
RTL through OS 
Reid Long, Teguh Hofstee 

Group B9 
March 8th 2018 

 
 

Project Description 2 

Design Requirements 2 
Processor Requirements 2 
Kernel Requirements 3 

Functional Architecture 4 

Design Constraints/Tradeoffs 5 
Correctness 5 
Performance 6 
Evaluation 7 

Processor Validation 7 
Kernel Validation 7 

System Architecture 8 
Processor Architecture 8 

Memory Management Unit Architecture 8 
Core Architecture 10 
Kernel Architecture 10 

Project Management 11 
Timeline 11 
Budget 12 
Risk 13 

Related Work 13 

References 14 
 

 
 

  



Project Description 
Our mission is to demonstrate mastery of computer engineering by designing and implementing 
a single core RISC-V processor and developing a basic multitasking kernel to run on the 
processor. We want to experience the thrills of debugging a complex system with neither a 
ground truth software implementation nor a ground truth hardware implementation. 
Furthermore, we want to develop a unique skill set that spans both kernels and processors in 
order to increase our value in the event of nuclear holocaust or zombie apocalypse .  1

Design Requirements 
A full specification of the processor and the kernel can be found on the team website . Relevant 2

documents are linked in the references section. Any requirements listed formally in this section 
supercede any explicit or implicit requirements from the RISC-V User-Level ISA, the RISC-V 
Priviledged architecture, or the Pebbles Kernel specification.  

Processor Requirements 
● P1: The processor shall support a custom subset of the RV32IMAS instruction set 

architecture 
○ P1.1: The processor shall be consistent with the RISC-V User-Level ISA v2.2 
○ P1.2: The processor shall be consistent with the RISC-V Priviledged Architecture 

v1.10 
○ P1.3: If the processor receives an EBREAK, it shall halt execution 

■ P1.3.1: If the processor receives user stimulus (push button) it should 
resume execution. 

○ P1.4: The processor should only implement Load Reserve/Store Conditional 
instructions out of the Atomic extension 

○ P1.5: The processor shall support U-Mode and M-Mode 
○ P1.6: The processor shall implement virtual memory translation as a 2-level 

hardware walked page table consistent with the specification in RISC-V 
Privileged Architecture specification 

● P2: The processor should support debug logs via the Zedboard ARM chip 
● P3: The processor shall load the kernel RAMdisk from an SD Card 

○ P3.1: The processor shall idle the core until the kernel RAMdisk is loaded into 
main memory 

● P4: The processor shall support reading and writing VRAM via load/store instructions 
○ P4.1: The processor shall only support direct-mapped VRAM operations 

● P5. The processor shall support fetching instructions from main memory 
○ P5.1: The processor should not support fetching instructions from VRAM 

1 https://www.usenix.org/system/files/1311_05-08_mickens.pdf 
2 http://www.ece.cmu.edu/~ece500/spring18/teamB09/website/ 



● P6: The processor shall generate a Load/Store Fault if the software requests a 
misaligned load/store 

● P7: The processor shall implement a subset of the Control Status Registers  3

○ P7.1: The processor shall implement mcycle which will report the number of 
cycles since boot 

○ P7.2: The processor shall implement minstret which will report the number of 
instructions retired 

○ P7.3: The processor shall implement ustatus and mstatus which will report 
control flags  like interrupts enabled/disabled 4

○ P7.4: The processor shall implement mtvec which will be the base address 
where all traps/exceptions/interrupts will be delivered 

● P8: The processor should implement several performance counters 
○ P8.1: The processor should implement an instructions fetched performance 

counter 
○ P8.2: The processor should implement performance counters for 

Forward/Backward branches retired/predicted correctly/predicted incorrectly for a 
total of six performance counters 

○ P8.3: The processor should implement performance counters for data/instruction 
cache hits/misses for a total of four performance counters 

○ P8.4: The processor should implement performance counters for Store 
Conditional successes and rejections for a total of two performance counters 

○ P8.5: The processor should implement exception/interrupt delivering 
performance counters distinguishing between keyboard interrupts, exceptions, 
and timer interrupts delivered in M-Mode and U-Mode for a total of six 
performance counters 

○ P8.6: The processor should implement performance counters for 
forward/backward jumps that are retired/predicted correctly/predicted incorrectly 
for a total of six performance counters 

Kernel Requirements 
● K1: The kernel shall implement the Pebbles kernel specification (Version 9-20-17) 

○ K1.1: The kernel shall make the appropriate corrections to ensure consistency 
with the RISC-V architectural model 

○ K1.2: The ureg_t struct shall be defined to include the architectural state of a 
RISC-V processor   5

○ K1.3: The kernel should implement the task_vanish system call  6

3 See http://www.ece.cmu.edu/~ece500/spring18/teamB09/website/Architecture.pdf for additional 
specifications 
4 See RISC-V Privileged Architecture specification 
5 The Pebbles specification is x86 centric and the ureg_t struct includes explicit references to x86 
architectural state which we will not need in our system. 
6 This system call is typically optional 



○ K1.4: The kernel should implement the getchar system call  7

○ K1.5: The halt system call shall trigger an EBREAK to the processor 
● K2: The kernel should boot within 30 seconds (30% tolerance ) 8

● K3: The kernel shall support a 2-level hardware walked page table consistent with 
RISC-V Priviledged Architecture v1.10 

● K4: The kernel shall support a PS2 keyboard driver 
● K5: The kernel shall support a VGA console driver 

○ K5.1: The kernel shall always direct-map VRAM 

Functional Architecture  9

The entire system is running on top of a ZedBoard interfacing with DRAM, SD Card, PS2, and 
VGA. The processor implements a custom subset of RV32IMAS which is the architectural 
contract with the kernel. The kernel implements the Pebbles system call spec as the application 
binary interface contract with the user mode programs. See Figure 1 below for a high level block 
diagram of the system design. 

 
 

7 This system call is typically optional 
8 The high tolerance is because there is a human in the loop. As long as the performance is somewhat 
reasonable, the human will consider the behavior acceptable. It is also acceptable for the processor to 
boot faster than is specified; however, our initial models indicate that this will be unlikely.  
9 See the System Architecture section for additional details of the subsystems 



Design Constraints/Tradeoffs 

Correctness 
Our design is motivated by two key metrics. The primary metric is optimizing for correctness. 
While correctness seems like an obvious constraint, in computer architecture it is particularly 
critical since the complexity of a chip is many orders of magnitude larger than what we could 
possibly test over the course of a semester. We carefully distinguish between “true correctness”

 with “effective correctness” which is what we are targeting. Our effective correctness metric 10

represents correctness within the allowable operation of our processor. In particular, we are not 
implementing additional instructions that are not necessary to run the test binaries we have 
selected.  Furthermore, we do not expect the processor to run for more than 20 Billion 
instructions between reboots (based on the simulations of a full kernel validation suite). Based 
on these restrictions, it is indistinguishable for our processor to contain a flaw if executing 1 
Trillion instructions compared to a fully correct processor (if such a thing exists).  
 
In order to achieve correctness we are focusing on the simplest processor possible and the 
simplest kernel possible. Unlike modern processors, we are targeting a simple, single core, in 
order, single issue processor.  However, we are introducing some complexity into the design in 
order to improve performance (our second key metric, see below). Instead of implementing a 
single cycle processor, we are going to design a pipelined microarchitecture with 6 stages. A 
more standard microarchitecture would be a 5-stage pipeline (IF, ID, EX, MEM, WB); however, 
our preliminary work on the memory subsystem revealed that the clock-to-out propagation delay 
on reading from memory is fairly large .  11

 
Based on our experiences in 18-447 working on a simple RISC-V processor with a similar 
microarchitecture to what we are planning on building, the decode stage is on the critical path. It 
follows that introducing additional propagation delay in the clock-to-out part of the instruction 
fetch stage will be problematic and likely the critical path in our design since this propagation 
delay will carry over into the decode stage. This has motivated our design to feature a 6-stage 
pipeline (IF1, IF2, ID, EX, MEM, WB). We are accepting an increase in complexity to hopefully 
ensure that we will be able to deliver a processor running at 100MHz (the native frequency of 
the Zedboard Programmable logic). When synthesizing the full chip it is possible that our 
assumptions about the decode stage or the instruction fetch stage will need to be adjusted. Our 
future decisions will be motivated by the same factors as this initial design decision (desire to 
manage complexity while also ensuring reasonable performance). 
 

10 Industry grade, consistent with the chips shipped by Apple or Intel 
11The key contributors to this clock-to-out propagation delay involve the multiple levels of comparators 
necessary to validate the tag bits are a match to identify which of the cache sets is the hit.  



Performance 
Our secondary metric is performance. Our performance constraint is based on the user 
experience. If it takes many minutes to boot the kernel, then the user is going to give up and 
assume the kernel is broken or unuseable. When the user is interacting with the kernel by 
playing a game or simply typing on a shell, the user expects a certain level of responsiveness. 
We would like to run our kernel games at 60 Frames per second. We also have identified a 
reasonable time-to-boot of 30 seconds. While 30 seconds is a long time by modern standards, 
we believe a user is willing to tolerate 30 seconds of boot time.  
 
Since the number of instructions that need to be executed is relatively constant, we must 
optimize the processor in order to archive a sufficiently high IPC  and a sufficiently fast clock 12

period if we want to meet our performance targets. Our calculations are summarized in table 1 
below. 

Binary Instruction 
Count 

IPC Clock Period 
(ns) 

Runtime (s) 

Tetris (60 
frames) 

792,000 0.70 240 0.271 

Tetris (60 
frames) 

792,000 0.70 10 0.011 

Kernel Boot 900,000,000 0.70 240 308 (5 minutes) 

Kernel Boot 900,000,000 0.70 10 12.857 

Full Kernel Test 15,000,000,000 0.70 240 5142 (85 
minutes) 

Full Kernel Test  15,000,000,000 0.70 10 214 (3.5 
minutes) 

Table 1: Performance estimates 
Our estimates for IPC are based on pessimistic results from 18-447 RV32I processors. These 
results are not necessarily consistent with the microarchitecture we are planning on designing; 
however, as far as we can tell 18-447 processors are the most similar to our desired 
microarchitecture. Our microarchitecture will be different than standard 18-447 processors since 
we are implementing a many more features. Furthermore, we will experience cache misses 
which will have a negative effect on our IPC. As we progress through the project we will update 
these calculations based on our measurements.  
 
We provide two estimates for clock period to reveal the likely extremes we will be able to design 
within. A clock period of 240ns represents the memory latency of DRAM on the Zedboard. A 

12 Instructions per cycle 



clock period of 10ns represents the “native” frequency of the Zedboard’s programmable logic. 
Ideally we will archive the 10ns clock period; however, it is possible that our design’s critical 
path after place and route will be too long and will limit us to a slower clock period.  

Evaluation 
Our evaluation will focus primarily on ensuring the correctness of our design (the primary 
metric). Since our performance evaluation is subjective and based on human interaction we will 
evaluate that indirectly by measuring runtime of the correctness evaluation of both the kernel 
and the processor.  
 
Validating a kernel and a processor simultaneously introduces substantial complexity into our 
testing methodology. In contrast to most other projects (both within the course and in the real 
world), we do not have a ground truth processor nor a ground truth kernel. Furthermore, neither 
a ground truth processor nor a ground truth kernel exist  for the specific subset of the RISC-V 13

architecture we are attempting to implement.  

Processor Validation 

Our processor validation will focus on both randomized coverage tests  and targeted edge case 14

tests. Our goal is to achieve 100 million lines of assembly in the randomized tests and to have 
100 targeted edge case test programs to cover the 70 instructions we are implementing. In 
order to enable our large scale validation efforts without hindering other project progress we will 
implement a architectural simulator which will be able to generate golden register dumps. We 
will be able to simply write the test program and run it through the architectural simulator to 
generate the golden register dumps. Then we can execute the test on our processor and 
compare the results to the golden register dump to identify a test passing or failing. Since 
validating the entire memory image would require an excessive amount of storage  we will 15

instead perform a checksum of the relevant  memory regions and storing the result in a 16

register.  

Kernel Validation 

We have access to 150 correctness binaries for a Pebbles specification, x86 kernel. We will port 
these binaries to our custom RV32IMAS architecture and then execute them on the processor. 
Based on our simulation estimates, running all of these binaries in succession will require 
executing approximately 15 billion instructions. This will severely tax our processor, but will 
provide a high level of confidence that both the kernel and the processor are correct (or at least 
effectively correct).  

13 This motivated our desire to build an architectural simulator for our specific architecture to help facilitate 
easier validation and verification.  
14 These randomized tests are generated with a test generate designed in 18-447. We will be able to 
extend this generator to be compliant with the RV32IMAS architecture our processor is implementing. 
15 This would require 512MB of “golden” memory for each test program 
16 Defined by the test based on what regions of memory the test is attempting to modify 



System Architecture 

Processor Architecture 
We are implementing a single core processor which implements a custom subset of the 
RV32IMAS specification (User Mode v2.2, Privilege Mode v1.10). 

 
Figure 2 above shows a component breakdown of the processor high level architecture. Our key 
contributions of custom RTL will be in the Memory subsystem, the Core, and the Programmable 
Interrupt Controller. In addition, we are planning on using a custom VGA controller  and a 17

custom timer device . We would like to use and off-the-shelf IP component for interfacing with 18

the DRAM, interfacing with the PS2 keyboard, and for interfacing with the SD card; however, if 
we are unable to find and integrate a suitable component, we will resort to writing custom RTL 
to interact with either/both. 

Memory Management Unit Architecture 

The memory subsystem features a 32-bit virtual address space with 512MB of physically 
address DRAM. Virtual address translations are provided with a classical 2-Level hardware 
walked page table. There is a single level translation lookaside buffer to amortize the cost of 
virtual memory translation. All addresses on the core are virtual with translation happening in 
the memory subsystem which interfaces directly with DRAM when necessary.  

17The off-the-shelf components we were able to find were overly complex and we have experience from 
18-240 implementing our own VGA drivers 
18 This should be trivial to implement with a simple counter and comparator 



 
Figure 3 above, shows a high level outline of the memory subsystem. One notable feature is 
that instruction fetch cannot access VRAM and the VGA driver will not be able to access 
MainMemory. No reasonable program would need to fetch instructions out of VRAM, and this 
restriction enables many simplifications in the memory controller. In particular, having only two 
sources of reading/writing to both of our VRAM and MainMemory ensures that we can use the 
native dual-ported BRAMs on the Zedboard for both the VRAM and our Cache.  

 
Figure 4 above shows the high level architecture of the MainMemory module within the memory 
hierarchy. This diagram elides many of the datapath level details of our implementation; 
however, it captures the essence of the design. We have three controllers within MainMemory. 
The Instruction Fetch and Load/Store controllers can operate in parallel fulfilling memory 
requests for their respective stages in the pipeline; however, in the event of a cache miss the 
Instruction Fetch or Load/Store controller will trigger the DRAM controller to take over and 
update the cache.  
 



In order to enable virtual address translation to happen in parallel with reading from the cache, 
we are using a virtual indexed , physically tagged cache. This ensures that we can deliver a 19

single-cycle memory read on a cache hit.  
 
Another detail this diagram reveals is that our virtual memory translations go through the cache. 
This means that we do not need to perform a cache flush when configuring page tables since 
the translation will find the most recently written values in the cache (or will trigger a cache miss 
and load the cache with the appropriate data from main memory).  

Core Architecture 
As discussed in our design tradeoffs, the core will feature a 6-stage pipeline. When the design is 
more mature, we are willing to adjust based on the timing constraints of the full chip, but our 
initial estimates indicate that the critical path will be through the decode stage. Thus it is 
unacceptable to introduce additional clock-to-out propagation delay in the instruction fetch 
stage. We have resolved this issue by adding an additional pipeline stage to instruction fetch to 
reduce the likelihood of a timing violation in the decode stage.  
 
We observed that the write back stage is very simple and likely will have a short critical path. 
This has enabled us to treat the writeback stage as the MEM2 stage analog of the IF2 stage 
since it is unlikely the write back stage will be the critical path, our initial estimates indicate that it 
will be permissible for our microarchitecture to push additional clock-to-out propagation delay 
from the MEM stage into the WB stage. 
 
We also will implement a simple branch predictor and data forwarding within the pipeline in 
order to achieve an acceptable IPC which is necessary to meet our performance goals 
(discussed above in design tradeoffs).  

  

Kernel Architecture 
Our kernel shall implement the Pebbles System Call specification. This specification contains a 
mere 25 system calls; however, those system calls include Tasks , Threads, Memory 20

Management , and console input/output. Figure 6 below provides a conceptual software stack 21

for the kernel where communication flows in the vertical direction. Explicit communication 
arrows have been elided in this model since the true communication graph in a kernel reveals 

19 Technically the cache is physically indexed, but the index is from the virtual page offset which is 
equivalent to the physical page offset. The translation is the identity operation.  
20 Analogous to a Process 
21 Necessary to implement user-mode malloc and automated stack growth 



that most components are able to talk directly to each other, but not in a conceptually 
meaningful way.  

 

Project Management 

Timeline 
One of the strengths of our team is that both members are comfortable with both the hardware 
and the software aspects of the project. This enables us to have extreme flexibility when 
resolving issues since we can easily swap roles to provide a fresh set of eyes on a complex 
problem. This timeline includes expected assignments of who will be working on which aspects 
of the project; however, we are willing to make responsibility adjusts as we discover which 
aspects of the project are the most complex and thus need more time than initially anticipated.  
 
The following schedule (Table 2) is color coded to indicate which aspect of the project the 
specific task associates with. Blues represent software while oranges/reds represent hardware.  
 

Week External 
Milestone 

Internal 
Milestone 

Reid’s Task Teguh’s Task 

2/12   Architectural 
Simulator 

VGA Interface 

2/19   Memory 
Management 
Unit 

DRAM Interface 



2/26 Design 
Presentations 

 CPU Core DRAM Interface 

3/5 Design Proposal  CPU Core CPU Core 

3/12 Spring Break  PS2 Interface Boot Loader 

3/19  Working 
Processor 

Kernel Drivers Boot Loader 

3/26  Working Demo Minesweeper PIC 

4/2 Midpoint 
Presentation 

 Virtual 
Memory/TLB 

Tetris 

4/9   Kernel Kernel 

4/16 Carnival    

4/23  Working Kernel Kernel Kernel 

4/30 Final 
Presentation 

 Demo Demo 

Table 2: Gantt Chart 

Budget 
Our project is extremely low-cost since many of the components are being borrowed from lab at 
no cost to our budget. Table 3 provides the bill of materials for the entire project. 
 
Table 3: Bill of Materials 

Item Price Source 

Zedboard $0 Lab 

PS2 Keyboard $0 Lab 

VGA Monitor $0 Lab/Personal 

PS2 PMOD $8.99 Digilent 

PS2 SD Card Reader $9.99 Digilent 

SD Card $0 Lab 

Total $18.99  



Risk 
One of the biggest risks in our project has already created a severe problem for our timeline. In 
particular, the DRAM interface is proving exceptionally difficult to integrate into our memory 
management unit. While our initial estimates and intuition assumed it should be a fairly common 
to communicate with DRAM from the FPGA logic, we have been unable to find a working tutorial 
or achieve any sort of communication with the DRAM. We are actively mitigating the risk and 
researching additional options to increase our flexibility.  
 
Other high risk aspects of the project include all other external interfaces. These include VGA, 
PS2, and SD in addition to the DRAM interface.  Our primary risk mitigation technique for these 
risks is to start integrating them into the system as soon as possible. This approach has proven 
invaluable for the DRAM interface since we have encountered the problem early enough in the 
progress that we still have flexibility to design workarounds and research additional options.  
 
Beyond the interface concerns, we also are attempting a project with a high degree of 
complexity. Effectively managing this complexity is likely going to be a challenge especially 
since neither of us have tackled a project of this scope before . In order to manage the 22

complexity and mitigate this risk, we are planning on utilizing high quality software development 
techniques like pair programming, peer review, and frequent communication. 
 
The final risk in our project is the unknown. There are many components in our system that we 
have never implemented before. Our past experiences indicate that one never truly understands 
something until one attempts to implement it. In order to mitigate this risk, we are planning on 
targeting the largest unknowns first. This will hopefully allow us to discover unknown complexity 
early in the project while we still have the ability to cleanly pivot to alternative implementations 
or designs.  

Related Work 
Depending on the lens, our project is either one of a kind or highly redundant. From a certain 
perspective, designing a computer and developing an Operating System are already solved 
problems. Anybody can buy an x86 processor from Intel and many modern mobile processors 
feature ARM’s RISC instruction set architecture. Furthermore, there are many widely available 
operating systems including Linux, Windows, and macOS.  
 
The annual releases of modern operating systems and modern processors are not yearly 
rewrites of the entire system. The complexity in state-of-the-art processors and operating 
systems exceeds what can be accomplished in a year by a team of world class experts, thus 
most releases patches on top of legacy code. It is not tractable for us to attempt to duplicate the 
work of both Intel and Microsoft have done over the last several decades in a single semester. 

22 We have each completed 18-447 and 15-410; however we did not complete both of those classes in 
the same semester.  



Instead, we are targeting a more reasonable goal of a reduced operating system and a reduced 
subset of a RISC-V processor.  
 
While it may appear that our project is strictly inferior to the work produced by large corporations 
since we are delivering fewer features, we have one key advantage. Our product is not hindered 
by the enormous amount of bloat that both modern operating systems and modern processors 
have. For some people, what we consider bloat is actually a feature. Some developers need 
exotic instructions or specialized system calls to deliver cutting edge performance; however, 
there exists some people  who would prefer to have a simple processor running a simple 23

operating system. Simple technologies can make it easier to verify systems with respect to 
security and correctness. Considering this context, it follows that our project could easily be a 
prototype for a future startup company that specializes in processors and kernels that deliver 
superior security guarantees without sacrificing performance for most common applications .  24
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23Several of our security conscious professors/friends have indicated they would be very receptive to a 
simple, secure processor, especially one without the Intel Management Engine.  
24 Less common applications would likely have a performance sacrifice 


