
18-548/15-548 Tuning Software for Speed 10/14/98

1

12
Tuning Software

for Speed
18-548/15-548 Memory System Architecture

Philip Koopman
October 14, 1998

Required Reading: Cragon 2.8.3
Supplemental Reading: Hennessy & Patterson pp. 405-410

Uhlig, et al., 1995 ISCA paper
Lam et al., 1991 ASPLOS paper
Intel Architectural Optimization Manual

Assignments
u By next class read about Main Memory Architecture:

• Read: Cragon 5.1-5.1.5

• Supplemental Reading:
– Hennessy & Patterson 5.6
– IBM App. Note: Understanding DRAM

u Homework 7 due October 21

u Lab 4 due October 23

18-548/15-548 Tuning Software for Speed 10/14/98

2

Where Are We Now?
u Where we’ve been:

• Cache Organization & Policies
• System-Level Effects

u Where we’re going today:
• How can you exploit memory hierarchy effectively?
• How can you avoid being burned by it?

u Where we’re going next:
• Main memory

Preview
u Review: interpret execution time charts to infer cache characteristics

• Cache levels and size for each
u Tune software for cache memory performance

• Cache size, associativity, block size, page size
• Read vs. write behavior & policies

u Create blocked algorithms to improve locality
• Matrix multiply as an example

18-548/15-548 Tuning Software for Speed 10/14/98

3

Optimize For Cache Effects
u Small Cache size

• Decompose large data sets into small ones
• Encourage temporal & spatial locality with algorithm change

u Low Associativity
• Remap conflicting instructions/data so as not to reside in same set
• Intermix data so that related data loads into single cache block

u Large Block Size
• Access data in sequential order
• Attempt to modify all data in block at once (don’t mix “clean” and “dirty”

words)
u Write Policies

• Write back -- group writes to data
• Write buffer -- smooth bursts of write traffic
• Allocation -- force allocation if desirable

CACHE SIZE EFFECTS

18-548/15-548 Tuning Software for Speed 10/14/98

4

Probing For Cache Size
u Cache size limits ability to sequentially re-touch array elements

• Array < cache size all cache hits
• cache size < array size < cache size * (1 + 1/assoc.) partial misses
• cache size * (1 + 1/assoc.) < array size all misses (LRU)

u Cache Size Test Program
• Using pointers in loops creates efficient inner loop

int *p, *a, *limit; /* a points to malloc’ed array area */
...
limit = &(a[test_size]);
for (i = 0; i < NUM_TESTS; i++)
{ for (p = a; p < limit; p++)
{ sum += *p; }

}

Cache Size Data
u Execution speed drops as

array exceeds cache size
• 1K - 8 KB all fits in L1 cache
• 8K - 16KB increasing number

of conflict misses as array
wraps around L1 cache twice

• Steady from 16 KB - 512KB
as L2 cache holds entire array

• Same pattern for L2 cache
misses at 512KB+

Measured Data Read Rate

Array Size
1000 10000 100000 1000000

S
pe

ed
 (M

B
/s

ec
 re

ad
 fr

om
 a

rr
ay

)

0

10

20

30

40

50

60

70

80

90

100

110

120

(Program sequentially reads array; 4 bytes/load)

Single Task; Alpha Workstation

8 KB L1 Cache

512 KB L2 Cache16 KB

1024 KB

4 Tasks; Alpha Workstation

18-548/15-548 Tuning Software for Speed 10/14/98

5

Faster Alpha with L3 Cache
u Task interference is large “memory sweeper” running in background

Effects of Multi-Tasking On Cache Performance

0

200

400

600

800

1000

1200

1 10 100 1000 10000 100000

Array Size (KB)

M
B

/s
ec SINGLE TASK

TASK INTERFERENCE

8K L1 Cache

96K 3-way S.A. L2 Cache

8 MB L3 Cache

EXAMPLE CODE
OPTIMIZATION

18-548/15-548 Tuning Software for Speed 10/14/98

6

Example: Optimizing 2-D Array Code
u Running example:

int a[N][N], b[N][N], c[N][N], d[N][N];

for (j = 0; j < N; j = j++)
 for (i = 0; i < N; i++)
 a[i][j] = b[i][j] * c[i][j];

for (j = 0; j < N; j = j++)
 for (i = 0; i < N; i = i++)
 d[i][j] = a[i][j] + c[i][j];

u Example run multiple times for timing
• Optimistic, but representative for small arrays (results may be left in cache from

a previous loop that produced them)
• Actual tested code uses pointers instead of array indexing to reduce overhead

computations (aggressive compilers can do this automatically)
• Size of array, N, varied (results shown are total data set size for 4 arrays)

Unoptimized Performance
• Nested loop overhead

amortizes over array size
• Conflicts occur with arrays

that are perfect power of 2
sizes when L1 cache is
exceeded

– N=32; 64; 128; 256
– N=32 is 16 KB total

ALPHA WORKSTATION PERFORMANCE

TOTAL SIZE OF DATA ARRAYS

1K 10K 100K 1000K

M
B

/S
E

C
 D

A
TA

0

10

20

30

40

50

60

70

80

90

100

110

120

ORIGINAL

16 KB

64 KB 256 KB

1024 KB

AMORTIZED LOOP OVERHEAD

CACHE CONFLICT

18-548/15-548 Tuning Software for Speed 10/14/98

7

Loop Interchange
int a[N][N], b[N][N], c[N][N], d[N][N];
for (j = 0; j < N; j = j++)
 for (i = 0; i < N; i++)
 a[i][j] = b[i][j] * c[i][j];
for (j = 0; j < N; j = j++)
 for (i = 0; i < N; i = i++)
 d[i][j] = a[i][j] + c[i][j];

u Loop interchange reverses order of indexing
• Works when order of loop execution is unimportant
• After interchange arrays are accessed at sequential locations
• Improves locality at level of both page & block references

/* AFTER LOOP INTERCHANGE */
int a[N][N], b[N][N], c[N][N], d[N][N];
for (i = 0; i < N; i = i++)
 for (j = 0; j < N; j++)
 a[i][j] = b[i][j] * c[i][j];
for (i = 0; i < N; i = i++)
 for (j = 0; j < N; j = j++)
 d[i][j] = a[i][j] + c[i][j];

Loop Interchange Memory Access
u Loop interchange converts strided accesses into sequential accesses

• Accesses with large stride only use one word per cache block
– With arrays bigger than cache size, rest of fetch words are evicted before used

• Access with “unit stride” (sequential access) use all words in cache block in
consecutive iterations

18-548/15-548 Tuning Software for Speed 10/14/98

8

Loop Interchange Performance
u Reduces overhead to single

loop
• With stride=1 !

u Entire matrix row fits in L2
cache for N < 181
• 128KB data per matrix
• Loop interchange speedup is

limited to avoided L1-
miss/L2-hit delays

ALPHA WORKSTATION PERFORMANCE

TOTAL SIZE OF DATA ARRAYS

1K 10K 100K 1000K

M
B

/S
E

C
 D

A
TA

0

10

20

30

40

50

60

70

80

90

100

110

120

ORIGINAL
LOOP INTERCHANGE

16 KB

64 KB 256 KB

1024 KB

Loop Fusion
/* AFTER LOOP INTERCHANGE */
int a[N][N], b[N][N], c[N][N], d[N][N];
for (i = 0; i < N; i = i++)
 for (j = 0; j < N; j++)
 a[i][j] = b[i][j] * c[i][j];
for (i = 0; i < N; i = i++)
 for (j = 0; j < N; j = j++)
 d[i][j] = a[i][j] + c[i][j];

u Loop fusion places multiple array computations in the same loop
• Increases temporal locality (c used twice; a used twice)
• Reduces looping overhead computations
• Must be careful of inter-loop data dependencies

/* AFTER LOOP FUSION */
int a[N][N], b[N][N], c[N][N], d[N][N];
for (i = 0; i < N; i = i++)
 for (j = 0; j < N; j++)
 { a[i][j] = b[i][j] * c[i][j];
 d[i][j] = a[i][j] + c[i][j];
 }

18-548/15-548 Tuning Software for Speed 10/14/98

9

Loop Fusion Performance
u Cuts loop overhead in half
u c[i][j] and a[i][j] stay in

cache between two
statements
• 16 KB gets lucky, no

conflict misses
– a[i][j] stored after c[i][j]

fetched for second time
– Keeping c[i][j] in register

might improve things
further

ALPHA WORKSTATION PERFORMANCE

TOTAL SIZE OF DATA ARRAYS

1K 10K 100K 1000K

M
B

/S
E

C
 D

A
TA

0

10

20

30

40

50

60

70

80

90

100

110

120

ORIGINAL
LOOP INTERCHANGE
LOOP FUSION

16 KB

64 KB 256 KB

1024 KB

Array Merging
/* AFTER LOOP FUSION */
int a[N][N], b[N][N], c[N][N], d[N][N];
for (i = 0; i < N; i = i++)
 for (j = 0; j < N; j++)
 { a[i][j] = b[i][j] * c[i][j];
 d[i][j] = a[i][j] + c[i][j];
 }

u Array merging intermingles array elements
• Cache fetching of a block loads a set of related values at once
• Eliminates accidental conflicts for arrays mapping into same block

/* ARRAY MERGING */
struct merge { int a; int b; int c; int d; }
struct merge m[N][N];
for (i = 0; i < N; i = i++)
 for (j = 0; j < N; j++)
 { m.a[i][j] = m.b[i][j] * m.c[i][j];
 m.d[i][j] = m.a[i][j] + m.c[i][j];
 }

18-548/15-548 Tuning Software for Speed 10/14/98

10

Array Merging Data Layout
u In example, each 4-int array element takes up 16 consecutive bytes

• Touching any one of the elements loads all 4 into cache for block size of 16
bytes or greater

u Array merging works best when values are truly related, and usually
fetched as a set
• e.g., real and imaginary portions of a complex number

Array Merging Performance
u Eliminates vulnerabilities at

power-of-2 boundaries
• Guarantees spatial locality
• No spikes due to conflict

misses
• Multiple data available for

superscalar use when in L1
cache

u BUT, no free lunch
• Modified data mingled with

unmodified data increases
traffic ratio

• Lose ability to have two misses
pending on non-blocking L1
cache miss

– Non-merged data could
overlap fetch of 2 data blocks
on every miss

ALPHA WORKSTATION PERFORMANCE

TOTAL SIZE OF DATA ARRAYS

1K 10K 100K 1000K

M
B

/S
E

C
 D

A
TA

0

10

20

30

40

50

60

70

80

90

100

110

120

LOOP FUSION
ARRAY MERGING

16 KB

64 KB 256 KB

1024 KB

18-548/15-548 Tuning Software for Speed 10/14/98

11

Array Placement As Alternate To Array Merging
u If array data are unrelated and used in various places, array merging

won’t be very helpful
u Instead, lay out arrays so they map to different parts of cache, reducing

conflict misses
• Optimal when cache size is known, but 8K is usually a good guess
/* note: N must be a power of 2 for this to work */
#define CACHESIZE 8192
#define OFFSET (CACHESIZE/(4* sizeof(int))
a = (int *) malloc(4*N*N*sizeof(int)+CACHESIZE);
b = a + N*N + OFFSET; /* maps 25% into cache */
c = b + N*N + OFFSET; /* maps 50% into cache */
d = c + N*N + OFFSET; /* maps 75% into cache */
...

Array Placement
/* ARRAY MERGING */
struct merge { int a; int b; int c; int d; }
struct merge m[N][N];
for (i = 0; i < N; i = i++)
 for (j = 0; j < N; j++)
 { m.a[i][j] = m.b[i][j] * m.c[i][j];
 m.d[i][j] = m.a[i][j] + m.c[i][j];
 }

u Arrays placed so that they don’t conflict
• Alternate approach to array merging
• OFFSET must be selected with care so that corresponding [i][j] elements of the

four matrices don’t map to the same cache set

/* ARRAY PLACEMENT */
int a[N][N], junka[OFFSET], b[N][N], junkb[OFFSET];
int c[N][N], junkc[OFFSET], d[N][N], junkd[OFFSET];
for (i = 0; i < N; i = i++)
 for (j = 0; j < N; j++)
 { a[i][j] = b[i][j] * c[i][j];
 d[i][j] = a[i][j] + c[i][j];
 }

18-548/15-548 Tuning Software for Speed 10/14/98

12

Performance With Array Placement
u Array placement eliminates

conflicts
u Reads separated from writes

• Avoids write-back of
unmodified data because
arrays aren’t intermingled

ALPHA WORKSTATION PERFORMANCE

TOTAL SIZE OF DATA ARRAYS

1K 10K 100K 1000K

M
B

/S
E

C
 D

A
TA

0

10

20

30

40

50

60

70

80

90

100

110

120

LOOP FUSION
ARRAY MERGING
ARRAY PLACEMENT

64 KB 256 KB

1024 KB

Write Merging
/* ARRAY PLACEMENT */
int a[N][N], junka[OFFSET], b[N][N], junkb[OFFSET];
int c[N][N], junkc[OFFSET], d[N][N], junkd[OFFSET];
for (i = 0; i < N; i = i++)
 for (j = 0; j < N; j++)
 { a[i][j] = b[i][j] * c[i][j];
 d[i][j] = a[i][j] + c[i][j];
 }

u Write merging exploits write assembly buffer
• Equivalent to array merging only for modified data
• Want number of blocks being written to to fit into WAB
• For this example, only a win if WAB is exactly 1 deep
• Not important for copy-back caches in absence of conflicts

/* WRITE MERGING */
int b[N][N], junkb[OFFSET], c[N][N], junkc[OFFSET];
struct merge { int a; int d; } struct merge m[N][N];
for (i = 0; i < N; i = i++)
 for (j = 0; j < N; j++)
 { m.a[i][j] = b[i][j] * c[i][j];
 m.d[i][j] = m.a[i][j] + c[i][j];
 }

18-548/15-548 Tuning Software for Speed 10/14/98

13

Write Merging Performance
u Write merging smoothes

demand to write by writing
combined blocks
• 1 block instead of 2
• Twice as frequently

u Benefit would be more
pronounced on write-through
machine with write assembly
buffer of size 1 element
• Merging of write values causes

conflicts as arrays outgrow L2
cache

• Not a huge win, but something
to keep in mind

ALPHA WORKSTATION PERFORMANCE

TOTAL SIZE OF DATA ARRAYS

1K 10K 100K 1000K

M
B

/S
E

C
 D

A
TA

0

10

20

30

40

50

60

70

80

90

100

110

120

ARRAY PLACEMENT
WRITE MERGING

Review of Optimization Steps
ALPHA WORKSTATION PERFORMANCE

TOTAL SIZE OF DATA ARRAYS

1K 10K 100K 1000K

M
B

/S
E

C
 D

A
TA

0

10

20

30

40

50

60

70

80

90

100

110

120

ORIGINAL
LOOP INTERCHANGE
LOOP FUSION
ARRAY MERGING
ARRAY PLACEMENT
WRITE MERGING

16 KB

64 KB 256 KB

1024 KB

18-548/15-548 Tuning Software for Speed 10/14/98

14

BLOCKED ALGORITHMS

Blocked Algorithms
u Break problems up into cache-sized chunks

• Simplifying assumption: no conflict misses
• If conflict misses occur, use array placement

u 1-D blocking is called “strip mining”
• Very important optimization for vector supercomputers
• Straightforward to automate with compiler (in many cases)

u Multi-dimensional blocking gets harder
• Often requires algorithmic transformations
• May be best used as embedded in a library routing (e.g., matrix multiply)

18-548/15-548 Tuning Software for Speed 10/14/98

15

Matrix Multiply
u Square Matrices: X = Y * Z

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 { r = 0;
 for (k = 0; k < N; k++)
 { r = r + y[i][k] * z[k][j]; };
 x[i][j] = r; };

• One row of Y tends to stay in cache if not too large

Matrix Multiply in Block Form
for (jj = 0; jj < N; jj += B)
 for (kk = 0; kk < N; kk += B)
 for (i = 0; i < N; i++)
 for (j = jj; j < min(jj+B,N); j++)
 { r = 0;
 for (k = kk; k < min(kk+B,N); k++)
 { r = r + y[i][k] * z[k][j]; };
 x[i][j] = x[i][j] + r;
 };
(note: Hennessy & Patterson have bug on page 409 -- “+B-1” is not correct for j and k loops)

18-548/15-548 Tuning Software for Speed 10/14/98

16

Blocked Matrix Multiply Performance

2D Matrix Multiply -- Alpha Workstation

Size of One Array (Bytes)

1K 10K 100K 1000K 10000K

S
pe

ed
 (e

qu
iv

al
en

t M
B

/s
ec

)

0

5

10

15

20

25

30

35

40

45

50

55

UNOPTIMIZED
BLOCK SIZE 1
BLOCK SIZE 2
BLOCK SIZE 4
BLOCK SIZE 16
BLOCK SIZE 64
BLOCK SIZE 128

L2 Cache Full

16

1

2

4

64

128

Optimization Effectiveness

(Hennessy & Patterson Figure 5.17)

18-548/15-548 Tuning Software for Speed 10/14/98

17

OTHER OPTIMIZATIONS

Faked Write Allocation
u Forced write allocation

• For write-followed-by-read behavior, force cache allocation by first reading the
data

• Speed-up of 20% on an (admittedly extreme) case for VAX 8800
int a[100];
...
a[i] = b[i] * c[i];
...
d[i] = a[i] * 42;

BECOMES (with a compiler that respects the volatile keyword):

volatile int a[100];
...
foo = a[i];
a[i] = b[i] * c[i];
...
d[i] = a[i] * 42;

18-548/15-548 Tuning Software for Speed 10/14/98

18

Program Mapping Optimization
u Compiler/Linker/Loader can minimize mapping/set conflicts

• McFarling (1989) states that optimization can make direct caches more
effective than unoptimized code on set associative caches

• Same might be accomplished by operating system doing page mapping,
especially for large L2 caches

REVIEW

18-548/15-548 Tuning Software for Speed 10/14/98

19

Optimize For Cache Effects
u Small Cache size

• Decompose large data sets into small ones
• Encourage temporal & spatial locality with algorithm change

u Low Associativity
• Remap conflicting instructions/data so as not to reside in same set
• Intermix data so that related data loads into single cache block

u Large Block Size
• Access data in sequential order
• Attempt to modify all data in block at once (don’t mix “clean” and “dirty”

words)
u Write Policies

• Write back -- group writes to data
• Write buffer -- smooth bursts of write traffic
• Allocation -- force allocation if desirable

Review
u Optimizing software for cache memory requires exploiting both

organization & policy information
• Loop interchange to promote spatial locality at block & page level
• Loop fusion to promote temporal locality (sometimes can hold all values in

registers)
• Array merging to promote spatial locality at block level (mostly for reads)
• Separating reads from writes

– Reduces traffic ratio with write back cache & large block sizes
– Increases possibilities for write allocation buffer to merge writes

u Blocked algorithms improve cache usage
• Intentionally wastes computations to reduce memory accesses
• Want block size as big as will fit everything in cache for efficiency

