RTL through OS

B9 (Formerly B10)
Reid Long, Teguh Hofstee

What are we building?

e RISC-V Processor
o RV32I-MAS

e Kernel

Integer

Multiplication and Division
Atomic

Supervisor

o Pebbles Specification

e Architecture

o Single Core
o 512 MB of DRAM
o 2 Level, Hardware Walked, Page Table for Virtual Memory

b4 RISC

Competition

e There are other CISC and RISC processors
o MIPS R10000 (outdated ISA)
o Intel x86 (excessively complex ISA)
e There are other Operating Systems
o Linux, Windows, macOS
e All require years of development and tens to thousands of engineers
o We are scaling down to target a scope achievable in a semester
o Our goal is to develop a unique skill set that spans both kernels and processors
e |n a world ravaged by nuclear fallout and zombies...

o Re-create ancient blood rituals performed by Bjarne Stroustrup at Stonehengel
o In the beginning, man created the computer and the kernel.

[1] https://www.usenix.org/system/files/1311_05-08 mickens.pdf

Three Phase Approach

1. Design a processor
2. Develop microkernels

3. Develop a kernel {

User Mode Binaries

Kernel

[Microkernels

Processor

Zedboard

Design a Processor

Notation

O

O

Rectangle: Includes External
Interface

Rounded Rectangle: No external
interface

Custom vs. Off-the-shelf

O
O

O 0O O O O

VGA: Custom

DRAM: Off-the-shelf aren’t
working currently

SD Card: Desired Off-the-shelf
(likely need custom)

PS2: Custom

Memory: Custom

Core: Custom

Timer: Trivally Custom

PIC: Custom

VGA

DRAM < SD Card
A
v
Memory] PS2
A
v v
[Core H PIC
A
Timer

%y

Design a Processor - Memory

Memory

VGA

Load/Store

Fetch

VRAM

MainMemory

MainMemory

BRAM Cache

_ ¢ %,

()

Hardware Translation
(TLB)

_ %,

Fetch FSM

DRAM FSM

Load/Store FSM

DRAM Imerfaoe>

Design a Processor - Core

e 6 Stage Pipeline
e Branch Prediction and Data Forwarding

e Two Stage Instruction Fetch

o Memory Operations have a large clock-to-out propagation delay
o Decode stage is expensive in 447 cores

e Single Stage Memory Load/Store

o Large clock-to-out can be lumped into the register writeback stage

Develop Microkernels

e No virtual memory

e Same drivers as full kernel

e Targeted benchmarks to ensure
correctness of processor

e Random benchmarks to increase
confidence in processor

Game/Test Binary

f

Console Driver } [Keyboard Driver } [Timer Driver

Develop The Kernel

e Pebbles Kernel

Small specification (25 System Calls)
Task Life Cycle

Thread Life Cycle

Memory Management

Console 10

e Custom vs. Port (from x86)
o Generic Libraries (Port)
o Drivers (Custom)
o Synchronization Primitives (Custom)
o System Calls (Port/Custom)

o O O O O

System Calls (User Mode Interface)

Console 10

]

\

o

-
Synchronizatio
Primitives
\.

ﬂ [Threads/Tasks

-

.

Scheduler

/

-
Console Keyboard
Driver Driver

~

o

-
Timer
Driver } E’
.

\

inual Memory Subsystem

/

Platform

e Hardware

(@)

(@)

@)

@)

(@)

e Software

(@)

(@)

Zedboard ($0)

PS2 Keyboard ($0)
VGA Display ($0)
PMOD PS2 ($8.99)
PMOD SD ($9.99)

Vivado ($0)
Architectural Simulator (Written by Us) ($0)

Demo

tRight
:Rotate
tDyraws et
ISpeed up
Do
SPACE - Drop

e Boot microkernel games
o Minesweeper
o Tetris

e Boot a shell on the kernel

o Computational Benchmarks

m Ackermann

m Fibonacci

m “cho” - Continuous Hours of Operation
o Visually Pleasing Binaries

m Racer

m Mandelbrot

m Bistromath (Chess)

m Nibbles (Snake)

s
b=
8
i
(=)
“x

MNe>x<t -

STATISTICS

Correctness - Primary Metric

e Processor Correctness

o Goal: 100M LOA (Lines of Assembly) Coverage

o Goal: 100 Targeted Tests to validate edge cases in instructions (70 instructions)
e Kernel Correctness

o Goal: 150 Correctness Binaries
o Expected: 15B Assembly Instructions Executed

Performance - Secondary Metric

e Goals
o Boot the kernel in under 30 seconds
o Run Tetris at 60 frames per second®
m In a full kernel, with other tasks able to run at the same time

e Estimates

Binary Instructions IPC Clock Period (ns) Runtime (s)
Tetris (60 frames) | 792,000 0.70 240 0.271

Tetris (60 frames) | 792,000 0.70 10 0.011

Kernel Boot 900,000,000 0.70 240 308 (5 minutes)

Kernel Boot 900,000,000 0.70 10 12.857

Timeline

o Key
o Blues: Software
o Red/Orange: Hardware
o Green: Demo/Presentation

e Current Status
o Schedule is slipping
o Memory control complexity is
much higher than anticipated
o DRAM AXIl is inconsistent with
our interpretation of
documentation

Week
2012
2/19
2/26

3/5
3/12
3/19
3/26

4/2

4/9
4/16
4/23
4/30

Milestone

Design Presentations

Spring Break
Working Processor

Mid-Point Presentation

Carnival

Final Presentation

Reid

Teguh

Risks

e Unknown Complexity
o Schedule the components we are least confident in first to discover surprise complexity early
in the schedule
e Complexity Overload
o Utilize high quality software development techniques like pair programing, peer review, and
frequent communication
e Off-the-Shelf Component Incompatibility

o Integrate off-the-shelf components early in the schedule to discover the issues before they
block later progress

Questions?

