Premise:

Goals:

To truly understand a system, it is necessary to implement the system.
Mastery of computer engineering is demonstrated by being able to design and
implement a processor and the kernel that can launch a shell.

Synthesis 15-410 and 18-447 in order to develop an understanding of the interface
between hardware and software.
Experience the thrills of debugging a complex system with neither a ground truth
software implementation nor a ground truth hardware implementation
Expand on the 18-447 experience by delivering a fully functional processor instead of a
toy implementation
Develop a unique speciality spanning kernels and processors
o Only one company (Apple) is seriously pursuing both the design of custom
Silicon and the development of custom kernel/OS; however, even at Apple, the
only person spanning both sides is Tim Cook

Proposal 1: Pebbles kernel on RISC-V processor running on FPGA
o Learning Objectives:
m Explore virtual memory through implementation (RISC-V standard = x86)
e Explore TLB translation through implementation
Explore caching through implementation
Explore memory through implementing a memory subsystem

Explore privileged instructions through implementation
Explore atomic instructions through implementation
Explore interrupts through implementation (both timer and keyboard)
m Explore traps/system calls through implementation (for a real kernel)
o Unknown unknowns:
m How to implement console display on FPGA
m How to implement keyboard input on FPGA
m How to setup the test and build infrastructure to compile and simulate
both a kernel and a processor
o Additional Requirements
m Implement a RISC-V processor with RV32I+MA extensions
m Implement a Pebbles kernel for a RV32I+MA architecture
o Demo:
m Milestone 1: Demonstrate a Kernel game running on an FPGA
Console Output
Keyboard Input
Subset of privileged instructions
Interrupts
Game Implementation

e Cache
e Boot loader
m Milestone 2: Demonstrate a uKernel (~410-p4-fondle) with VM running on
an FPGA
Console Output
Keyboard Input
Subset of privileged instructions
Virtual Memory system
Interrupts
uKernel with VM
Cache
e Boot loader
m Milestone 3: Demonstrate a fully functioning kernel running on FPGA
(boot to a shell)
Console Output
Keyboard Input
Virtual memory system
All privileged instructions
Traps
Interrupts
Full kernel
Cache
Virtual Memory system
e Boot loader
m Milestone 4: Demonstrate a fully functioning kernel with concurrency
running on FPGA (boot to a shell with threads)
Console Output
Keyboard input
Virtual memory system
All privileged instructions
Traps
Interrupts
Full kernel
Cache
Virtual Memory system
Boot loader
e Synchronization primitives/pthread library for RV32I1+MA
m Milestone 5: Demonstrate a fully functioning hypervisor running multiple
full kernels running on FPGA (boot multiple kernels)
Console Output
Keyboard Input
Virtual memory system
All privileged instructions

Traps
Interrupts
Full kernel
Cache
Virtual Memory System
Full hypervisor
Hardware support for virtualization (ring -1)
e Boot loader
e Extension 1.1: Pebbles kernel on RISC-V processor running on FPGA with exotic
memory system
o Learning Objectives
m Explore more exotic virtual memory systems through implementation
e Software TLB fill (MIPS?)
e Hashed page table (PowerPC)
m Develop mastery of virtual memory by demonstrating the ability to
seamlessly switch between virtual memory subsystems without data loss
o Unknown unknowns:
m How to switch between virtual memory systems without losing state
m How to implement console display on FPGA
m How to implement keyboard input on FPGA
m How to setup the test and build infrastructure to compile and simulate
both a kernel and a processor
o Additional Requirements
m Implement a RISC-V processor with RV32I+MA extensions
e Implement privileged instructions
Implement interrupts (timer + keyboard)
Implement traps/system calls
Implement caching
Implement console output
Implement keyboard input
m Implement boot loader
o Demo:
m Milestone 1: Demonstrate performance counter metrics on different virtual
memory implementations (~410-p4-fondle)
e Multiple virtual memory systems (possibly in different bitstreams)
m Milestone 2: Expose virtual memory subsystem via system call;
demonstrate different performance for user level code based on virtual
memory system selected
e Multiple virtual memory systems in single bit stream
e Ability to flush and switch to a new virtual memory system
e Extension 1.2: Pebbles kernel on RISC-V processor running on FPGA with accelerated
functional units via a custom RISC-V extension
o Learning Objectives

m Explore hardware acceleration for static functions in the kernel
e Hardware accelerated fork
e Hardware accelerated timer context switch
e Hardware accelerated memset
m Explore RISC-V architecture extensions
o Unknown unknowns
m How to implement console display on FPGA
m How to implement keyboard input on FPGA
m How to setup the test and build infrastructure to compile and simulate
both a kernel and a processor
o Additional requirements
m Implement a RISC-V processor with RV32I+MA extensions
e Implement privileged instructions
Implement a Pebbles kernel for RV32I+MA target
Implement interrupts (timer + keyboard)
Implement traps/system calls
Implement caching
Implement console output
Implement keyboard input
Implement boot loader
m Implement virtual memory
o Demo
m Milestone 1: Demonstrate performance metrics between a software
implementation and accelerated implementation in basic uKernel
e Hardware acceleration
e Basic kernel
m Milestone 2: Demonstrate performance metrics between a software
implementation and accelerated implementation for fully functional kernel
e Hardware acceleration
e Fully functional kernel
Extension 1.2.1 Pebbles kernel on RISC-V processor running on FPGA with user mode
hardware extensions via custom RISC-V extension
o Learning Goals
m Explore RISC-V architecture extensions
m Explore hardware acceleration for user mode functionality
e Profile sample binaries to determine the critical path
o Unknown unknowns
m How to implement console display on FPGA
m How to implement keyboard input on FPGA
m How to setup the test and build infrastructure to compile and simulate
both a kernel and a processor
m Wil it be necessary to rewrite/modify the compiler to leverage
extensions?

o Additional Requirements

o Demo

Implement a RISC-V processor with RV32I+MA extensions
e Implement privileged instructions

Implement a Pebbles kernel for RV32I+MA target

Implement interrupts (timer + keyboard)

Implement traps/system calls

Implement caching

Implement console output

Implement keyboard input

Implement boot loader

Implement virtual memory

Milestone 1: Demonstrate performance metrics between software
implementation and hardware implementation of user mode functions
e Fully functional kernel
e User mode program with hardware acceleration extensions in
binary

Extension 1.3 Pebbles kernel on RISC-V processor running on FPGA with user mode
FPGA acceleration (via system call)
o Learning Goals

Explore RISC-V architecture extensions
Explore FPGA acceleration for user mode programs

o Unknown unknowns:

How to program an FPGA dynamically
e Option 1: Partial Reconfiguration
e Option 2: Networked FPGA/Dedicated FPGA
How to implement console display on FPGA
How to implement keyboard input on FPGA
How to setup the test and build infrastructure to compile and simulate
both a kernel and a processor
How to compile a user mode software program with a bitstream that can
be deployed to FPGA fabric

o Additional Requirements

Implement a RISC-V processor with RV32I+MA extensions
e Implement privileged instructions

Implement a Pebbles kernel for RV32I+MA target

Implement interrupts (timer + keyboard)

Implement traps/system calls

Implement caching

Implement console output

Implement keyboard input

Implement boot loader

Implement virtual memory

o Demo
m Milestone 1: Demonstrate performance metrics between software
implementation and hardware implementation of user mode program
e Fully functional kernel
e User mode program with acceleration system calls
e User mode acceleration bitstream
Extension 1.4.1 Pebbles kernel on RISC-V processor running on FPGA with statistical
predictions in cache eviction
o Learning Goals
m Explore architectural design space by implementing statistical predictions
for cache eviction
o Unknown unknowns
m What complexity is practical in hardware for statistical predictions?
What statistical models provide benefit for hardware cache eviction?

m How to implement console display on FPGA
m How to implement keyboard input on FPGA
m How to setup the test and build infrastructure to compile and simulate

both a kernel and a processor
o Additional Requirements
m Implement a RISC-V processor with RV32I+MA extensions
e Implement privileged instructions
Implement interrupts (timer + keyboard)
Implement traps/system calls
Implement console output
Implement keyboard input
Implement boot loader
m Implement virtual memory
o Demo
m Milestone 1: Demonstrate a Kernel game running on an FPGA
e Console Output
Keyboard Input
Subset of privileged instructions
Interrupts
Game Implementation
Cache
e Boot loader
m Milestone 2: Demonstrate a uKernel (~410-p4-fondle) with VM running on
an FPGA
Console Output
Keyboard Input
Subset of privileged instructions
Virtual Memory system
Interrupts

uKernel with VM
Cache
Boot loader

m Milestone 3: Demonstrate a fully functioning kernel running on FPGA
(boot to a shell)

Console Output
Keyboard Input

Virtual memory system
All privileged instructions
Traps

Interrupts

Full kernel

Cache

Virtual Memory system
Boot loader

m Milestone 4: Demonstrate a fully functioning kernel with concurrency
running on FPGA (boot to a shell with threads)

Console Output
Keyboard input

Virtual memory system
All privileged instructions
Traps

Interrupts

Full kernel

Cache

Virtual Memory system
Boot loader
Synchronization primitives/pthread library for RV32I+MA

m Milestone 5: Demonstrate a fully functioning hypervisor running multiple
full kernels running on FPGA (boot multiple kernels)

Console Output
Keyboard Input

Virtual memory system
All privileged instructions
Traps

Interrupts

Full kernel

Cache

Virtual Memory System
Full hypervisor
Hardware support for virtualization (ring -1)
Boot loader

Extension 1.4.2 Pebbles kernel on RISC-V processor running on FPGA with statistical

predictions in scheduler
Extension 1.5 Pebbles inspired RTOS on RISC-V processor running on FPGA with real

time timing guarantees

