
18-540
Distributed

Embedded Systems
Prof. Philip Koopman

Fall, 2000
Lecture: Mon/Wed 12:30-2:20 PM -- PH A18A

Recitations: Fridays 1:30-2:20 -- PH A18C

Recommended Text: Kopetz, Real-Time Systems: design principles for
distributed embedded applications, Kluwer Academic Publishers

18-540 Distributed Embedded Systems
◆ Based on lecture notes & practitioner-oriented papers

• Book offers additional info, but is not testable beyond lecture coverage

◆ Course objectives detailed on web pages
• System Engineering

– Requirements, design, verification/validation, certification, management-lite

• System Architecture
– Modeling/Abstraction, Design Methodology, Business Issues

• Embedded Systems
– Design Issues, scheduling, time, distributed implementations, performance

• Embedded Networks
– Protocol mechanisms, performance, CAN, TTP, embedded Internet

• Critical Systems
– Basic Techniques (FMEA), software safety, network safety, certification, ethics,

testing, graceful degradation

• Case Studies
– Elevator as lab project, guest speakers and other discussions

Policies
◆ See http://www.ece.cmu.edu/~ece540 for official versions

◆ Grading: straight scale A�90; B�80; C�70; D�65
• Three in-class tests: 20% each (no final exam)
• Homeworks: 15%; lowest one dropped; due at 4 PM
• Course project: 25% (a few bonus points are competitive)
• Homework & project late penalty: grade is multiplied by 0.9#days_late

◆ Slightly unusual policy on cheating
• Discussion of homework & project problems is acceptable and encouraged

– But no direct copying
– Information must stay in your brain for at least 5 minutes before you put it down on

your own paper

• Researching techniques is good, but cite source if beyond class coverage
• Test are closed book; one 8.5”x11” sheet (2 sides) of paper notes permitted,

bring your own calculator and pencils

◆ Office hours: after every lecture and as posted

Classroom Protocol
◆ Please arrive on time; lecture begins promptly

• I also promise to end on time

• Please put extra handouts in pile by door for the few latecomers

◆ Questions are encouraged
• If you don’t understand, ask, because probably other students are struggling too

• Sometimes a long answer will be deferred to recitation or office hours

• Philosophical questions are welcome in remaining time at end of class

◆ There is no way to cover everything
• Embedded systems is a huge area; we will cover things I’ve found to be core

topics in industry

• I’m electing to cover fundamentals rather than latest fad topics (little emphasis
on internet toaster ovens in this course)

• There is a “digging deeper” section for each lecture if you want to expand what
you are learning

1
Embedded Systems in

the Real World
18-540 Distributed Embedded Systems

Philip Koopman
August 28, 2000

Required Reading: Tennenhouse, “Proactive Computing”

Assignments
◆ Reading for this lecture

• Required: Tennenhouse, “Proactive Computing”

◆ Reading for next lecture
• Required: Koopman, “Embedded System Design Issues: the rest of the story”

• Recommended: Kopetz Chapter 1

• Required: Lecture is always on-line ahead of time as a preview

◆ Homework #0 due via e-mail Friday 9/1 at 4 PM
• (Most other homeworks will be hard-copy; projects will be on-line

submissions)

◆ Project #1 due Wednesday 9/13 at 4 PM
• Assemble project groups by this Friday per HW #0

• Waiting until the night before is a bad idea

Where Are We Now?
◆ Where we’re going today:

• General discussion of embedded systems
(they’re not the same as desktop or “general purpose” computers)

◆ Where we’re going next:
• Details of embedded+real-time+control systems

• Elevator as a detailed example (basis of course project)

Preview
◆ What is an embedded system?

• More than just a computer

◆ What makes them different?
• Real time operation

• Many sets of constraints on designs

◆ What embedded system designers need to know
• The big picture

• Skills required to “play” in this area

Embedded System =
Computers Inside a Product

Definition of an Embedded Computer
◆ Computer purchased as part of some other piece of equipment

• Typically dedicated software (may be user-customizable)

• Often replaces previously electromechanical components

• Often no “real” keyboard

• Often limited display or no general-purpose display device

◆ But, every system is unique -- there are always exceptions

◆ Course scope focuses on distributed embedded systems, and not other
embedded areas such as:
• Military systems: Radar, Sonar, Command & Control

• Consumer electronics: set-top boxes, digital cameras

• Telecommunications/DSP: cell phones, central office switches

• Robotics

&38

An All-Too-Common View of Computing
◆ Measured by: Performance

&38

0(025<
&$&+(

0(025<

An Advanced Computer Engineer’s View
◆ Measured by: Performance

• Compilers matter too…

&38

0(025<
&$&+(

0(025<

,�2

An Enlightened Computer Engineer’s View
◆ Measured by: Performance, Cost

• Compilers & OS matter

&38$�'

&219(56,21

'�$

&219(56,21

)3*$�

$6,&
0(025<0(025<

0,&52&21752//(5

+80$1

,17(5)$&(

An Embedded Computer Designer’s View
◆ Measured by: Cost, I/O connections, Memory Size, Performance

&386(16256
$�'

&219(56,21
'�$

&219(56,21
$&78$7256

+80$1
,17(5)$&(

',$*1267,&
722/6

$8;,/,$5<
6<67(06
�32:(5�
&22/,1*�

)3*$�
$6,& 62)7:$5(0(025<

0,&52&21752//(5

(/(&7520(&+$1,&$/
%$&.83�	�6$)(7<

(;7(51$/
(19,5210(17

An Embedded Control System Designer’s View
◆ Measured by: Cost, Time-to-market, Cost, Functionality, Cost & Cost.

Three Embedded Examples
◆ Pocket remote control RF transmitter

• 100 KIPS, water/crush-proof, small, 5-year battery life

• Software hand-crafted for small size (less than 1 KB)

◆ Industrial equipment controller (e.g., elevator; jet engine)
• 1-10 MIPS for 1 to 10 CPUs, 1 - 8 MB memory

• Safety-critical software; real-time control loops

◆ Military signal processing (e.g., Radar/Sonar)
• 1 GFLOPS, 1 GB/sec I/O, 32 MB memory

• Software hand-crafted for high performance

Embedded + Distributed – Caterpillar 797

ADEM II
Master

ADEM II
Slave 2

ADEM II
Slave 1

ET Service Tool

VIMS II
(ABL2M)

RAC/CLIM
(68K Module)

Chassis Control
(ABL2C)

Braking/Cooling
(ABL2C)

Tire
Monitor

797 System

VIMS - PC

Xmsn/TC
(ABL2C)

CAT Datalink

CAN SAE J1939 Datalink

797sys.vsd
6-18-98
dab/jwf
Warning: All paper copies of this document are uncontrolled

A Customer View

◆ Reduced Cost
◆ Increased Functionality
◆ Improved Performance
◆ Increased Overall Dependability

• (Debatable, but can be true)

What in the world are you going to
do with all those computers?
It’s not as if you want one in every
doorknob!

- Danny Hillis, circa 1980, as told by
Guy Steele at 1996 CMU SCS
commencement

Small Computers Rule The Marketplace
◆ ~80 Million PCs vs. ~3 Billion Embedded CPUs Annually in 1995

• 150 Million PCs and 7.5 Billion embedded CPUs + in 2000

There Are Many Application Areas

Four General Embedded System Types
◆ General Computing

• Applications similar to desktop computing, but in an
embedded package

• Video games, set-top boxes, wearable computers,
automatic tellers

◆ Signal Processing
• Computations involving large data streams

• Radar, Sonar, video compression

◆ Communication & Networking
• Switching and information transmission

• Telephone system, Internet

◆ Control Systems
• Closed-loop feedback control of real-time system

• Vehicle engines, chemical processes, nuclear power,
flight control

Types of Embedded System Functions
◆ Control Laws

• PID control

• Fuzzy logic, …

◆ Sequencing logic
• Finite state machines

• Switching modes between control laws

◆ Signal processing
• Multimedia data compression

• Digital filtering

◆ Application-specific interfacing
• Buttons, bells, lights,…

• High-speed I/O

◆ Fault response
• Detection & reconfiguration

• Diagnosis

Distinctive Embedded System Attributes
◆ Reactive: computations occur in response to external events

• Periodic events (e.g., rotating machinery and control loops)

• Aperiodic events (e.g., button closures)

◆ Real Time: correctness is partially a function of time
• Hard real time

– Absolute deadline, beyond which answer is useless

– (May include minimum time as well as maximum time)

• Soft real time
– Approximate deadline

– Utility of answer degrades with time difference from deadline

• In general Real Time != “Real Fast”

Typical Embedded System Constraints
◆ Small Size, Low Weight

• Hand-held electronics

• Transportation applications -- weight costs money

◆ Low Power
• Battery power for 8+ hours (laptops often last only 2 hours)

• Limited cooling may limit power even if AC power available

◆ Harsh environment
• Power fluctuations, RF interference, lightning

• Heat, vibration, shock

• Water, corrosion, physical abuse

◆ Safety-critical operation
• Must function correctly

• Must not function incorrectly

◆ Extreme cost sensitivity
• $.05 adds up over 1,000,000 units

� �!

!

!

!

!

!

 Electronic Hardware
 Software
 Mechanical Hardware
 Control Algorithms
 Humans
 Society/Institutions

Multi-Discipline
!

!

!

!

!

!

 Requirements
 Design
 Manufacturing
 Deployment
 Logistics
 Retirement

Life CycleMulti-Objective
!

!

!

!

!

!

 Dependability
 Affordability
 Safety
 Security
 Scalability
 Timeliness

Embedded System Design World-View
◆ A complex set of tradeoffs

• Optimize for more than just speed

• Consider more than just the computer

• Take into account more than just initial product design

Mission-Critical Applications Require Robustness
◆ June, 1996 loss of inaugural flight

• Lost $400 million scientific payload (the rocket was extra)

◆ Efforts to reduce system costs led to the failure
• Re-use of Inertial Reference System software from Ariane 4

• Improperly handled exception caused by variable overflow during
new flight profile (that wasn’t simulated because of cost/schedule)

– 64-bit float converted to 16-bit int assumed not to overflow

– Exception caused dual hardware shutdown (because it was
assumed software doesn’t fail)

◆ What really happened here?
• The narrow view: it was a software bug -- fix it

• The broad view: the loss was caused by a lack of system
robustness in an exceptional (unanticipated) situation

◆ Many embedded systems must be robust

Software Drives Designs
◆ Hardware is mostly a recurring

cost
• Cost proportional to number of

units manufactured

◆ Software is a “one-time” non-
recurring engineering design
cost (NRE)
• Paid for “only once”

– But bug fixes may be expensive,
or impossible

• Cost is related to complexity &
number of functions

• Market pressures lead to feature
creep

• SOFTWARE Is Not FREE!!!!!

Life-Cycle Concerns Figure Prominently
◆ “Let’s use a CAD system to re-synthesize designs for cost optimization”

• Automatically use whatever components are cheap that month

• Would permit quick responses to bids for new variants

• Track record of working fine for PC motherboards

◆ Why wouldn’t it work for an automotive application?
• Embedded system had more analog than digital -- mostly digital synthesis tool

• Cost of re-certification for safety, FCC, warrantee repair rate

• Design optimized for running power, not idle power
– Car batteries must last a month in a parking lot

• Parts cost didn’t take into account life-cycle concerns
– Price breaks for large quantities

– Inventory, spares, end-of-life buy costs

• Tool didn’t put designs on a single sheet of paper
– Archive system paper-based -- how else do you read

20-year-old files?

Generic Embedded System Designer Skill Set
◆ Appreciation for multi-disciplinary nature of design

• System skills; system = HW + SW + …

• Understanding of engineering beyond digital logic

• Ability to take a project from specification through production

◆ Communication & teamwork skills
• Work with other disciplines, manufacturing, marketing

• Work with customers to understand the real problem being solved

• Make a good presentation; even better -- write “trade rag” articles

◆ And, by the way, technical skills too…
• Low level: Microcontrollers, FPGA/ASIC, assembly language, A/D, D/A

• High level: Object-oriented Design, C/C++, Real Time Operating Systems,
Critical System design

• Meta level: Creative solutions to highly constrained problems

• Likely in the future: Unified Modeling Language, embedded networks

• Uncertain future: Java, Windows CE

Review
◆ What is an embedded system?

• More than just a computer -- it’s a system

◆ What makes embedded systems different?
• Many sets of constraints on designs

• Four general types:
– General Purpose

– Signal Processing

– Communications

– Control (distributed control is focus of this course)

◆ What embedded system designers need to know
• Multi-objective: cost, dependability, performance, etc.

• Multi-discipline: hardware, software, electromechanical, etc.

• Life cycle: specification, design, prototyping, deployment, support, retirement

• Critical systems: would you trust your own life to your product?

◆ Next Lecture: Embedded/Real Time Fundamentals

