
Premise:
● To truly understand a system, it is necessary to implement the system.
● Mastery of computer engineering is demonstrated by being able to design and

implement a processor and the kernel that can launch a shell.

Goals:

● Synthesis 15-410 and 18-447 in order to develop an understanding of the interface
between hardware and software.

● Experience the thrills of debugging a complex system with neither a ground truth
software implementation nor a ground truth hardware implementation

● Expand on the 18-447 experience by delivering a fully functional processor instead of a
toy implementation

● Develop a unique speciality spanning kernels and processors
○ Only one company (Apple) is seriously pursuing both the design of custom

Silicon and the development of custom kernel/OS; however, even at Apple, the
only person spanning both sides is Tim Cook

● Proposal 1: Pebbles kernel on RISC-V processor running on FPGA

○ Learning Objectives:
■ Explore virtual memory through implementation (RISC-V standard = x86)

● Explore TLB translation through implementation
■ Explore caching through implementation
■ Explore memory through implementing a memory subsystem
■
■ Explore privileged instructions through implementation
■ Explore atomic instructions through implementation
■ Explore interrupts through implementation (both timer and keyboard)
■ Explore traps/system calls through implementation (for a real kernel)

○ Unknown unknowns:
■ How to implement console display on FPGA
■ How to implement keyboard input on FPGA
■ How to setup the test and build infrastructure to compile and simulate

both a kernel and a processor
○ Additional Requirements

■ Implement a RISC-V processor with RV32I+MA extensions
■ Implement a Pebbles kernel for a RV32I+MA architecture

○ Demo:
■ Milestone 1: Demonstrate a Kernel game running on an FPGA

● Console Output
● Keyboard Input
● Subset of privileged instructions
● Interrupts
● Game Implementation

● Cache
● Boot loader

■ Milestone 2: Demonstrate a uKernel (~410-p4-fondle) with VM running on
an FPGA

● Console Output
● Keyboard Input
● Subset of privileged instructions
● Virtual Memory system
● Interrupts
● uKernel with VM
● Cache
● Boot loader

■ Milestone 3: Demonstrate a fully functioning kernel running on FPGA
(boot to a shell)

● Console Output
● Keyboard Input
● Virtual memory system
● All privileged instructions
● Traps
● Interrupts
● Full kernel
● Cache
● Virtual Memory system
● Boot loader

■ Milestone 4: Demonstrate a fully functioning kernel with concurrency
running on FPGA (boot to a shell with threads)

● Console Output
● Keyboard input
● Virtual memory system
● All privileged instructions
● Traps
● Interrupts
● Full kernel
● Cache
● Virtual Memory system
● Boot loader
● Synchronization primitives/pthread library for RV32I+MA

■ Milestone 5: Demonstrate a fully functioning hypervisor running multiple
full kernels running on FPGA (boot multiple kernels)

● Console Output
● Keyboard Input
● Virtual memory system
● All privileged instructions

● Traps
● Interrupts
● Full kernel
● Cache
● Virtual Memory System
● Full hypervisor
● Hardware support for virtualization (ring -1)
● Boot loader

● Extension 1.1: Pebbles kernel on RISC-V processor running on FPGA with exotic
memory system

○ Learning Objectives
■ Explore more exotic virtual memory systems through implementation

● Software TLB fill (MIPS?)
● Hashed page table (PowerPC)

■ Develop mastery of virtual memory by demonstrating the ability to
seamlessly switch between virtual memory subsystems without data loss

○ Unknown unknowns:
■ How to switch between virtual memory systems without losing state
■ How to implement console display on FPGA
■ How to implement keyboard input on FPGA
■ How to setup the test and build infrastructure to compile and simulate

both a kernel and a processor
○ Additional Requirements

■ Implement a RISC-V processor with RV32I+MA extensions
● Implement privileged instructions

■ Implement interrupts (timer + keyboard)
■ Implement traps/system calls
■ Implement caching
■ Implement console output
■ Implement keyboard input
■ Implement boot loader

○ Demo:
■ Milestone 1: Demonstrate performance counter metrics on different virtual

memory implementations (~410-p4-fondle)
● Multiple virtual memory systems (possibly in different bitstreams)

■ Milestone 2: Expose virtual memory subsystem via system call;
demonstrate different performance for user level code based on virtual
memory system selected

● Multiple virtual memory systems in single bit stream
● Ability to flush and switch to a new virtual memory system

● Extension 1.2: Pebbles kernel on RISC-V processor running on FPGA with accelerated
functional units via a custom RISC-V extension

○ Learning Objectives

■ Explore hardware acceleration for static functions in the kernel
● Hardware accelerated fork
● Hardware accelerated timer context switch
● Hardware accelerated memset

■ Explore RISC-V architecture extensions
○ Unknown unknowns

■ How to implement console display on FPGA
■ How to implement keyboard input on FPGA
■ How to setup the test and build infrastructure to compile and simulate

both a kernel and a processor
○ Additional requirements

■ Implement a RISC-V processor with RV32I+MA extensions
● Implement privileged instructions

■ Implement a Pebbles kernel for RV32I+MA target
■ Implement interrupts (timer + keyboard)
■ Implement traps/system calls
■ Implement caching
■ Implement console output
■ Implement keyboard input
■ Implement boot loader
■ Implement virtual memory

○ Demo
■ Milestone 1: Demonstrate performance metrics between a software

implementation and accelerated implementation in basic uKernel
● Hardware acceleration
● Basic kernel

■ Milestone 2: Demonstrate performance metrics between a software
implementation and accelerated implementation for fully functional kernel

● Hardware acceleration
● Fully functional kernel

● Extension 1.2.1 Pebbles kernel on RISC-V processor running on FPGA with user mode
hardware extensions via custom RISC-V extension

○ Learning Goals
■ Explore RISC-V architecture extensions
■ Explore hardware acceleration for user mode functionality

● Profile sample binaries to determine the critical path
○ Unknown unknowns

■ How to implement console display on FPGA
■ How to implement keyboard input on FPGA
■ How to setup the test and build infrastructure to compile and simulate

both a kernel and a processor
■ Will it be necessary to rewrite/modify the compiler to leverage

extensions?

○ Additional Requirements
■ Implement a RISC-V processor with RV32I+MA extensions

● Implement privileged instructions
■ Implement a Pebbles kernel for RV32I+MA target
■ Implement interrupts (timer + keyboard)
■ Implement traps/system calls
■ Implement caching
■ Implement console output
■ Implement keyboard input
■ Implement boot loader
■ Implement virtual memory

○ Demo
■ Milestone 1: Demonstrate performance metrics between software

implementation and hardware implementation of user mode functions
● Fully functional kernel
● User mode program with hardware acceleration extensions in

binary
● Extension 1.3 Pebbles kernel on RISC-V processor running on FPGA with user mode

FPGA acceleration (via system call)
○ Learning Goals

■ Explore RISC-V architecture extensions
■ Explore FPGA acceleration for user mode programs

○ Unknown unknowns:
■ How to program an FPGA dynamically

● Option 1: Partial Reconfiguration
● Option 2: Networked FPGA/Dedicated FPGA

■ How to implement console display on FPGA
■ How to implement keyboard input on FPGA
■ How to setup the test and build infrastructure to compile and simulate

both a kernel and a processor
■ How to compile a user mode software program with a bitstream that can

be deployed to FPGA fabric
○ Additional Requirements

■ Implement a RISC-V processor with RV32I+MA extensions
● Implement privileged instructions

■ Implement a Pebbles kernel for RV32I+MA target
■ Implement interrupts (timer + keyboard)
■ Implement traps/system calls
■ Implement caching
■ Implement console output
■ Implement keyboard input
■ Implement boot loader
■ Implement virtual memory

○ Demo
■ Milestone 1: Demonstrate performance metrics between software

implementation and hardware implementation of user mode program
● Fully functional kernel
● User mode program with acceleration system calls
● User mode acceleration bitstream

● Extension 1.4.1 Pebbles kernel on RISC-V processor running on FPGA with statistical
predictions in cache eviction

○ Learning Goals
■ Explore architectural design space by implementing statistical predictions

for cache eviction
○ Unknown unknowns

■ What complexity is practical in hardware for statistical predictions?
■ What statistical models provide benefit for hardware cache eviction?
■ How to implement console display on FPGA
■ How to implement keyboard input on FPGA
■ How to setup the test and build infrastructure to compile and simulate

both a kernel and a processor
○ Additional Requirements

■ Implement a RISC-V processor with RV32I+MA extensions
● Implement privileged instructions

■ Implement interrupts (timer + keyboard)
■ Implement traps/system calls
■ Implement console output
■ Implement keyboard input
■ Implement boot loader
■ Implement virtual memory

○ Demo
■ Milestone 1: Demonstrate a Kernel game running on an FPGA

● Console Output
● Keyboard Input
● Subset of privileged instructions
● Interrupts
● Game Implementation
● Cache
● Boot loader

■ Milestone 2: Demonstrate a uKernel (~410-p4-fondle) with VM running on
an FPGA

● Console Output
● Keyboard Input
● Subset of privileged instructions
● Virtual Memory system
● Interrupts

● uKernel with VM
● Cache
● Boot loader

■ Milestone 3: Demonstrate a fully functioning kernel running on FPGA
(boot to a shell)

● Console Output
● Keyboard Input
● Virtual memory system
● All privileged instructions
● Traps
● Interrupts
● Full kernel
● Cache
● Virtual Memory system
● Boot loader

■ Milestone 4: Demonstrate a fully functioning kernel with concurrency
running on FPGA (boot to a shell with threads)

● Console Output
● Keyboard input
● Virtual memory system
● All privileged instructions
● Traps
● Interrupts
● Full kernel
● Cache
● Virtual Memory system
● Boot loader
● Synchronization primitives/pthread library for RV32I+MA

■ Milestone 5: Demonstrate a fully functioning hypervisor running multiple
full kernels running on FPGA (boot multiple kernels)

● Console Output
● Keyboard Input
● Virtual memory system
● All privileged instructions
● Traps
● Interrupts
● Full kernel
● Cache
● Virtual Memory System
● Full hypervisor
● Hardware support for virtualization (ring -1)
● Boot loader

● Extension 1.4.2 Pebbles kernel on RISC-V processor running on FPGA with statistical
predictions in scheduler

● Extension 1.5 Pebbles inspired RTOS on RISC-V processor running on FPGA with real
time timing guarantees

