. This
value is passed to the OpenFile procedure.

In statement 17, each procedure in the application program is traversed. For each procedure,
statement 19 traverses each of the basic block. Statement 21 adds a call to the ProcedureCount analysis
procedure. The BlockBefore argument places the call to ProcedureCount before the block is executed.
ProcedureCount is defined in statement 12 to take two integer arguments. This first argument is the
procedure number, and the second is the value returned by the GetBlockInfo procedure. When passed
an argument of BlockNumberInsts, this function returns the number of instructions in the basic block.

For every procedure in the program, statement 24 adds a call to ProcedurePrint. These calls are
added consecutively at the end of the program. The first argument is the procedure index and the second
argument is the procedure name.

Statement 27 adds a call to the CloseFile procedure after the application program finishes execution
and prints the result file.

The analysis procedures are defined in the prof.anal.c file.

6

ATOM USER MANUAL

1 #include <stdio.h>
2 #include <assert.h>
3
4 long instrTotal;
5 long *instrPerProc;
6
7 FILE *file;
8 void OpenFile(int number)
9 {
10 instrPerProc = (long *) malloc(sizeof(long) * number);
11 assert(instrPerProc != NULL);
12 bzero(instrPerProc, sizeof(long) * number);
13 file = fopen("prof.out","w");
14 assert(file != NULL);
15 fprintf(file,"%30s %15s %10s\n","Procedure",
16 "Instructions","Percentage");
17 }
18
19 void ProcedureCount(int number, int instructions)
20 {
21 instrTotal += instructions;
22 instrPerProc[number] += instructions;
23 }
24
25 void ProcedurePrint(int number, char *name)
26 {
27 if (instrPerProc[number] > 0)
28 {
29 fprintf(file,"%30s %15ld %9.3f\n",
30 name, instrPerProc[number],
31 ((float) instrPerProc[number] / instrTotal)*100.0);
32 }
33 }
34
35 void CloseFile()
36 {
37 fprintf(file,"\n%30s %15ld\n", "Total", instrTotal);
38 fclose(file);
39 }

Statement 8 defines the OpenFile analysis procedure, which takes a single argument that defines the
number of procedures in the application program. Statements 10 allocates an array of longs that holds
the number of instructions executed indexed by the procedure number. Statement 11 assures that the
malloc call succeeded, and statement 12 initializes all counters to start at zero. Statement 15 prints the
column headings.

Statement 19 defines the ProcedureCount analysis procedure which takes the procedure number and
the number of instructions in the basic block as arguments and increments the total number of
instructions executed and the number of instructions executed in each procedure.

Statement 24 defines the procedure that prints the results, and statement 26 filters unexecuted
procedures from the output file.

Statement 33 defines the CloseFile procedure, which prints the total for the application and closes the

7

ATOM USER MANUAL

output file.

4.3. Instruction and Data Address Tracing Tool
Instruction and data address tracing has been used for many years as a technique for capturing and

analyzing program behavior. The tool saves the first address executed in each basic block and the
effective address of all load and store addresses. The output is used to replay the execution of the
program for postprocessing tool like instruction and data cache simulators.

1 #include <stdio.h>
2 #include <instrument.h>
3
4 Instrument()
5 {
6 Proc *proc;
7 Block *block;
8 Inst *inst;
9
10 AddCallProto("OpenFile()");
11 AddCallProto("InstReference(REGV)");
12 AddCallProto("DataReference(VALUE)");
13 AddCallProto("CloseFile()");
14
15 AddCallProgram(ProgramBefore,"OpenFile");
16
17 for (proc = GetFirstProc(); proc != NULL; proc = GetNextProc(proc))
18 {
19 for (block = GetFirstBlock(proc); block != NULL; block = GetNextBlock(block))
20 {
21 AddCallBlock(block,BlockBefore,"InstReference",REG_PC);
22 for (inst = GetFirstInst(block); inst != NULL; inst = GetNextInst(inst))
23 {
24 if (IsInstType(inst,InstTypeLoad) || IsInstType(inst,InstTypeStore))
25 {
26 AddCallInst(inst,InstBefore,"DataReference",EffAddrValue);
27 }
28 }
29 }
30 }
31 AddCallProgram(ProgramAfter,"CloseFile");
32 }

Statement 11 defines the InstReference analysis procedure to take one argument of type REGV. This
type is used to pass the contents of processor registers. Statement 23 adds the InstReference
procedure before each basic block. The argument passed is the program counter of the first instruction in
the basic block. This is the program counter had the program not been instrumented.

Statement 12 defines the DataReference analysis procedure, which takes a single argument of type
VALUE. This type is used to pass values that ATOM must explicitly compute. In Statement 30, a call to
DataReference is added before load or store instructions and passed the effective address, which ATOM
computes by adding the base address from the register file and the displacement from the instruction.

8

ATOM USER MANUAL

1 #include <stdio.h>
2 #include <assert.h>
3 #define BUFSIZE 65536
4 char buf[BUFSIZE];
5
6 FILE *file;
7 void OpenFile()
8 {
9 file = fopen("trace.out","w");
10 assert(file != NULL);
11 setbuffer(file,buf, BUFSIZE);
12 }
13
14 void InstReference(long pc)
15 {
16 pc |= 1L << 63;
17 fwrite(&pc,sizeof(pc),1,file);
18 }
19
20 void DataReference(long address)
21 {
22 fwrite(&address,sizeof(address),1,file);
23 }
24
25 void CloseFile()
26 {
27 fclose(file);
28 }

The analysis procedures are very simple. InstReference takes the program counter as an argument,
sets the high order bit, and writes the modified address to a file. Statement 16 is used to OR the high
order bit with a one. Notice that 1L is used to create the 64 bit constant. DataReference writes the
effective address directly to the file.

One important detail in this implementation is the call to setbuffer in line 11. This is a standard library
function that associates the file descriptor file with the statically defined buffer defined in statement 4. If
this statement is left out, the first call to fprintf calls malloc to create a output buffer. If the application also
calls malloc, the application addresses will be offset by the buffer size. To maintain the exact data
addresses, the setbuffer call provides statically allocated storage to hold the trace buffer.

As machines speeds increase, the ability to store trace files to disk has almost completely disappeared.
The Alvinn SPEC92 benchmark executes 961,082,150 loads, 260,196,942 stores, and 73,687,356 basic
blocks, for a total of 2,603,010,614 Alpha instructions. Storing the program counter for each basic block
entered, and the effective address of all the loads and stores would take in excess of 10GB, and slow
down the application by a factor of well over 100. More effecient cache simulations simulate the cache
directly in the analysis procedures.

5. Instrumentation Interface
ATOM provides a rich interface for instrumenting programs. This interface provides support for passing

arguments, navigating the executable, asking detailed questions about the application program, and
instrumenting the program at any point. There are also a large number of different application values that

9

ATOM USER MANUAL

can be passed to analysis programs, including the integer and floating point registers, effective
addresses, branch conditions, instruction fields, cycle counter, and procedure arguments and return
values.

5.1. ATOM Command Line
There are many optional arguments to the ATOM command line. Some of the more important ones are

shown below.

Option Description
-O Apply standard linker optimizations
-A1 Applies ATOM optimizations
-dbx Runs instrumentation under DBX
-g Add symbolic information for DBX
-heap Partition the heap
-toolargs Pass arguments to the Instrument routine
-tool Run standard tools

A few optimizations are applied by the Alpha AXP OSF1 Linker. To run ATOM on optimized
applications, the -O switch should also be passed to ATOM. ATOM complete the link time optimizations
before instrumenting the code, so that the instructions exactly match the output of the standard linker.

The -A1 switch is a new ATOM optimization flag. This flag uses sophisticated register allocation
techniques to lower the instrumentation overhead. In some tools, this increases tool performance by a
factor of 2.

The -dbx switch is used to debug instrumentation routines by running the ATOM instrumentation step
under the symbolic debugger.

The -g compiles and links the instrumented application and retains enough symbol table information to
run the application under DBX. This process only allows stops to be placed in the user defined analysis
procedures. The application is assumed to run correctly.

The -heap switch is used to partition the heap. The first section is reserved for the application
program. The second is reserved for the analysis procedure. The -heap switch requires an argument
that specifies the maximum size of the heap in the application program. The analysis heap is defined to
start at this point.

The -atomtools argument allows atom command line arguments to be passed to directly to the
instrumentation routine. The argument list looks identical to the way arguments are passed to the
standard C programs using the argc and argv arguments to the main program.

10

ATOM USER MANUAL

#include <stdio.h>
#include <instrument.h>

Instrument(int argc, char **argv)
{

int i;
fprintf(stderr,"argc: %d\n",argc);
for (i = 0; i < argc; i++)
{

fprintf(stderr,"argv[%d]: %s\n",argv[i]);
}

}

If this tool was part of the instrumentation for the helloworld application, the atom command would print
out the following argument list.

> atom helloworld.rr tool.inst.c tool.anal.c -toolargs=8192,4 -o helloworld.tool
argc: 2
argv[0]: helloworld
argv[1]: 8192
argv[2]: 4

5.2. Application Navigation
This section defines the procedural interface for navigating around an application program. These

procedures are used in the Instrument routine to find "interesting" places to add procedure calls.

Proc *GetFirstProc();
Proc *GetLastProc();
Proc *GetNextProc(Proc *);
Proc *GetPrevProc(Proc *);
Proc *GetBlockProc(Block *);

Block *GetFirstBlock(Proc *);
Block *GetLastBlock(Proc *);
Block *GetNextBlock(Block *);
Block *GetPrevBlock(Block *);
Block *GetInstBlock(Inst *);

Inst *GetFirstInst(Block *);
Inst *GetLastInst(Block *);
Inst *GetNextInst(Inst *);
Inst *GetPrevInst(Inst *);

GetFirstProc and GetLastProc return pointers to the first and last procedures in the application
program. Given a procedure, the GetNextProc and GetPrevProc procedures return the next and
previous procedures. Both return NULL if there are no more procedures. Similar procedures are defined
for blocks and instructions.

To move from an instruction back to the enclosing basic block, ATOM provides the GetBlockProc
procedure. Similarly, the GetInstBlock moves from a basic block back to the enclosing procedure.

11

ATOM USER MANUAL

5.3. Program Operations
ATOM provides static information at the program, procedure, basic block, edge, and instruction level.

This section describes the ATOM procedural interface to general program information.

long GetProgramInfo(PInfoType type);
unsigned int *GetProgramInstArray();
int GetProgramInstCount();
char *GetProgramName();

GetProgramInfo returns information about the program based on the type argument. the type
argument.

Type Description
ProgramNumberInsts number of instructions in the application.
ProgramNumberBlocks number of blocks in the application.
ProgramNumberProcs number of instructions in the application.
TextStartAddress starting address of the text segment
TextSize size of the text segment in bytes
InitDataStartAddress start of the initialized data segment.
InitDataSize size of the initialized data segment.
UninitDataStartAddress start of the uninitialized data segment.
UninitDataSize size of the uninitialized data segment.

GetProgramInstArray returns a pointer to an array of unsigned integers that contains all the
instructions in the application program. The following instrumentation example loads the first instruction
in the text segment into firstInstruction.

unsigned int *textSegment = GetProgramInstArray();
unsigned int firstInstruction = textSegment[0];

GetProgramInstCount returns the number of instructions in the text segment array. This number is
always greater than or equal to the ProgramNumberInsts, since compilers often pad the text segment to
force alignments. These instructions cannot be reached during program execution and they are not seen
by the standard GetFirstInst and GetNextInst instrumentation procedures.

5.4. Procedure Operations
ATOM provides a variety of procedures to access information about application procedures and

procedure stack frames.

long GetProcInfo(Proc *, ProcInfoType type);
char *ProcName(Proc *);
char *ProcFileName(Proc *);
long ProcPC(Proc *);

GetProcInfo returns information about the procedure. Valid types are shown below.

Type Description
ProcNumberBlocks number of blocks in the procedure
ProcNumberInsts number of instructions in the procedure

Detailed information on the stack frame can be obtained using types such as FrameSize, IRegMask,
IRegOffset, FRegMask, and FRegOffset. These values of this types are defined in the DEC OSF1
Assembly Language Programmer’s Guide.

ProcName returns the the procedure name. ProcFileName takes the same argument, but returns the
source file name. This information can be combined with the InstLineNo instruction operation procedure
described below to locate the file name and line number that of any instructions in the application

12

ATOM USER MANUAL

program. This mechanism is very useful for reporting results that are easy to track down in the source
code. ProcPC returns the program counter of the first instruction in the procedure.

5.5. Basic Block Operations
ATOM provides a limited number of basic block operations.

long GetBlockInfo(Block *, BlockInfoType type);
long BlockPC(Block *);

GetBlockInfo returns information about the basic block. Currently the only type supported is
BlockNumberInsts, which returns the number of instructions in the basic block. BlockPC takes a pointer
to a basic block and returns the program counter of the first instruction in the basic block.

5.6. Edge Operations: NOT YET IMPLEMENTED
An edge is a path into or out of a basic block. Predecessor edges are the paths that lead into a basic

block. Successor edges are the paths out of a basic block.

Edge *GetFirstSuccEdge(Block *);
Edge *GetNextSuccEdge(Edge *);
Edge *GetFirstPredEdge(Block *);
Edge *GetNextPredEdge(Edge *);
Block *GetEdgeTo(Edge *);
Block *GetEdgeFrom(Edge *);

The GetFirstPredEdge returns a pointer to the first incoming edge to the block. The
GetNextPredEdge returns a pointer to the next incoming edge. Outgoing edges can found using the
GetFirstSuccEdge and the GetNextSuccEdge. A edge always connects two basic blocks.
GetEdgeFrom returns the block that is executed first, and GetEdgeTo returns the block that is executed
second.

5.7. Instruction Operations
Instructions are the fundamental unit of computation in an application program and much of the ATOM

interface is devoted to parsing instructions and providing the useful syntactic and semantic information.

IClassType GetInstClass(Inst *);
int GetInstInfo(Inst *, IInfoType);
int IsInstType(Inst *, enum IType);
RegvType GetInstRegEnum(Inst*, IInfoType);
long InstPC(Inst *);
int GetInstBinary(long pc);
char *GetInstProcCalled(Inst *);
void GetInstRegUsage(Inst *, InstRegUsageVec *);

GetInstClass takes an instruction as input and returns the instruction class. Each Alpha instruction is
mapped to exactly one instruction class. These classes are fully defined in the 20164 Hardware
Reference Manual and can be used directly to determine the dual issue and instruction scheduling rules.

13

ATOM USER MANUAL

Class Description
ClassLoad Integer load
ClassFload Floating point load
ClassStore Integer store data
ClassFstore Floating point store data
ClassIbranch Integer branch
ClassFbranch Floating point branch
ClassSubroutine Integer subroutine call
ClassIarithmetic Integer arithmetic
ClassImultiplyl Integer longword multiply
ClassImultiplyq Integer quadword multiply
ClassIlogical Logical functions
ClassIshift Shift functions
ClassIcondmove Conditional move
ClassIcompare Integer compare
ClassFpop Other floating point operations
ClassFdivs Floating point single precision divide
ClassFdivd Floating point double precision divide
ClassNull call pal, hw_x etc

IsInstType evaluates to true if the instruction belongs in the instruction subset defined by type. These
types combine instruction classes into the following commonly used subsets.

Type Description
InstTypeLoad Load instruction
InstTypeStore Store instruction
InstTypeCondBr Conditional branch
InstTypeUncondBr Unconditional branch

The GetInstInfo parses the 32 bit instruction and returns either the entire 32 bit instruction or the
appropriate subfield.

Type Description
InstBinary 32 bit binary instruction.
InstOpcode opcode
InstMemDisp memory displacement(sign extended to 32 bits)
InstBrDisp branch displacement(sign extended to 32 bits)
InstRA register field A
InstRB register field B
InstRC register field C

No error checking is done. GetInstinfo with a type of InstMemDisp returns the lower 16 bits of
instruction sign extended to 32 bits, even if the instruction does not reference memory.

Notice that if GetInstInfo(inst,InstRA) returns a 5, the register could either refer to the integer or
floating point register files, depending on the opcode of the instruction. GetInstRegEnum takes an
argument of either InstRA, InstRB, or InstRC and returns the unique enumerated register type. For
example, the procedure returns REG_5 if the instruction is an integer instruction and FREG_5 if the
instruction is a floating point instruction. This distinction is extremely important in later sections, when
enumerated types are used to pass the contents of processor registers. If the register requested is not
defined for this instruction, REG_NOTUSED is returned.

InstPC returns the program counter of the instruction. For instructions in the class ClassSubroutine,
GetInstProcCalled returns the name of the procedure called, or NULL for indirect procedure calls.

GetInstBinary returns the 32 bit instruction. This instruction can be used in much the same way as the

14

ATOM USER MANUAL

array returned by GetProgramInstArray described above.

GetInstRegUsage is used for data flow analysis. This procedure sets a bit mask with one bit for each
possible source register and one bit for each possible destination register. Consider the following
example.

InstRegUsageVec usageVec;
Inst *inst = GetLastInst(GetFirstBlock(GetFirstProc()));
GetInstRegUsage(inst,&usageVec);

This small code fragment sets inst to point to the last instruction in the first basic block in the first
procedure. Assume the first instruction was an "ADDQ r0,r2,r7" instruction. This instruction adds of the
contents of register 0 to the contents of register 2 and places the result in register 7. The value returned
in the usageVec.ureg_bitvec[0] is 0x5, since register 0 and register 2 are both used. The value of
usageVec.dreg_bitvec[0] is set to 0x40, indicating that register 7 is set by the add instruction. Each bit
mask contains two words, with one bit position for each of the 32 integer registers, 32 floating point
registers, the program counter and the cycle counter.

5.8. Add Call Prototypes
AddCallProto defines the procedural interface to the analysis routines.

void AddCallProto(char *define);

The format of define is similar to a a C function definition. The name of the analysis procedure is
followed a parenthesized list of arguments. There are three basic types of arguments: constants, register
values, and computed values.

Constant types include char, int, long, char *, char [], int[], long[]. Passing arrays in ATOM is a simple
way to communicate static information to analysis procedures. Although this information could be passed
as procedure arguments, arrays are more efficient for large data structures. This example passes an
array of program counters, one for each procedure in the application.

#include <stdio.h>
#include <instrument.h>

Instrument()
{

char prototype[100];
Proc *proc;
int i = 0;
array = (long *) malloc(sizeof(long)*GetProgramInfo(ProgramNumberProcs);
for (proc= GetFirstProc(); proc != NULL; proc = GetNextProc(proc))

{
array[i++] = ProcPC(proc);

}
sprintf(prototype,"PrintProcPC(int,long[%d])",i);
AddCallProto(prototype);
AddCallProgram(ProgramAfter,"PrintProcPC",i,array);

}

The array is accessed by the analysis procedure as an ordinary array.

15

ATOM USER MANUAL

#include <stdio.h>

void PrintProcPC(int number, long *array)
{

long *firstPC = array[0];
...

}

The VALUE type is used to pass values that ATOM must compute before passing the value to the
analysis procedures. These values include the effective address of load and store instructions, and
conditional branch conditions.

Type Argument Description
VALUE EffAddrValue Effective address
VALUE BrCondValue Branch condition value
REGV REG_n Integer Register n
REGV FREG_n Floating Point Register n
REGV REG_RA Compiler Temporary
REGV REG_GP Global pointer
REGV REG_SP Stack Pointer
REGV REG_ZERO Integer Register 31
REGV REG_CC Processor cycle counter
REGV REG_PC Program Counter at the instrumentation point
REGV REG_ARG_n Procedure arguments 1 through 4
REGV RET_RES_1 Function return value

The REGV type is used to pass the contents of processor registers. These include integer and floating
point registers. Symobolic names are provided for common predefined registers. For example, Alpha
keeps the global pointer in integer register 29. Passing the contents of REG_29 is identical to passing
REG_GP. The calling standard places the first four arguments to procedures in registers 16 through 19.
These values are available by the symbolic names of REG_ARG_1, REG_ARG2, REG_ARG3, and
REG_ARG_4. The example below passes the first argument to the open system call to the the
PrintFileName analysis procedure.

#include <stdio.h>
#include <instrument.h>

Instrument()
{

Proc *proc = GetNamedProc("open");
AddCallProto("PrintFileName(REGV)");
if (proc != NULL)
{

AddCallProc(proc,ProcBefore,"PrintFileName",REG_ARG_1);
}

}

Alpha provides fine grain cycle counter at user level through the processor cycle counter that can be
used to time short application application events. Unfortunately, this counter is only 32 bits, and therefore
wraps every 15 seconds. Below is a short example that accumulates time for the procedure defined in
the atomtools argument.

16

ATOM USER MANUAL

#include <stdio.h>
#include <instrument.h>

Instrument(int argc, char **argv)
{

Proc *proc = GetNamedProc(argv[1]);
if (proc != NULL)
{

AddCallProto("Start(REGV)");
AddCallProto("Stop(REGV)");
AddCallProc(proc,ProcBefore,"Start",REG_CC);
AddCallProc(proc,ProcAfter,"Stop",REG_CC);

}
}

The analysis routine is complicated by the format of the cycle counter. The low order 32 bits contain a
running cycle count. The high order 32 bits of the counter are an offset that when added to the low-order
32 bits gives the cycle count for this process. It is modifed by PAL code at context switches to contain the
correct, per process offset.

long total;
long process;
int ccStart;
int ccStartProcess;

void Start(unsigned long cc)
{
ccStart = (cc << 32) >> 32;
ccStartProcess = ((cc << 32) + cc) >> 32;

}
void Stop(unsigned long cc)
{
int ccEnd = (cc << 32) >> 32;
int ccEndProcess = ((cc << 32) + cc) >> 32;
total += (unsigned) (ccEnd - ccStart);
process += (unsigned) (ccEndProcess - ccStartProcess);

}

5.9. Adding Procedure Calls
The fundamental instrumentation mechanism is the ability to add arbitrary procedure calls. These calls

can be added before and after procedure, basic blocks, edges, instructions, or before and after the
program executes.

void AddCallProgram(enum Place, char *pname, ...);
void AddCallProc(Proc *, enum Place, char *pname, ...);
void AddCallBlock(Block *, enum Place, char *pname, ...);
void AddCallEdge(Edge *, char *proc, ...);
void AddCallInst(Inst *, enum Place, char *pname, ...);
void ReplaceProcedure(Proc *, char *pname);

If multiple calls are added to the same point in the program, the calls are ordered by program scope.
For example, the instrumentation routine below adds many calls before and after the first instruction in the
application program.

17

ATOM USER MANUAL

#include <stdio.h>
#include <instrument.h>

Instrument()
{

Proc *proc = GetFirstProc();
Block *block = GetFirstBlock(proc);
Inst *inst = GetFirstInst(block);

AddCallProto("Instruction(int)");
AddCallProto("Block(int)");
AddCallProto("Procedure(int)");
AddCallProto("Program(int)");

AddCallInst(inst,InstBefore,"Inst",1);
AddCallProc(proc,ProcBefore,"Proc",1);
AddCallProc(proc,ProcBefore,"Proc",2);
AddCallInst(inst,InstBefore,"Inst",2);
AddCallInst(inst,InstAfter,"Inst",3);
AddCallBlock(block,BlockBefore,"Block",1);
AddCallProgram(ProgramBefore,"Program",1);

}

The analysis procedures will be executed in the order: Program(1), Proc(1), Proc(2), Block(1), Inst(1),
Inst(2), the application instruction, and finally Inst(3). By creating a scope hierarchy, ATOM guarantees
that the OpenFile procedure added at ProgramBefore is executed before procedures added in lower
scopes. Procedures added at ProgramAfter execute after all application instructions have executed. A
side affect of this placement is that these analysis procedures cannot write to standard output or standard
error, since the application program has already closed these file descriptors.

ATOM preserves the semantics of AddCall in situations where the program or procedure has multiple
entry or exits. For example, if a procedure has multiple entry points and the instrumentation attempts
calls AddCallProc at ProcBefore, ATOM must instrument each entry points identical procedure call to
analysis routines.

5.10. Replacing Procedures
Certain tools must replace procedure call rather than simply monitor the arguments or return values.

void ReplaceProcedure(Proc *, char *pname);

For example, the Third Degree tool keeps track of all memory that is allocated and free by replacing all
calls to dynamic memory allocation routines with special purpose procedures. Here are the statements in
the Third Degree instrumentation file that replace the standard malloc procedure with a private version
called 3rd_malloc.

18

ATOM USER MANUAL

#include <stdio.h>
#include <instrument.h>

Instrument()
{

Proc *proc = GetNamedProc("malloc");
if (proc != NULL)
{

ReplaceProc(proc,"3rd_malloc");
}

}

3rd_malloc is defined in the analysis file with the same arguments and return value as the original
malloc.

6. Analysis Procedures
Once the application program is instrumented, the analysis procedures are used to compute tool

specific functions. Analysis procedures are called from the instrumented application programs to perform
tool-specific functions.

The analysis procedures can call any system call or library routine. ATOM links in identical but
physically distinct copies of each of these routines so that the instrumentation is applied only to the
application program. For example, instrumenting the fprintf routine in the application has no affect on the
fprintf used in the analysis routine.

The most important call that is supported by ATOM is the getenv system call. This is the primary
method of passing parameters to analysis procedures. In the example below, the OpenFile analysis
procedure appends the process identifier to the file name if the ATOMUNIQUE setenv variable is set.

FILE *file;
void OpenFile();
{
char name[100];
if (getenv("ATOMUNIQUE") != NULL)

sprintf(name,"tool.out.%d",getpid());
else

strcpy(name,"tool.out");
file = open(name,"w");

}

This option can be used if the user does not want the output files from multiple runs to overwrite the
same file. Even in a single run, the output file can be overwritten if the application executes a fork, and
then an exec of the same program. With the ATOMUNIQUE environment variable set, two different
output files are created.

If a process executes a fork, but does not call exec the process is cloned, and the child inherits an
exact copy of the parent state. In many cases, this is exactly the behavior that an ATOM tool expects.
For example, the trace tool opens a file at ProgramBefore and the file remains open after the fork. Since
both the parent and the child share the same file descriptor, the trace contains both parent and child
addresses.

For some tools, the behavior is more interesting. In the case of the instruction profiling tool. The file is

19

ATOM USER MANUAL

opened at ProgramBefore and therefore the output file is shared between the parent and the child
processes. If the results are printed at ProgramAfter the output file contains the parent data, followed by
the child data (assuming the parent finished first). For tools that count events, the data structures that
hold the counts should be returned to zero in the child process after the fork, since they occured in the
parent, not the child. ATOM can support correct fork handling, if the fork procedure call return value is
passed to an analysis routine. Since fork returns 0 to a child process, the analysis routine can zero out
the childs count data structures prior to execution.

7. Accuracy
ATOM goes to elaborate lengths to present analysis routines with the exact state of the application

program without any instrumentation. If the analysis routines substantially change the behavior of the
application programs, then the data collected by the analysis procedures would be of very little value. In
almost all cases, ATOM can guarantee that the values presented to the analysis routines are exactly the
same values that occurred in the uninstrumented application program.

There are a few cases when the analysis program could have minor affects on the behavior of the
application program. The most obvious example is if the application program and the analysis program
dynamically allocate memory. Even though each calls an independent copy of sbrk, the same operating
system call is invoked, and the call returns the next block of memory. If the application and analysis
routines alternately call malloc, the addresses that are returned to the application will be different than
had the application run independently. In many applications, this does not matter. For example, if the
tool counts the number of times each procedure is executed, an exact correspondence of dynamic
memory locations is not important. If the tool is a data cache simulator, then this is very important.

There are several approaches to avoid this problem. The first is to never dynamically allocate memory
in the analysis procedure. This is complicated by the fact that any call to printf in the analysis program
makes a library call to the malloc procedure, which could slightly change the heap addresses that would
otherwise be returned. To avoid calling malloc when using the fopen system call, a call to setbuffer must
be inserted after the fopen and before the first read or write operation.

Another approach is to pass data structures from the instrumentation to the analysis routines using
AddCallProto with array arguments. This approach can be used in any tool where the size of the data
structure is know statically.

A third approach is to dynamically allocate all the memory at the start of the program. This will shift all
the dynamic memory addresses by some constant, but the overall cache behavior is not likely to change.

The final approach is to use the -heap option to ATOM, which splits the dynamically allocated space
into two sections, one for the application program, and one for the analysis routines. This behavior,
although highly desirable, increases considerably the size of the running process, and could cause
problems for systems with small amounts of swap space, or for applications that need large amounts of
dynamically allocated memory.

Another case where analysis routines have a small affect on application program behavior is file
descriptors. These small integers are returned by the operating system in the order that files are opened.
If a poorly written application program depends on getting particular values of the file descriptors on each

20

ATOM USER MANUAL

call to open, calling open in the analysis program could change the behavior of the application program.
The problem can be avoided if the analysis routine opens the file, then calls the dup2 system call to
duplicate the new file descriptor, the calls close on the original file. Then the next time open is called the
operating system will return the correct file descriptor.

Another case where the instrumented application and the original application may have very slightly
different behavior is in the setup procedures in the routine __start. This procedure sets up the arguments
(argc, argv) and environment variables for the application. Some of the loops in this procedure execute a
number of times based on the size of the application program name and the number of environment
variables that are set. Thus, you might expect to find very minor differences in the basic block counts if
you change the program name from foobar to foobar.prof, or if you have changed any environment
variable from one run to the next.

8. Further Examples
In addition to the standard set of performance tools, the distribution contains many simple examples of

ATOM based tools. The /usr/lib/atom/tools directory contains the instrumentation and analysis
procedures for these simple tools:

• ptrace: instruments an application to print out the name of each procedure entered.

• cache: instruments an application to simulate execution in a direct mapped 8K byte data
cache.

• malloc: instruments an application to compile a histogram of calls to malloc and a total count
of allocated memory.

• trace: instruments an application to trace the starting address of each basic block, and the
effective address of each data reference.

• dyninst: instruments an application to compute dynamic instruction, load, store, basic block,
and procedure counts.

• pixi2: instruments an application to count the number of times each basic block is executed

• prof: instruments an application to count the number of instructions in each procedure and
prints a profile of where the execution time is spent.

• branch: instruments an application to compute the branch prediction rate for each
conditional branch in the program and an overall branch prediction rate using a 256 entry two
bit history table.

• dtb: instruments an application to determine the number of dtb misses given 8K byte pages
and a fully associative translation buffer.

• classes: compute the number of instructions in each of the EV4 instruction classes. This file
is computed during instrumentation leaving the application unchanged.

• inline: instruments an application to determine potential candidates for procedure inlining.

21

ATOM USER MANUAL

22

ATOM USER MANUAL

Appendix I
Appendix: instrument.h

The complete definition of the instrumentation interface is defined in the instrument.h file. Here is the
current version of instrument.h.

/*
* @DEC_COPYRIGHT@
*/

/*
* HISTORY
* $Log: instrument.h,v $
* Revision 1.4 1994/05/18 22:18:24 amitabh
* Added GetProcCalled primitive
*
* Revision 1.3 1994/05/17 03:56:09 amitabh
* Entry Point extension for third degree
*
* Revision 1.2 1994/05/13 17:54:47 amitabh
* Bug fixes
*
* $EndLog$
*/

/***/
/* */
/* */
/* THE ATOM SYSTEM */
/* */
/* sources adapted from the THE OM LINK-TIME SYSTEM */
/* */
/* */
/* Copyright (c) 1994-95 by */
/* Digital Equipment Corporation, Maynard, MA */
/* All rights reserved. */
/* */
/* */
/*---*/
/* Change History: */
/* */
/* Author: Amitabh Srivastava July 1993 */
/* Digital Equipment Corporation */
/* Western Research Laboratory */
/* Palo Alto, California */
/* */
/* */
/***/
#ifndef INSTRUMENT_H
#define INSTRUMENT_H

typedef struct procedure Proc;
typedef struct basicblock Block;
typedef struct rtl_inst Inst;
typedef struct edge Edge;

/* Inst Class */

typedef enum IClass {
ClassLoad, /* Integer load */
ClassFload, /* Floating point load*/
ClassStore, /* Integer store data*/
ClassFstore, /* Floating point store data*/
ClassIbranch, /* Integer branch*/
ClassFbranch, /* Floating point branch*/
ClassSubroutine, /* Integer subroutine call*/
ClassIarithmetic, /* Integer arithmetic*/
ClassImultiplyl, /* Integer longword multiply*/
ClassImultiplyq, /* Integer quadword multiply*/
ClassIlogical, /* Logical functions*/

23

ATOM USER MANUAL

ClassIshift, /* Shift functions*/
ClassIcondmove, /* Conditional move*/
ClassIcompare, /* Integer compare*/
ClassFpop, /* Other floating point operations*/
ClassFdivs, /* Floating point single precision divide*/
ClassFdivd, /* Floating point double precision divide*/
ClassNull /* call pal, hw_x etc*/
} IClassType;

/* InstType */
/* this is obsolete -- please use Inst Class, it is much better */

typedef enum IType {
InstTypeLoad,
InstTypeStore,
InstTypeJump,
InstTypeFP,
InstTypeInt,
InstTypeDiv,
InstTypeMul,
InstTypeAdd,
InstTypeSub,
InstTypeCondBr,
InstTypeUncondBr
} ITypeType;

/* Instruction Information */

typedef enum IInfo{
InstMemDisp,
InstBrDisp,
InstRA,
InstRB,
InstRC,
InstOpcode,
InstBinary,
InstAddrTaken,
InstEntryPoint

} IInfoType;

/* Block Information */

typedef enum BlockInfo{
BlockNumberInsts

} BlockInfoType;

/* Procedure Information */
#define PROCEDURE_FRAMESIZE(x) (x->framesize)
#define PROCEDURE_RETURN_REG(x) (x->return_reg)
#define PROCEDURE_FRAME_REG(x) (x->frame_reg)
#define PROCEDURE_ISAVED_REGS(x) (x->isaved)
#define PROCEDURE_FSAVED_REGS(x) (x->fsaved)
#define PROCEDURE_ISAVED_OFFSET(x) (x->ioffset)
#define PROCEDURE_FSAVED_OFFSET(x) (x->foffset)

typedef enum ProcInfo{
FrameSize,
IRegMask,
IRegOffset,
FRegMask,
FRegOffset,
gpPrologue,
gpUsed,
LocalOffset,
FrameReg,
PcReg,
ProcNumberBlocks,
ProcNumberInsts

24

ATOM USER MANUAL

} ProcInfoType;

/* Program Information */

typedef enum PInfo{
TextStartAddress,
TextSize,
InitDataStartAddress,
InitDataSize,
UninitDataStartAddress,
UninitDataSize,
ProgramNumberBlocks,
ProgramNumberProcs,
ProgramNumberInsts

} PInfoType;

/* Registers */

/* use type REGV in prototypes to pass these as arguments */

typedef enum Regs{
REG_NOTUSED = -1,
REG_0, REG_1, REG_2, REG_3, REG_4, REG_5, REG_6, REG_7,
REG_8, REG_9, REG_10, REG_11, REG_12, REG_13, REG_14, REG_15,
REG_16, REG_17, REG_18, REG_19, REG_20, REG_21, REG_22, REG_23,
REG_24, REG_25, REG_26, REG_27, REG_28, REG_29, REG_30, REG_31,
FREG_0, FREG_1, FREG_2, FREG_3, FREG_4, FREG_5, FREG_6, FREG_7,
FREG_8, FREG_9, FREG_10,FREG_11,FREG_12,FREG_13,FREG_14,FREG_15,
FREG_16,FREG_17,FREG_18,FREG_19,FREG_20,FREG_21,FREG_22,FREG_23,
FREG_24,FREG_25,FREG_26,FREG_27,FREG_28,FREG_29,FREG_30,FREG_31,
REG_PC, REG_CC
} RegvType;

#define REG_MAX REG_CC

#define REG_RA REG_26
#define REG_GP REG_29
#define REG_SP REG_30
#define REG_ZERO REG_31
#define REG_ARG_1 REG_16
#define REG_ARG_2 REG_17
#define REG_ARG_3 REG_18
#define REG_ARG_4 REG_19
#define RET_RES_1 REG_0

/* Values */

/* use type VALUE in prototypes to pass these as arguments */

typedef enum Value{
BrCondValue, /* valid only for conditional branches */
EffAddrValue /* effective address of load and store instructions */

} ValueType;
/* Potential placements of calls to user routines */

typedef enum Place {
ProgramBefore,
ProgramAfter,

ProcBefore,
ProcAfter,

BlockBefore,
BlockAfter,

InstBefore,
InstAfter
} PlaceType;

25

ATOM USER MANUAL

Proc *GetFirstProc(void);
Proc *GetLastProc(void);
Proc *GetNextProc(Proc *);
Proc *GetPrevProc(Proc *);

Block *GetFirstBlock(Proc *);
Block *GetLastBlock(Proc *);
Block *GetNextBlock(Block *);
Block *GetPrevBlock(Block *);

Inst *GetFirstInst(Block *);
Inst *GetLastInst(Block *);
Inst *GetNextInst(Inst *);
Inst *GetPrevInst(Inst *);

/* Program */

char *GetProgramName(void);
char *GetOutName(void);
char *GetAnalName(void);
long GetProgramInfo(PInfoType type);
unsigned int *GetProgramInstArray(void);
int GetProgramInstCount(void);

/* Procedure */
Proc *GetNamedProc(char *);
char *ProcName(Proc *);
char *ProcFileName(Proc *);
long ProcPC(Proc *);
long GetProcInfo(Proc* p, ProcInfoType type);

/* Block */
Proc *GetBlockProc(Block *);
int IsBranchTarget(Block *);
int IsFallThrough(Block *);
Inst *GetInstBranchTarget(Inst *);
long BlockPC(Block *);
long GetBlockInfo(Block* b, BlockInfoType type);

/* Edge */
Edge *GetFirstSuccEdge(Block *);
Edge *GetNextSuccEdge(Edge *);
Edge *GetFirstPredEdge(Block *);
Edge *GetNextPredEdge(Edge *);

/* Inst */
Block *GetInstBlock(Inst *);
int IsInstType(Inst *, ITypeType);
int GetInstInfo(Inst *, IInfoType);
long InstPC(Inst *);
long InstLineNo(Inst *);
char *GetInstProcCalled(Inst *);
Proc *GetProcCalled(Inst *);

IClassType GetInstClass(Inst *i);

int GetInstBinary(long pc);

RegvType GetInstRegEnum(Inst*, IInfoType); /* InstRA InstRB and InstRC */

/* Adding Procedure Calls */

void AddCallProto(char *);
void AddCallProgram(PlaceType, char *pname, ...);
void AddCallProc(Proc *, PlaceType, char *pname, ...);
void AddCallBlock(Block *, PlaceType, char *pname, ...);
void AddCallInst(Inst *, PlaceType, char *pname, ...);
void AddCallEdge(Edge *, char *proc, ...);

26

ATOM USER MANUAL

/* Reg usage masks */

typedef struct inst_reg_usage{
unsigned long ureg_bitvec[2];
unsigned long dreg_bitvec[2];

} InstRegUsageVec;

#define UseRegBitVec(x) (((x)->ureg_bitvec))
#define DestRegBitVec(x) (((x)->dreg_bitvec))

void GetInstRegUsage(Inst *, InstRegUsageVec *);

/* Experimental Features */

void ReplaceProcedure(Proc *, char *);
#endif /* INSTRUMENT_H */

27

ATOM USER MANUAL

28

ATOM USER MANUAL

Table of Contents
1. Introduction 1
2. Motivation 1
3. Application Program 1
4. Introductory Tools 2

4.1. Procedure Tracing 3
4.2. Profile Tool 4
4.3. Instruction and Data Address Tracing Tool 8

5. Instrumentation Interface 9
5.1. ATOM Command Line 10
5.2. Application Navigation 11
5.3. Program Operations 12
5.4. Procedure Operations 12
5.5. Basic Block Operations 13
5.6. Edge Operations: NOT YET IMPLEMENTED 13
5.7. Instruction Operations 13
5.8. Add Call Prototypes 15
5.9. Adding Procedure Calls 17
5.10. Replacing Procedures 18

6. Analysis Procedures 19
7. Accuracy 20
8. Further Examples 21

Appendix I. Appendix: instrument.h 23

i

