18-545 Design Document
Team: It’s On

Andrew Snook
Mark Williams

Table of Contents

Background Information
Purpose
History
Motivation
System Implementation
Z80 CPU
Memory Interface
Video Interface
Chrontel DVI Chip
Tilemap Pipeline
Sprite Buffer and FSM
Video Controller
User Interface
Sound Controller
Background Music Generator
SFX generators
Sound Controller
Mixer
System Reset
System Planning and Tools
Plan of Attack / Project Goals
Schedule
System Tools
Challenges Faced
iIMPACT USB Drivers
Color Shift (Video Output)
BRAM and BROM Space
Acknowledgements
Personal Statements
Mark
Andrew

~N~No b~ DMDDOWW

NN DN DN DMNMNDDMNDDMNDNDN DA A A A QO QO Q@Q QO @Q QO Q-
P W WON-_~~OCOO0CONNNOGDOO OGP WON~O O

Background Information

Purpose

The goal of this project is to produce an emulated version of the original 1981
Donkey Kong arcade game. This is one of the games that initially launched Nintendo into
a leading position in the gaming market. We intend to create the game using the MAME
(Multiple Arcade Machine Emulator) as our source, and will use the game roms it provides

as original game source material.
History

Donkey Kong is an arcade game released in 1981 that was a first in two ways for
Nintendo: it was the first time they tried to break into the North American market, and it was
the first project led by Shigeru Miyamoto, who was then a first-time game designer. This
also means that Donkey Kong is a very monumental milestone for Nintendo in more ways
than one. First, it was the beginning of the Mario and Donkey Kong series that still are
immensely popular today. Second, it was a very successful first step for Miyamoto, who to

this day remains one of the most important creative minds for Nintendo.

The game’s aesthetic is somewhat influenced by Popeye, since at the time
Nintendo was trying to get a license to produce a Popeye comic strip. This never
happened, but the love triangle between Jumpman, Donkey Kong, and Pauline is a nod to

a similar condition in the Popeye cartoons.

For its time, the game was very complex in terms of animations. The features of
Jumpman were chosen very carefully to minimize the number of pixels it would take to
animate him while still making it recognizable what he’s doing. It was intended to be
marketed in North America, so it was given a name that has meaning in English - Donkey
Kong is allegedly what they came up with to convey something along the lines of “stupid

ape.

Despite many people thinking Donkey Kong a strange game with a strange name, it

saw great success for Nintendo, as one might expect from the fact that the franchises it

spawned are still going strong today. Donkey Kong remained Nintendo’s top-selling
arcade game for two years straight and is estimated to have earned Nintendo around $280

million during those two years.
Motivation

We decided on this project because it fit the scope that we were aiming for (arcade
game from the early 80s) and was a Nintendo product. Both of us are Nintendo fans, so
Donkey Kong was naturally the first game that comes to mind when you think of arcade
games. It launched the Mario and Donkey Kong franchises so we figured that it would be a

great game to try and create an emulator for, so we did just that.

System Implementation

Z80 CPU

Our CPU is taken from OpenCores.com’s TV80 fpga validated model. One of the
reasons we thought this project was feasible was because the main cpu core
implementation was already completed and validated on an FPGA. We also wrote and
tested our own source in order to initially validate and learn how to use the core which
consisted of simple load and store instructions that displayed to the attached LCD. At this
point we are fairly confident that the core works and can interface with our predefined block
rams and roms. The next steps we are taking include hooking up the donkey kong roms
and rams to the CPU and validating it with our source material. These tests were run at the
fpga clock speed of 100MHz, which is about 30 times faster than we need and we will be

scaling down to about 3-4 MHz for the actual game.

Our current conclusion about the core, before testing our source, is that the core will
not require any modifications as it can run compiled z80 source as well as works with the

rams that we can generate via coregen and normal verilog memory constructs.
Memory Interface

The memory interface is what will be used to integrate all of the pieces together into

one functional game. It also allows us to clock each unit (video, user interface, sound, cpu)
at different speeds and not have them care about the state of each other unit, besides that
it is writing to RAM. Our interface to each unit through memory is shown below. Every
piece of ram memory is accessible by the CPU through the main memory bus, at the
moment everything else is treated as a true dual port RAM, and each other unit will

interface via memory access.

=D | wmainRom
(= Virtex 5 IP or /0
Synthesized, Verified (complete)
('I(';VPSL(J)) i) Synthesized, Verified (sanity)
= Synthesized, not Verified
f—— Not Started
Main RAM

[
Ko}
B
2
o
O
2 = >
5 Video RAMs [Chronte
e | &=) CH7301C
2 Video Controller
2
o) Video N

| Registers)

Sound .
D [SesEs]:g[Sound Controller J :O['‘AC97 l
[t Interface
e ——=)| User Interface GPIO

Figure: Memory Interface Diagram

The memory is mapped at the addresses listed in the tables below. These are still

untested locations, however the emulator we are used listed them as follows.

Name Start Address End Address
Main ROM 0x0000 Ox3FFF
Main RAM 0x6000 Ox6BFF
Sprite Ram 0x7000 0x73FF
Tile Ram 0x7400 Ox77FF
8257 DMA Registers 0x7800 0x780F
Interface O 0x7C00 0x7C00
Interface 1 0x7C80 0x7C80
DSW 2/Audio IRQ 0x7D80 0x7D80
Flip Screen 0x7D82 0x7D82
Sprite Bank 0x7D83 0x7D83
NMI Mask x07D84 0x7D84
8257 DRQ 0x7D85 0x7D85
Palette Bank 0x7D86 0x7D87

We see that some of the values in ram might be better suited to being
registers, such as the sound select and palette bank, however to simplify our early tests of
the game, we are leaving them as rams and then once we have a better idea of what

needs to be changed to what we will add complexity to the memory map.
Video Interface

The video interface is comprised of three main parts discussed below, they are the

I2C connection to the Chrontel DVI chip, the tile mapping unit, and the sprite mapping unit.

This unit runs at a 50MHz positively edged clock and a 25MHz differential clock running at

both edges. The interface is shown below

) [o)
Registers
DVI Controller Chrontel m Moni

CH7301C onitor

S

@aﬂm Tilemap
Palette

and I Memory Board Signals
Color FSM
Select T Pipeline
ine .
e Spritemap . Eil\'\:
< IO VS Generated Signals
L)

Figure: Video Interface

Chrontel DVI Chip

In order to produce any video output the Chrontel DVI output chip has to be
initialized and set to display the output we give it. In order to do this we have to set its
registers using 12C through the video 12C bus. We had considered using an already written
I2C master controller, however much of the functionality such as reading from the bus was

not necessary, so we wrote our own controller that transfers bytes when a button is
pressed.

The chrontel interface also controlled the production of sync signals, and tells the
video controller what X and Y coordinates are currently being transferred and displayed to
the monitor. This interface is extremely simple and consists of two counters and several

comparators. For the horizontal sync it counts the number of positive clock edges and then

produces the hsync signal once it reaches the ~700 pulses it needs. It also observes the
front porch and back porch areas, disabling output during these regions. The vsync signal
is exactly the same as the hsync signal however it counts the hsync pulses and only
requires around ~500 pulses before it hits vsync. This operates at 60 Hz and overall

produces the smallest output resolution of 640x480.

Some issues we ran into with the Chrontel chip were mostly due to the fact that we
really didn’t understand it when we started working with it. The primary issue was the exact
timing constraints that this chip and the DVI signal requires. If we were off by even a clock
cycle, the display would not show anything, even when the chip was in test mode. Working
out then synthesizing the timings first in VCS, then trying to set up the the black box
Chrontel chip would save a lot of time. We tried integrating both the 1IC module and the
timing controller at the same time and it made debug significantly more painful than it

needed to be.
Tilemap Pipeline

The tilemap contains the current background image of the frame. Each tile is 8x8
pixels made up of four colors from the currently selected 64 color palette. The tilemap is a
simple pipeline that performs several convoluted operations to retrieve many pixel colors

from a small amount of memory, which | have broken down below as a list of steps.

1. Convert X and Y to a tile index by removing the lower three bits of each, inverting
X, and adding a base address of 0x40 to the value. This produces a 10 bit ram address.
Take this index and also produce a color index by removing bits 5 and 6 to produce an 8

bit rom address

2. Using the ram and rom addresses read from video ram using the ram address
and the from the color prom using the rom address. The 8 bits from vram are the “code”

and the lower 4 bits from the color prom are bits [5:2] of the color.

3. Augment the 8 bit code retrieved from vram with inverted X coordinate’s 3 lowest
bits to produce the “tile code.” Using this tile code retrieve a byte each from the two tile

roms.

4. Only using the Y coordinate’s lowest three bits index into those two bytes

grabbing one bit from each. These two bits form the bottom two bits of the color.

5. The final color is produced by adding the current palette, a two bit signal, to the
top of the color. This is then used to index into the palette and produce the 16 bit color that
is required for the chrontel chip, however it is stored as an 8 bit palette index to be

compared with the sprite’s current value.

To validate this | used three stages, the emulated golden model, a matlab functional
model, and finally the fpga hardware model. Images of each are shown below. You'll
notice that there are slight coloration differences due to the palette conversion from 8 to 16
bits being a bit off, however it's a good proof that its working as intended and is minor
enough that it does not affect playability or functionality. We ended up deciding not to “fix”
these coloration issues through the palette since we thought the color difference made the
game look better. Even it wasn’t exactly matching the colors, we felt that the deeper reds
and oranges made things easier to see and overall improved the look and feel of the

game. This is how we ended up with the final background tilemap module.

QOO0 0 007650

a
g Eaas g
E —_ g 007650

k-

20 40 60 80 100 120 140 160 180 200 220

Figure: Left - Functional Model (MATLAB), Right - Hardware Model

Sprite Buffer and FSM

The sprite mapping is very similar to the tilemapping, however because each sprite

takes 40 cycles to render, a line buffer and FSM was much simpler to produce than a

pipeline. Each sprite is a 16x16 pixel object that can be placed anywhere on or off screen.

It is made up of 3 colors and a transparent color. Since the sprite mapping mostly involves

memory accesses as part of its process I'll just describe the memory makeup of each

sprite and how its used to generate the final image.

Each sprite to be displayed uses 4 consecutive bytes in memory, the X-coordinate,

Y-coordinate, code, color, xflip, and y-flip. From this starting point the steps taken to reach

the final display are as follows.

1.
2.

Access the 2nd byte in memory (the Y-coordinate) and latch it.
Compare the Y-coordinate + 8 and Y-coordinate - 7 to the value of the next scanline
being displayed.

a. If it's not within those two values increment the memory pointer to the next

sprite and go back to 1.

b. If it's within those two values proceed to 3.
Over the next six clocks access the remaining 3 memory values and latch them
Then using the code and the current memory index, access the sprite rom and pull 8
bytes.
From each of these bytes, index with the scanline Y-coordinate, take two of the bits
and prepend them to the sprite’s “color” value.
Insert these created values into the scanline buffer, overwriting what is currently in
the location.
Increment sprite memory index (unless its at the end of sprite ram, then go to 8) and
repeat from 1
At vblank, reset sprite memory index to O, restart from 1. Shift line buffer to the

display buffer, the video controller can only access the display buffer.

10

Again to validate our results we used the three step process of first constructing a
matlab functional model, then a verilog implementation of it. You will notice there is an error
in the sprite production in that it doesn’t produce the sprite that covers the blocks at the top
of the screen, we are in progress of fixing this as it may mean there is an underlying
problem with transparency. The blue background is to allow us to see where the screen is

supposed to end, and if the pipeline inputs are incremented correctly.

OO0 0OF6e50

oy

20 40 60 80 100 120 140 160 180 200 220

Figure: Left - Functional Model (MATLAB), Right - Hardware Model
Video Controller

The video controller was basically just a small interface between the Chrontel chip,
the sprite map, the tilemap, and the palette bank. It sent the vblank signals to the sprite
map as well as the X and Y coordinates of the current pixel to both (adjusting for the

pipeline timings of the tile rendering pipe). It would also handle transparency using a

11

simple mux on the tilemap value, and send out the muxed colors to the Chrontel chip.

Finally it handled the differential clock and reset signals for the DVI chip and 12C controller
User Interface

Our user interface uses the buttons and joystick mounted on the MultiWilliams

arcade board, as well as a few internal modules to process this input.

1 player start #9 kit 2 of register mapped to address 0x7d00
2 player start t::} bit 3 of register mapped to address 0xTd00
up ;:D bit 2 of registers mapped to addrassas 0x7e00 and DxTcBO®
; down t:b bit 3 of registers mapped to addresses 0xTel and 0xTcBO*
user input
laft ;:3 bit 1 of registers mapped to addressas 0x7c00 and 0xTcBO*
right kit 0 of registers mapped to addresses 0x7c00 and OxTcBO*
jurmp bit 4 of registers mapped Lo addressas 0x7c00 and 0xTcBO”
coin insert Debouncer }:3 bit 7 of register mapped to address 0x7d00

Figure: Input System and Memory-Mapping

12

The system consists of eight user inputs: 1- and 2-player starts, four directional
inputs, jump, and a coin insert input. Each of these inputs is run through a separate
debouncing module, then fed into a specific bit in a memory-mapped register. It

implements the following memory mapping:

INO (0x7c00) IN1 (0x7c80) IN2 (0x7d00)

Bit Contents Bit Contents Bit Contents

7 unused 7 unused 7 Coin

6 unused 6 unused 6 unused

5 unused 5 unused 5 unused

4 P1 Jump 4 P2 Jump 4 unused

3 P1 Down 3 P2 Down 3 2-player start
2 P1 Up 2 P2 Up 2 1-player start
1 P1 Left 1 P2 Left 1 unused

0 P1 Right 0 P2 Right 0 unused

It is worth noting that, since we had only one joystick and jump button, we opted to
hook those up to both the player one and player two inputs. Since two-player mode involves
players alternating playing one life at a time, with no simultaneous play, this does not

prevent two-player mode on our system.
Sound Controller

The original Donkey Kong arcade game used a processor to handle sound. Rather
than attempt to get this to work, we opted to design our own sound controller starting from
Team Dragonforce’s Audio Codec ‘97 interface code. The system is structured so as to
have a sound controller snoop in on CPU outputs, and from that control a number of sound
generators, each with their own purpose. The MAME source helped a great deal in this, in

that it specified where the CPU writes to when it wants to do each sound.

13

To Flash

addrass | audio data

BEM
Qereralar
EFX genaratar
[wialk sound)

SFX germratar
K———" o

[=nring saund)

"
AC'T \
o v
AC'ST Link AC'ST Chip

=
a
_E A w| SFX ganarabor =
CFU 5 (umip saund) o
autpul — & =
e =
5 — 5FX
genaralar
(3 [stomp spund)
EFX generatar
{Fall spund)
C— conbrol signal
SF3 genaratar =——p audio dala signal
(prize sound) C— sedial condrol and audio signal
— SFX ganaralor
|dead sound)
— —

audiz data

Block Memories (one for each SFX generator)

Figure: Sound system overview

Background Music Generator

The MAME source specified two types of sound: foreground and background.
Background sounds are triggered by writes to address 0x7¢00. The low 8 bits of the write
contents determine which background sound to start playing. Background sounds have the
distinction that only one of them is ever playing at a time. Not all of them are, in fact, music,

but we still use the term BGM (background music) as an abbreviation for them.

The BGM generator is essentially a glorified counter whose output is used as an
index into flash memory. When it receives a signal to start a sound from the sound
controller, it changes its output to a particular address which is the start of the appropriate

background sound chip in flash memory. It then continues to increment that address each

14

strobe, until it reaches an address designated as the end of a clip. Then, based on how the
generator is configured (this is done through Verilog macros), it will either loop the clip or
stop playing anything until it gets a new trigger. This functionality is implemented because

the CPU and ROM expect some clips to loop and not others.

Notably, the MAME source seemed to have a couple of errors when it comes to
specifying background sounds. Strangely, it seemed to designate the “hammer hit” sound
as a background sound, when it behaves like a foreground sound in many ways. To

remedy this, we moved the hammer hit sound to be a foreground sound.
SFX generators

Foreground sounds are like “sound effects,” in that they play on top of background
sounds and multiple of them can be playing at a time. The sound generators for foreground
sounds are much simpler than the BGM generator. They each provide addresses into
block RAMs that contain each individual sound effect. As the MAME source specifies, the
sound controller triggers each one based on writes to the addresses 0x7d00-0x7d05 and
0x7d80. These SFX generators, as we call them, are essentially counters with defined
endpoints that start counting up whenever the sound controller tells them to. Each
generator’s output is used as an index into a different block RAM which contains a different

sound.

Notably, the walk sound effect has a slightly different generator because the walking
sound effect follows different rules. Due to the possibility that the player starts and stops
walking multiple times very quickly, the walk sound effect has to be ready to start and stop
whenever the CPU writes to it. In addition, the original game doesn’t always start at the
beginning of the sample when a player starts walking - there are multiple different step
sounds, and the game seems to rotate through them. We implement logic in the walk SFX

generator that we believe implements this functionality fairly accurately.
Sound Controller

The sound controller is the module that listens to CPU output and controls the

aforementioned modules based on what it sees. In the case of the BGM generator, it only

15

essentially passes triggers forward - the BGM generator then does its own thing, and
doesn’t communicate anything back to the controller. The SFX generators are different,
however: we designed the sound controller so that (a) it can stop sounds whenever it wants
to and (b) it will ensure that no more than 3 SFX are playing at once. The reason for this
limit is so that mixing the outputs of the modules while guaranteeing no clipping is an easy
task. To do this, we implemented the SFX generators with a done signal, which the sound
controller uses to determine when a sound as finished playing and thus maintain an

accurate idea of how many sound effects are actually playing at any given time.

If a sound effect starts to play when three sound effects are already playing, the
oldest sound effect will be stopped. The controller does this by de-asserting a ‘go’ output to
the appropriate SFX generator. Doing this silences the generator’s output and resets its

address to zero (except for walk; see above).
Mixer

As mentioned above, we only allow 3 sound effects to play at once on top of one
background. This makes our mixer extremely simple: take all the outputs of the generators,
arithmetic shift the outputs of them by 2 bits, then add them together. Since no more than
four generators produce sound at a time (one BGM, three SFX), this ensures that clipping
will not occur. The output of this mixer is passed on to the Team Dragonforce AC’97Link

module.

System Reset

One small thing that was fairly integral to the system working was the automated
reset we included in the system. On startup it would wait one second and then start a full
system reset. It would reset the CPU and video interfaces. This was extremely important
because if the IIC controller started before the Chrontel chip was ready, no video would
appear on screen. Similarly if the cpu happened to start in a strange state or junk was in its
registers, the game would not start correctly. So we needed to send a global reset slightly
after the FPGA started. We initially had this tied to a button on the FPGA, but it was much

simpler to just have it reset automatically after start.

16

System Planning and Tools

Plan of Attack / Project Goals

As mentioned earlier we wanted to produce a functional emulator of the
original Donkey Kong system using the MultiWilliams gamepad. We would achieve this
goal though a fairly front loaded schedule and research from the 1942 team. The schedule
below is what we ended with, and it was almost exactly what we had planned with the

exception that the sound was started a week earlier and ended a week later than planned.
Schedule

The schedule for our project using a Gantt chart because we agreed that there was
no good way to add a percentage finished to the unit. It was one of four things, not started,
not working, passing sanity tests, and competed, so we opted for a task list. The schedule

for our project in weeks is listed below.

17

(weeks 1-2) acquaint ourselves with the CPU
(week 1) Implement DVI controller
(week 2) Tile Map Functional Model (MATLAB)
(week 3) Tile Map Verilog implementation, sprite map funct. model (MATLAB)
(week 3) Memory Mapping
(week 4) Sprite Map Implementation
(week 4) Memory Implementation
(week 5) Game ROMs and RAMs
(week 5) Video + CPU + Memory Integration
(week 6) Verilog for Controls
(week 7) Plan out hardware for Multi-Williams board
(week 8) Interface Integration
(week 9) Integration Full Test
(week 9) Start Implementing Sound
(weeks 10-11) Background Sound (Enable Flash)
(weeks 11-12) Mixer/Sound Effects Sound
(week 12) Testing and Debugging
Figure: Schedule

We followed the schedule above to complete our goal. Week 12 was the

week of the demo, so we had finished all the units just in time for the demo. The workload

was distributed such that in the first 6-7 weeks we put in about 20 hours/week/person on

average. Then once video and CPU were complete and tested, the workload shifted down

to around 12 hours/week/person finally down to 8 hours/week/person. Had we had the full

three people in our team we would have included another set of milestones for the AY-8035

18

sound CPU to produce our sounds.

We chose to schedule in this manner for two reasons. Primarily we chose the initial
schedule because we wanted a viewable product early on in the process. Even if we
couldn’t finish the other pieces of the project, we would have a demo to show and also have
a way to blackbox test the other game play pieces. This may not have been the best way
since we it's very hard to test a CPU system without the surrounding video or audio
systems, however getting this milestone completed really raised our moral and kept project
momentum going. It also produced a tangible goal to be able to see our results and to get

the game up and running (in any form) as soon as possible.
System Tools

We used several tools to accomplish our goals. The first and primary tools
we used were XST, ISE, CoreGen, and iMPACT. These were the primary tools used to
generate verilog blocks, compile, and synthesize our implementations. We also used VCS
to run simulations and test most of our implementation. Finally we had a set of Makefiles
that were used to automate the compilation, simulation, and synthesis of our code. The
Makefiles were fairly integral to our productivity because it allowed us to compile all our
code over AFS and let us do work on our project while we were not in lab. We also did not
require that ISE be open, because that really was not ideal as we did not need to have a
bunch of other project files included in our repository. It also helped us produce the

required

Something of note is that a lot of time was spent trying to avoid using the
Xilinx tools because they take a very long time to use. If you want something resynthesized
it could take up to 15 minutes for the cycle to process to complete. This would severely
limit productivity as it generally became a block until the process was complete. Adding
intermediate testing points through VCS simulation or MATLAB functional models allowed

us to get much of the verification done before having to subject ourselves to ISE or XST.

19

Challenges Faced

This section represents a conglomeration of the challenges we faced either
with tools or project complexity. We decided to include this because future teams that
happen to have the same problems as we did might find some solutions from our many

struggles.
iMPACT USB Drivers

These things were not reliable. You could have been using IMPACT one
minute fine, then after loading or during the loading of drivers, they would crash and never
recover. We tried to solve this problem by reinstalling drivers, but they would just die again
in the worst times. The one solution we found, that worked well enough, was to just
download a local copy of iIMPACT on to our laptops. It worked much better on Windows
than RedHat and the drivers were very stable. It added a step of sending bit and MCS files

to dropbox, but it saved a lot of frustration and hassle.
Color Shift (Video Output)

One of the banes of the video system we had was that sometimes when we
made small changes to unrelated systems (like the sound system) a small change in timing
would occur and the video would then flip the red and blue with the really strange effect that
the image would be blue instead of red. We attributed this to a fault in XST optimization
where it would change the placement of some of the video systems to lower area or timing
overall, while slightly disturbing the output timing to the Chrontel DVI chip. Two things
helped us, adding another pipeline stage to the muxed color output (since the colors need
to be sent in halves) solved the problems initially and it was sort of a stopgap to our
problems. The second part, which probably would have solved the problem from the
beginning, is that the Chrontel chip has a clock skew register. You tell the Chrontel chip
that it has to wait X amount of delay after the clock edge before it should latch the data.
We didn’'t measure this timing X, but when we added this our problems were solved and

never returned.

20

BRAM and BROM Space

When we were first implementing sound we ran into a problem where we ran out of
block RAM and ROM space on our FPGA. The LX110T has ~140 block ram blocks that
can be used, however they run out very quickly when you put 48kHz sounds on them.
Unfortunately there really isn’t a good solution to this, but we tried several work around for
this. The big thing that we did to get more space was to move half the sounds to flash (the
ones that don’t have to play at the same time) in order to alleviate utilization issues. Then
we lowered the sample rate of the sounds and that helped a enough to solve the problem.
One solution that really did not work well was to produce distributed ROMs. We tried that
and it ultimately failed to produce any results, so much so that it actually affected circuit
timings so much that it broke the already working systems. It's not a really good solution to
generate distributed ROMs. We also did change compilation flags to use distributed rams
instead of block rams for verilog constructs, but it didn’t do anything but increase the

compilation time.

21

Acknowledgements

MAME
This was the emulator we based our system off of, it really was the basis for our project.
Team Dragonforce

We used their code as a base to our audio systems and Makeflow. We did not use their
video system, and everything that we attached was heavily modified, but it was very helpful
in our understanding of AC97 and the XST Makeflow.

Team MultiWilliams
Your board was awesome. We put a cool poster on it.
TV80 Core

Rather than building a whole processor on our own, we used this one from OpenCores.org.

Donkey Kong probably doesn’t use all its functionality, but it worked well for our needs.

22

Personal Statements

Mark

It was unfortunate to lose a team member early in the year, but it did sort of motivate
me to complete a project, comparable to a previous year’s project, but with one fewer
people. This was mainly the reason | did not want to give up this project, and it made
solving the challenges of this project all the more fun to work on. It was a great experience
to work and try and manage this project, and | was extremely happy to even have created a
complete product at the end of the semester.

| got to completely build and debug the video system while Andy did the CPU and
memory, which | had asked for mostly to learn more about how graphical systems translate
to hardware. While doing this | also got the repository and makeflow up and running so that
we didn’t have to deal with the ISE systems. After this | created the physical interface for
the FPGA board to the MultiWilliams board and wrote some of the debouncing logic.
Finally | generated the sound assets for the game and bashed my head against the flash
interface that we eventually got working. | also did a lot of verification and debug for the
system integration, which wasn’t really too much since we had a lot of unit verification that
made sure that the major pieces worked at least well enough. We had split the work up
fairly evenly in terms of hours spent, and | didn’t get the feeling that either of us were
working too hard or slacking off at all.

On average | worked from 15-20 hours per week in the first 6 weeks, then it lowered
to around 10-15 over the next few, and settle down to around 5-10 in the final weeks. This
felt really good in terms of a timeline because we got the project rolling early and had time
for other courses (and sleep) when other classes ramped up.

My advice to other teams would be to try to frontload the work. It's hard enough to
do one project, let alone many projects at the same time, so plan accordingly. Also take
the time to write a Makeflow, ISE and XST suck -- avoid using them in their raw forms.
Finally, when picking a project spend a lot more time researching and make sure there are

tons of resources out there for you to use, make your life not suck.

23

Andrew

Honestly, | never thought we’d get this far or do this well. Having never done Build18
or anything similar before, | had never actually been tasked with building a system this big,
and | was really nervous about this. After we lost our third member, | was especially
worried, though | tried not to show it. Mark and | stuck with it, though, and imagine my
surprise when we were done with everything but sound before Thanksgiving! Frontloading
work is really a fantastic strategy for this course, and | highly recommend it - especially if
you’re having morale problems early on, or you know your life is going to be really hard

during the last few weeks of classes.

While Mark was given basically complete responsibility over video, | designed the
first versions of most of the other systems in the design, though Mark had a hand in
debugging and tweaking them. Notably, | designed the system that mapped memory
according to the memory layout expected by the ROM. | also designed the system that
properly routes user input to the correct bits in memory-mapped registers. Finally, | did
most of the sound system and interfaced it with Team Dragonforce’s AC’97 controller. |

also did most of the early black-box testing of the TV80 Z80 core from OpenCores.org.

Overall, | worked about 10-12 hours a week on this project on average. | didn’'t end
up frontloading my work as much as Mark did, since his task was much more integral to
testing and | was still having a few morale problems. It worked out in the end, though, and
we drafted a rough schedule that we followed after he got video working, leaving a lot of

grace time at the end.

As far as advice, | agree with everything Mark mentioned on the last page. | just
wanted to add one thing: be aware of how complex your project is when you’re deciding on
it. Many of our classmates tried making game consoles this year. If you choose something
very complex like a game console, things probably aren’t going to go as smoothly as you
like, crunch-time is practically inevitable towards the end, and your end product probably
isn’t going to be the full console unless you do really well. If you have any doubts as to what

your group can put out, consider making something simpler and/or better documented.

24

