

Preview			
Strided access & performance			
Techniques to reduce bank conflicts on interleaved memory			
 "Exotic" DRAM technology 			
• EDO DRAM			
• SDRAM			
Cached DRAM			
• Rambus			
Titan memory subsystem example			
Mini-supercomputer memory subsystem			

Footnote: C vs. Fortran Array Organization				
 C is row-major, 0-based for arrays Memory layout of 4x4 array Access all elements in ROW sequentially (row-by-row storage) Hennessy & Patterson are C-based; workstation tradition 	[0,0] [0,1] [0,2] [0,3] [1,0] [1,1] [1,2] [1,3] [2,0] [2,1] [2,2] [2,3] [3,0] [3,1] [3,2] [3,3]			
 Fortran is column-major, 1-based for arrays Memory layout of 4x4 array Access all elements in COLUMN sequentially (column-by-column storage) Cragon is Fortran-based; mainframe & supercomputer tradition 	(1,1) (2,1) (3,1) (4,1) (1,2) (2,2) (3,2) (4,2) (1,3) (2,3) (3,3) (4,3) (1,4) (2,4) (3,4) (4,4)			

number	01	sets	ın	cache

Strided Access Strided access with stride k means touching every kth memory element • Stride = 1 is sequential access (0, 1, 2, 3, 4, 5, 6, ...)• Stride = 2 is (0, 2, 4, 6, 8, ...)• Stride = k is (0, k, 2k, 3k, 4k, ...) Strides > 1 commonly found in multidimensional data • Row accesses (stride=N) & diagonal accesses (stride=N+1) • Scientific computing (e.g., matrix multiplication) • Image processing (image rows and columns) • Radar/Sonar processing (angle vs. elevation) • In many cases arrays are a power of 2 size, promoting bank conflicts

SW Technique: Array Size Change					
 Software/compiler solution Allocate array size relatively prime to 	1,1 1,2 1,3 1,4 1₅5				
number of memory banks	2,1 2,2 2,3 2,4 2,5				
• Before:	3,1 3,2 3,3 3,4 3,5				
foo(SIZE, SIZE)	4,1 4,2 4,3 4,4 4,5				
• After: foo(SIZE, SIZE+1)	 M0 M1 M2 M3				
Row and column accesses have no conflicts	0 1,1 2,1 3,1 4,1 1 5,1 1,2 2,2 3,2				
• Diagonal access uses only 2 banks of 4	2 4,2 5,2 1,3 2,3				
	3 <mark>3,3</mark> 4,3 5,3 1,4				
	4 2,4 3,4 4,4 5 ₉ 4				

Prime Number Interleaving

• Conflicts happen when stride is an even multiple (or divisor) of interleave factor

- Power of 2 bank size is easy to build -- uses low order bits for bank number
- Power of 2 is a common array size
- 2 divides into all even numbers (and people naturally use even numbers)
- Prime number interleave reduces possibility for conflicts
 - Good tricks available for 2ⁿ+1 and 2ⁿ-1 banks
 - Burroughs Scientific Processor (BSP) used interleaving with m=17

Superinterleaving

- Assume that there are *m* memory bus cycles per module cycle time
 - *e.g.*, if memory cycle time is 4 bus clocks, *m*=4
- "Normal" interleaving has *n* banks, with $n \ge m$
 - In best case, such as sequential access, all banks can be busy (n=m)

Superinterleaving has n > m banks

- In other words, there are more banks than can possibly be active at once; extra banks don't help with raw bandwidth ability
- Used to reduce chance of conflict (may be less likely that stride will be a multiple of *n* than a multiple of *m*, since n is larger)
- Example: 8 memory banks on a bus that can only keep 4 banks busy

Rambus DRAM

• Proprietary byte-wide bi-directional bus

- Reduced voltage swing (600 mV swing centered at 2.2 V) for speed
- 500-600 MB/sec per channel; high bandwidth with small number of chips
- Two or four 1KByte or 2KByte sense amplifiers used as high speed caches
- Interleaving among the banks

Very high bandwidth

• But, high latency -- minimum size 8 byte transfer

C	Other Special DRAM architectures
•	Video DRAMHas shift-out register to feed bits to video display
•	 Cached DRAM Traditional cache structure on DRAM in addition to row-oriented buffering "Smart" prefetching logic on DRAM chip to anticipate accesses (DRAM-based stream buffer mechanism?)
٠	IRAM Intelligent RAMParallel processing with a processor on each DRAM chip
•	 Real-world stumbling blocks Process technology differences between DRAM and logic/SRAM fabrication techniques Processor+memory on-chip is limited in memory size, no matter how big DRAM chips get

Titan Mini-Super Computer

• "Single-User supercomputer" -- significant fraction of supercomputer performance at a high-end workstation price

- Design started 1986. Company name: Dana -> Ardent -> Stardent
- Up to 4 processors (integer/vector pairs)
- 16 MFLOPS (single processor) peak for ~\$100,000 in 1988
- Design based on traditional supercomputer approach
 - Gate arrays used for vector floating point unit
 - MIPS R2000 used for integer control processor
 - Hardware support for 3-D graphics

(Siewiorek & Koopman Plate 1) FIGURE 1. The Stardent 1500 "Titan" series graphics supercomputer: system over view. Copyright © 1988, Stardent Computer Inc.

Wide-Word Interleaving via Page Mode						
 Each memory bank 32 bits wide 						
• 64-bit words read using 2-clock page mode access						
<u>1st:</u> ADDRESS CONTROL ACCESS DATA LO DATA HI PRECHARGE <u>2nd:</u> ADDRESS CONTROL ACCESS DATA LO DATA HI PRECHARGE <u>3rd:</u> ADDRESS CONTROL ACCESS DATA LO DATA HI PRECHARGE						
Time ®						
 Cuts cost for interleaving in half with small performance hit Data paths through cross bar half as wide Number of minimum chips required in system half as big Still provides 64 bits of data per bus clock (low & high from different interleaves) 						

Titan Memory Tradeoffs Wide-word interleaving for cost savings Interleave data paths only 32 bits, but supports 64-bit accesses 1 clock access latency penalty Doubles number of interleaves available at comparable cost Interleave expansion with memory expansion Adding second memory board supports 16-way interleaving Dual bus access to main memory Required for balanced memory bandwidth (discussed later) Interleaved memory use to (usually) support dual access with single-ported DRAM Interleaved memory used to permit streaming results to processors 256K x 4 DRAMs used to reduce minimum memory size over 1M x 1 DRAMs Frovides atomic access primitive in memory subsystem Fetch and increment-if-negative

Review

• Interleaved memory access

- Helps with latency by hiding refresh time & reducing access conflicts
- Multiple banks can provide multiple concurrent accesses

Strided memory access

- Strided array accesses might not be evenly distributed among banks
 - Software solution -- rearrange access patterns
 - Hardware solution -- make common strides access different banks
- "Exotic" DRAM technology
 - Application of general architecture techniques within a single DRAM chip
- Titan as an example memory subsystem
 - High bandwidth, but with some cost-cutting tricks