
RTL through OS
Reid Long

Electrical and Computer Engineering
Carnegie Mellon University

Pittsbugh, PA
relong@andrew.cmu.edu

reidlong@icloud.com

Teguh Hofstee
Electrical and Computer Engineering

Carnegie Mellon University
Pittsbugh, PA

thofstee@andrew.cmu.edu

Abstract—Over the last several decades computers have grown
increasingly complex. Conventional wisdom indicates that it is
impossible to fully understand all of the moving parts in a
modern processor; we challenged the status quo in a quest to see
how close we could get to understanding a complete computer.
Starting at the abstraction of register transfer logic, we developed
a single core RISC-V processor with a custom implementation
of the RV32IAS specification then wrote microkernels to run on
the processor we implemented. Key features included a memory
system with a unified Instruction and Data cache, an eight stage
pipeline, an interrupt controller, timer interrupts, PS/2 keyboard
(delivered as interrupts to the kernel), a color VGA display,
and a suite of performance counters. Furthermore, we wrote a
collection of benchmarks to evaluate the correctness of the system
and microkernels to demonstrate the processors capabilities.

Index Terms—RTL, RISC-V, Operating System, Cache, Pro-
cessor, Architecture

I. INTRODUCTION

”What I cannot create, I do not understand” - Richard
Feynman1

Richard Feynman’s quote summarizes our approach to our
Electrical and Computer Engineering Design Experience cap-
stone. We strove to demonstrate mastery of the summation of
our experiences at Carnegie Mellon University by building a
quintessentially Electrical and Computer Engineering product,
a computer2. Reinventing a modern multi-core, out-of-order,
superscalar processor in a semester would have been impos-
sible, so we were forced to select what was most relevant to
our undergraduate experience and fine tune a project that was
novel, challenging, and exciting. We developed a single-core
RISC-V processor which would run on a Zedboard’s Zynq-
7020 fabric (more commonly known as a soft core).

II. DESIGN REQUIREMENTS

A full specification of the processor can be found on the
team website [2], so we will only include the high level
requirements here.

• R1: The processor shall implement a custom subset of
the RV32IAS instruction set architecture.

• R2: The processor shall be consistent with the RISC-V
User Level Instruction Set Architecture v2.2 [3]

1American Theoretical Physicist, Nobel Prize in Physics 1965
2As an added benefit to our project we have been able to increase our value

in the event of nuclear holocaust or zombie apocalypse [1]

• R3: The processor shall be consistent with the RISC-V
Priviledge Architecture v1.10 [4]

• R4: The processor should execute microkernels in real
time3

From this specification, we derived two key metrics to
monitor throughout the development process: correctness and
performance (measured in runtime).

We measured correctness based on how many binaries we
were able to execute successfully. These binaries included
constrained random assembly programs, hand crafted edge
case tests, and microkernels to demonstrate capabilities during
presentations.

Since we had millions of dynamic and static instructions in
our tests, it would have been infeasible to manually verify
the correct output. Instead, we developed an architectural
simulator for the specific RV32IAS architecture we planned
on implementing. We used this to generate golden copies of
the architectural state including register dumps, video memory
dumps, and a checksum of main memory. In addition, we
included SystemVerilog concurrent assertions throughout the
microarchitecture to verify that our assumptions were satisfied
during execution. When all three models of the architecture
were combined, we were able to efficiently identify ambigui-
ties in the implementation. When an ambiguity was detected,
we would manually inspect to determine which of our three
components (architectural simulation, microarchitecture, con-
current assertions) was inconsistent.

The secondary metric was performance. Based on our
analysis of a microarchitecture similar to what we planned
on building4, we set optimistic performance goals of 0.7
instructions per cycle (IPC) running at a clock rate of 100Mhz
with forward branch prediction accuracy of 85% and backward
branch accuracy of 99.9%. These estimates were based off of
a microarchitecture that modeled zero cache misses (magic
single cycle memory) and had fewer features; however, it was
the closest model to the microarchitecture we were planning
on building. After calibrating our expectations, we evaluated
what performance goals we would need to achieve for the
microkernels to be able to execute in real time.

3Real time is defined by the response time a human can perceive. This is a
meta metric of cache performance, clock frequency, and instructions per cycle

4This was based off of the microarchitecture from 18-447: Introduction to
Computer Architecture



In order to boot the largest potential binary within within 30
seconds, we estimated that a clock frequency of 33Mhz would
be sufficient, but decided to set the goal at 100Mhz to include a
margin of error in the design (100Mhz clock frequency would
provide an estimated 10 second boot time and is the native
frequency of the Zedboard’s Zynq-7020 fabric).

III. ARCHITECTURE

The entire system is running on a ZedBoard interfacing
with DRAM, PS/2, and VGA. The processor implements
the RV32IAS specification which is the architectural contract
with the software microkernels. Figure 1 depicts the con-
tracts between key components. The ZedBoard has 512MB of
DRAM available for use, but we artificially limit the amount
of DRAM available to our RISC-V processor. We reserve
128MB of DRAM for the Arm core. This allows us to develop
debugging probes using the Arm core without interfering with
the memory available to the RISC-V processor.

There are two significant changes from the original design
report [9]. The first is that we reevaluated scope of the project
to not include a virtual memory system (and thus not include
a multi-tasking kernel). This change was decided shortly after
the design proposal was submitted when we realized that
the proposed schedule underestimated the complexity of the
getting I/O working on the system. In particular, implementing
a working DRAM interface was surprisingly challenging and
severely delayed our proposed schedule.

The second change is that we switched from booting off
of an SD card to booting off of the hard Arm core on the
Zedboard. This simplified our boot process and also enabled
us to use the Arm core as a debug probe while running the
synthesized design.

A more minor change from our original proposal is that we
did not synthesize integer multiplication/division/remainder
(the “M” extension). After implementing and validating these
instructions in simulation, we attempted to synthesize them,
but the design was unable to meet timing. We decided that
software emulation would be sufficient and prioritized other
features.

Figure 2 is a high level model of the interfaces within
the processor. The “System Description” section includes
additional details about the microarchitecture of the processor
including references to datapath design.

IV. DESIGN TRADE STUDIES

Table I is a summary of the entire regression suite we used
for validating correctness. We report the overall values across
the entire benchmark suite and the best value achieved for any
specific benchmark. To provide additional perspective into the
performance metrics, we have also included plots of individual
benchmark results in Figure 3, Figure 4, Figure 5, and Figure
6.

All of our benchmarks were executed with a 50Mhz clock
frequency. We were able to synthesize the core at 98MHz;
however, due to limitations with Vivado cross domain clocking
we were restricted to running at power of 2 multiples of the

Fig. 1. High level functional block diagram with interfaces

Fig. 2. High level processor microarchitecture block diagram

TABLE I
OVERALL BENCHMARK MEASUREMENTS

Metric Overall Max
IPC 0.47 0.99

Cycles 22.2M 10.1M
Instructions Retired 10.5M 5.0M

Branch Predictor Accuracy 99.4% 99.999%
Forward Branch Accuracy 84.2% 100%

Backward Branch Accuracy 99.8% 99.98%
Forward Jump Accuracy 58.2% 99.3%

Backward Jump Accuracy 99.7% 99.999%
Instruction Hit 98.7% 99.9999%

Data Hit 99.2% 99.9%
Binary Size 203.8MB 9.5MB



Fig. 3. Instructions per Cycle by benchmark

Fig. 4. Branch Predictor accuracy by type and by benchmark

Fig. 5. Benchmark size in terms of cycles and instructions retired by
benchmark

Fig. 6. Cache performance by benchmark

VGA interface clock (25Mhz). We do not believe this is a
fundamental limitation of our design or the Vivado toolchain,
but since we were achieving sufficient real time performance
at 50Mhz, we decided to focus our efforts on other aspects of
the design.

The IPC we saw in most of our benchmarks (See Figure
3) was lower than our initial estimates predicted (predicted
0.7, actual overall was 0.47). When collecting real-time per-
formance counters on our demo binaries we saw IPC values
closer to 0.6 instructions per cycle which is more consistent
with our expectations.

One factor that contributes to low instruction per cycle met-
rics is that our processor has a direct-mapped cache. Initially,
we expected to implement a set associative cache; however, we
noticed surprisingly high hit rates for most of our benchmarks
and demo kernels. The biggest benefit we saw when adding
the cache was its addition — the size of the cache wasn’t
nearly as important as just having one. This allowed us to
prioritize other aspects of the design instead of increasing the
cache size; however, some benchmarks exhibited pathological
behavior which would drive down instruction per cycle metrics
(see Figure 6).

V. SYSTEM DESCRIPTION

The top level interface for our processor is the “Chip”
interface. It acts as a wrapper around the memory subsystem,
the core, the DRAM controller, the VGA controller, the
keyboard controller, and the timer controller. Figure 7 is a
depiction of the datapath.

The processor uses three different clock domains. The exter-
nal VGA interface is running at 25Mhz. Our VGA controller
operates four times as fast as the VGA interface, so video
memory is clocked at 100Mhz. The main clock in the system
which drives the core is 50Mhz.

A. Memory Subsystem

Within the top level “Chip” interface we have the memory
subsystem shown in Figure 8. The primary responsibility of
the top level memory subsystem is to route requests to the
appropriate controller (either video memory or main memory).



Fig. 7. Top level “Chip” interface for the processor

Fig. 8. Top level memory controller

Both video memory and the cache are dual ported, so
we do not allow the VGA interface to access main memory
and we forbid instruction fetch from video memory. Standard
load/store instructions can operate on both video memory and
main memory.

Our memory controller only supports a single pending
operation on each of the three ports (VGA, Data, Fetch).
Initially, we didn’t consider this to be a limitation; however,
when we began to synthesize the entire design we realized
that the critical path in the design was routing the signals
from the cache to the rest of the microarchitectural pipeline.
After optimizing the microarchitectural pipeline, we reduced
the critical path down to the clock-to-out propagation delay
within the memory controller which was longer than the 10ns
period of a 100Mhz clock. As mentioned in the section on
Design Trade Studies, the Vivado toolchain forced us to use
only power of two clock multiples of our slowest clock which
meant that our clock frequency choices were 100MHz or
50MHz. Luckily, our specification was able to tolerate such

a large drop in clock frequency, so we were able to execute
at 50MHz. Given additional time, we would have liked to
re-write the memory subsystem to supported multi-issue with
internal pipelining.

The “Main Memory” module is the interface to our caching
infrastructure. A stylized data path is shown in Figure 9. The
Translation (TLB) block in the datapath is acting as a pass
through component currently. We would like to extend it’s
capabilities to enable virtual memory translation in the future.

In the event of a cache miss, both the fetch port and the data
port of the memory module release control of their cache port
to the DRAM control FSM. While not strictly necessary for
correctness, this simplifies the design while providing minimal
overhead since the core’s pipeline will stall on the incomplete
memory operation anyway.

The cache is direct mapped with a cache line size of 64
bytes and a total cache size of 4KB. The cache has a single
cycle access on a cache hit.

B. Core

Figure 10 depicts the microarchitectural pipeline of the core.
Originally we predicted that we would need to split instruction
fetch into two stages to meet timing (and thus have a 6-stage
pipeline). However, when we began synthesizing the entire
chip we realized that we were not going to be able to meet
the timing constraints with only 6 stages.

First, we split the execute stage into two stages. During the
first stage the ALU performs the computation, and during the
second stage the branch is resolved (taking a branch is based
on the result from the ALU).

In addition, we also split the memory stage into two
stages. The first stage issues memory operations for load/store
instructions, and the second stage waits until the memory
operation is complete.

We will refer to the pipeline stages as IF1, IF2 (Instruction
Fetch 1, 2), ID (Instruction Decode), EX1, EX2 (Execute 1,
2), MEM1, MEM2 (Memory 1, 2), and WB (Write Back).

In the datapath from Figure 10 the Control Flow module is
responsible for resolving stall requests, mispredictions (flush
requests), and interrupts (drain requests). All control flow
requests are prioritized by age of the instruction. The oldest
instruction’s request is always satisfied first and younger
instructions must obey that request before generating their own
requests.

ID will generate a stall request whenever there is a data
dependency on a register that cannot be resolved with data
forwarding. We forward register values from the end of EX1,
EX2, MEM1, MEM2, and WB to the beginning of the ID if the
result has been computed. For example, a load instruction in
EX1 cannot be forwarded because the value is not computed
until MEM2. In contrast, an add instruction in EX2 can be
forwarded because the value was computed during EX1.

Both memory stages are also able to generate a stall request.
MEM1 will generate a stall if the instruction in MEM1 is a
memory operation, but the memory controller is not ready
to accept a new request. MEM2 will generate a stall if the



Fig. 9. Datapath for the Main Memory module used to generate DRAM requests and interface with the cache

Fig. 10. Microachitectural pipeline for the core (8 stages)

instruction in MEM2 is a memory operation, but the response
from the memory controller is not valid.

The control flow module predicts the next instruction to
execute using a branch predictor with 128 entries of a 2-
bit saturation counter in IF1. In addition, the control flow
module is responsible for validating the predictions made and
rolling back execution if necessary once the next instruction
target is resolved in EX2. If the next instruction to execute
was predicted incorrectly, we will flush all pipeline stages
with instructions younger than the control flow operation and
update the program counter value in IF1.

If there is a pending interrupt, IF1 will receive a flush

request. This will prevent new instructions from entering the
pipeline. Once the pipeline has been drained the program
counter in IF1 will be updated to the base of the interrupt
vector configured by the user and execution will proceed from
there5.

Since SYSTEM instructions6 are not common, we do not
forward partially computed state between those instructions
like we do for registers. Instead, we require that there can
only be a single SYSTEM instruction in the microarchitectural

5The correct cause, value, and error program counter will be set in the
control status registers as appropriate.

6These include control status register instructions, and MRET.



pipeline at a time. This is enforced by generating a stall
request whenever a SYSTEM instruction is in ID while another
SYSTEM instruction is downstream in the pipeline.

Performance counters are updated when an instruction re-
tires in the write back stage.

VI. PROJECT MANAGEMENT

Table II shows both our proposed timeline7 and what
actually happened based on our weekly blogs posts. The
biggest takeaway is we severely underestimated how difficult
integrating the different Zedboard components would be.

We also did not anticipate how much effort it would take
to synthesis the entire chip as an integrated unit. Our initial
schedule included synthesis time for the individual compo-
nents as they were being developed, but once we were ready to
integrate them we encountered new challenges due to routing
the entire integrated design on the Zynq-7020 fabric.

A. Team Member Responsibilities

Table II includes the per week responsibilities. As a high
level summary, Reid was primarily responsible for internal
interfaces and Teguh was primarily responsible for external
interfaces. We shared secondary responsibilities for software
and synthesis/integration.

B. Budget

Since we were creating a soft core, our budget requirements
were fairly minimal. We did not expect the core to take
a substantial part of the FPGA resources8, so we picked
our board based on the peripheral support available and the
toolchain used for synthesis. We settled on the ZedBoard due
to its VGA output, as well as a plentiful amount of Pmod
connections which we used to connect the PS/2 keyboard.
We also originally intended to connect a secondary SD card
to another Pmod connection for bootloading purposes, but
decided on using the Arm core on the Programmable System
part of the Zynq-7020 to preload memory before our processor
begins executing instructions. We bought all these parts at the
beginning of the semester, and the scope of our project did
not change in any way that required us to acquire more parts.

C. Risk Management

The biggest risks we anticipated in our project were pri-
marily I/O related. All the work that we have done in related
coursework, particularly 18-4479, assumed that these inter-
faces were neatly abstracted away, or omitted them as out-
of-scope for the course. Unfortunately for us, without I/O our
processor would be unable to demonstrate that it functions as
desired. We decided to mitigate these risks by working on I/O
early in the semester. We started by interfacing to external
DRAM, and then added in VGA and PS/2 support.

7The proposed schedule starting on 4/2 is the adjusted schedule from the
midpoint demo

8Our final utilization was 13% LUTs, 15% FFs, and 3% BRAMs, so this
prediction was correct.

9Introduction to Computer Architecture

We originally budgeted a few weeks for the external inter-
faces at the beginning of the semester, but we quickly found
a few weeks to be insufficient due to unfamiliarity with the
tools and documentation that was not consistent with reality.
One advantage we had when mitigating this delay is that both
of us are equally comfortable working with all parts of the
project. When one of person became stuck, we could take a
step back and have the other person step in with a fresh set
of eyes.

Our original project as scoped required 256MB of address-
able memory, which was too large to fit on the FPGA fabric.
Because of this, we did not have room for fallback in our
memory module. In hindsight, we might have been able to
implement a smaller working memory on the fabric initially
while bringing up the rest of the processor, and then transition
over to using the external DRAM once we found it to be
absolutely necessary. On the other hand, this forced us to get
our cache infrastructure to a good point early on, as the latency
for hitting DRAM is much higher than on chip block RAMs.

For the VGA controller, we implemented this in a few
stages, where certain features were disabled but would still
be functional. We started with single bits controlling each
pixel in the VGA output, then implemented text mode in the
VGA controller, and finally added support for colors. For the
keyboard, we initially started by outputting set 1 scan codes to
the CPU by having a set of dedicated addressable memory that
the processor would poll to get input, and as we fleshed out
our interrupt system we converted the keyboard to delivering
ASCII characters via interrupts. We chose to deliver ASCII
instead of scancodes to simplify the software we had to run
on the processor, as we didn’t need extensive scancode support
for any of our applications.

VII. RELATED WORK

The main thing we wanted to find that others had done was
interfacing with I/O, so we could hopefully integrate their code
into our system and spend less time struggling to get our own
interfaces working. lowRISC [5] is a similar project that we
looked at to see if we could pull some code, and we ended up
taking (and modifying) their PS/2 controller which they in turn
took from opencores. We also tried to use an AXI controller
from Brian Swetland’s zynq-sandbox [6] but were unable to
get it to function as intended so we wrote our own instead.

The architectural simulator we used was extended from the
RISC-V simulator we had to implement as Lab 0 in 18-447.
Parts of our core were originally based on the pipeline we
created in 18-447, but by the end of the project, only the
register file remained from the original 18-447 core.

There are other projects that we were aware of that imple-
ment soft cores [7], [8], but they had larger scope which was
incompatible with our single semester time frame. We also
know that a past group had tried a similar project in 18-545
with the MIPS ISA instead of RISC-V, but supposedly failed
to meet their goal.



TABLE II
TIMELINE

Week Reid Teguh
Proposed Actual Proposed Actual

2/12 Architectural Simulator Architectural Simulator VGA Prototype VGA Prototype
2/19 Memory Subsystem Memory Subsystem DRAM Interface DRAM Interface
2/26 CPU Core Memory Subsystem DRAM Interface DRAM Interface
3/5 CPU Core DRAM Interface DRAM Interface DRAM Interface
3/12 PS2 Interface DRAM Interface Boot Loader DRAM Interface
3/19 Kernel Drivers DRAM/Memory Integration Boot Loader VGA Interface
3/26 Minesweeper Memory Validation PIC VGA Integration
4/2 Core Core Core Core
4/9 Boot Loader Core/Synthesis PIC Synthesis/PS2 Prototype
4/16 Microkernels Synthesis/Infrastructure PS2 Synthesis
4/23 Microkernels Microkernels Microkernels PS2 Prototype
4/30 Presentation Performance Counters Presentation PS2 Interface

Presentation VGA Color
Tetris

5/7 Demo Kernel Drivers Demo VGA Interface
Minesweeper PS2 Interface

PIC/Timer Tetris

VIII. SUMMARY

In total, our project was amazingly successful. We were able
to deliver all of the correctness features we desired and execute
arbitrary programs with billions of dynamic instructions when
running on the real hardware. As with all projects, there
were features we wished we would have had more time to
implement (see “Future Work”), but all of the key features that
make a computer a computer where present in our system.

Fig. 11. Minesweeper running during demo, May 11, 2018

For most groups, the primary contribution to society is
the final demo. While our demo is exciting10, we don’t
expect average engineers to synthesize our soft-core on their
own Zedboard. Our contribution to society mostly involves
the infrastructure and validation techniques we implemented
and discovered throughout the process. Our scripting infras-
tructure for Vivado could save future students innumerable

10For some definition of the word exciting

Fig. 12. Simple keyboard echo-loop running during demo, May 11, 2018

hours wasted poking at the Vivado GUI, and our verification
infrastructure could be applied to other architecture projects,
perhaps even outside of the academia. Futhermore, we have
build robust interfaces for common Zedboard I/O (e.g. DRAM)
which could save future students weeks of effort.

Additionally we gained insight as to why processors are
designed the way they are today, and collided head on with
performance and integration problems that are not commonly
discussed.

A. Future Work

While we were able to hit all of our (adjusted) goals, there is
still substantial room to improve our final project. After taking
a brief recovery period11, we plan on continuing to develop
both the processor and our software suite. The biggest action
item is to finish implementing the virtual memory system
(including writing the tests). We considered implementing this
the week before the demo, but instead prioritized polishing

11We’ve been working almost continuously since January, so it will be nice
to have a day or two off.



the features we already had and writing better demo kernels12

One of out biggest takeaways from the project is that a
memory subsystem should be multi-issue and feature internal
pipelining in order to make it easier to meet timing on the
design. Reimplementing the memory system should be easier
the second time since we already have a robust test suite, so we
will also pursue this as an optimization to increase the clock
frequency of our design. Finally, we would like to improve
the stability of the VGA system.

B. Lessons Learned

If you are considering pursuing a similar project in the
future, there are several things you should know. The first is
that building a solid, well tested base before adding features
is critical. We spent over four months before we had the
system assembled and able to generated a distorted ”hello
world” message; that was time well spent. Once we achieved
that milestone, we were able to rapidly iterate on arbitrary
features without introducing new bugs since we had both a
solid implementation to build off of and a robust verification
suite to ensure that new bugs were identified before they
became the foundation for future work.

The second lesson is that the memory controller should be
multi-issue. One of our largest challenges was meeting timing
on the Zedboard. After multiple iterations of optimizations
within the pipeline, we were able to identify the critical
path as internal ”clock-to-out” propagation delay within the
memory controller. During the initial development period
several months before we were synthesizing the full chip, we
prototyped memory controller logic and determined that this
critical path would not be an issue; however, when adding the
rest of the microarchitecture to the project, Vivado was unable
to route our signals and still meet timing. Having a multi-
issue memory controller would have allowed us to pipeline
internally and likely achieve faster clock frequencies.

This leads into the third lesson: prototyping is important,
but be careful about committing to design decisions based
on prototypes. While having a collection of prototypes is
important for both grades (having something to show at
midpoint demos) and being able to build a robust system, we
trusted the results of our prototyping too much. Subsystem
prototypes by design do not include the complexity inherent
in the full system which means the synthesis tools are unable
to account for the logic that will be present in the full system.

The fourth lesson is that both software and hardware are
important for an amazing demo. Designing hardware is an
exercise in managing complexity. We spent the majority of
our time working on developing and refining the datapaths,
control finite state machines, and developing robust testing
infrastructure to validate our processor. We kept procrastinat-
ing on writing an exciting set of programs to show off to the
public. This led to our demo software being less polished and
less flashy that it could have been if we spent more time on it.

12A demo kernel is in contrast to our benchmark kernels which do not
include a nice GUI, but are more stressful on the processor.

Having a working, well validated product is important, but it
is also nice to have a cool demo. The project schedule should
include time for writing all of the software necessary for a
cool demo.

The fifth lesson is that the Vivado GUI does not work for
large scale projects. We highly recommend groups invest in
TCL scripting for setting up a Vivado project and running
synthesis.

As a final caution to future students, we advise you to
think carefully before pursuing a similar project. It will require
a substantial investment in energy and time, but if you are
willing to accept the challenge and succeed the final result
will be well worth the investment. The proudest moment of
my13 life was on April 23, 2018, when our processor finally
said “hello world!” after 4 months of empty struggling.

Fig. 13. April 24, 2018

SOURCE CODE

Our project includes work that could potentially be used
by other students in violation of academic integrity for some
courses. We are open to sharing our work with anybody who is
not currently taking, or planning on taking 18-447 at Carnegie
Mellon University. Please contact the authors for access to the
repository. In particular, we think future students in 18-500
working on similar projects would benefit from our DRAM
interface and our scripting infrastructure to interface with
Vivado.

REFERENCES

[1] James Mickens, “The Night Watch,” November 2013
https://www.usenix.org/system/files/1311 05-08 mickens.pdf

[2] http://www.ece.cmu.edu/ ece500/spring18/teamB09/website/
[3] https://riscv.org/specifications/
[4] https://riscv.org/specifications/privileged-isa/
[5] http://www.lowrisc.org/
[6] https://github.com/swetland/zynq-sandbox
[7] http://zipcpu.com/
[8] https://github.com/freechipsproject/rocket-chip
[9] Reid Long, Teguh Hofstee “RTL through

OS: Design Proposal,” March 8, 2018
http://www.ece.cmu.edu/ ece500/spring18/teamB09/website/DesignProposal.pdf

13Reid Long


