
RTL through OS
B9 (Formerly B10)

Reid Long, Teguh Hofstee



What are we building?

● RISC-V Processor
○ RV32I-MAS

■ Integer
■ Multiplication and Division
■ Atomic
■ Supervisor

● Kernel
○ Pebbles Specification

● Architecture
○ Single Core
○ 512 MB of DRAM
○ 2 Level, Hardware Walked, Page Table for Virtual Memory



Competition

● There are other CISC and RISC processors
○ MIPS R10000 (outdated ISA)
○ Intel x86 (excessively complex ISA)

● There are other Operating Systems
○ Linux, Windows, macOS

● All require years of development and tens to thousands of engineers
○ We are scaling down to target a scope achievable in a semester
○ Our goal is to develop a unique skill set that spans both kernels and processors

● In a world ravaged by nuclear fallout and zombies...
○ Re-create ancient blood rituals performed by Bjarne Stroustrup at Stonehenge[1]

○ In the beginning, man created the computer and the kernel.

[1] https://www.usenix.org/system/files/1311_05-08_mickens.pdf



Three Phase Approach

1. Design a processor
2. Develop microkernels
3. Develop a kernel



Design a Processor

● Notation
○ Rectangle: Includes External 

Interface
○ Rounded Rectangle: No external 

interface
● Custom vs. Off-the-shelf

○ VGA: Custom
○ DRAM: Off-the-shelf aren’t 

working currently
○ SD Card: Desired Off-the-shelf 

(likely need custom)
○ PS2: Custom
○ Memory: Custom
○ Core: Custom
○ Timer: Trivally Custom
○ PIC: Custom



Design a Processor - Memory
MainMemoryMemory



Design a Processor - Core

● 6 Stage Pipeline
● Branch Prediction and Data Forwarding
● Two Stage Instruction Fetch

○ Memory Operations have a large clock-to-out propagation delay
○ Decode stage is expensive in 447 cores

● Single Stage Memory Load/Store
○ Large clock-to-out can be lumped into the register writeback stage



● No virtual memory
● Same drivers as full kernel
● Targeted benchmarks to ensure 

correctness of processor
● Random benchmarks to increase 

confidence in processor

Develop Microkernels



Develop The Kernel
● Pebbles Kernel

○ Small specification (25 System Calls)
○ Task Life Cycle
○ Thread Life Cycle
○ Memory Management
○ Console IO

● Custom vs. Port (from x86)
○ Generic Libraries (Port)
○ Drivers (Custom)
○ Synchronization Primitives (Custom)
○ System Calls (Port/Custom)



Platform
● Hardware

○ Zedboard ($0)
○ PS2 Keyboard ($0)
○ VGA Display ($0)
○ PMOD PS2 ($8.99)
○ PMOD SD ($9.99)

● Software
○ Vivado ($0)
○ Architectural Simulator (Written by Us) ($0)



Demo
● Boot microkernel games

○ Minesweeper
○ Tetris

● Boot a shell on the kernel
○ Computational Benchmarks

■ Ackermann
■ Fibonacci
■ “cho” - Continuous Hours of Operation

○ Visually Pleasing Binaries
■ Racer
■ Mandelbrot
■ Bistromath (Chess)
■ Nibbles (Snake)



Correctness - Primary Metric
● Processor Correctness

○ Goal: 100M LOA (Lines of Assembly) Coverage
○ Goal: 100 Targeted Tests to validate edge cases in instructions (70 instructions)

● Kernel Correctness
○ Goal: 150 Correctness Binaries
○ Expected: 15B Assembly Instructions Executed



Performance - Secondary Metric
● Goals

○ Boot the kernel in under 30 seconds
○ Run Tetris at 60 frames per second*

■ In a full kernel, with other tasks able to run at the same time

● Estimates
Binary Instructions IPC Clock Period (ns) Runtime (s)

Tetris (60 frames) 792,000 0.70 240 0.271 

Tetris (60 frames) 792,000 0.70 10 0.011 

Kernel Boot 900,000,000 0.70 240 308 (5 minutes)

Kernel Boot 900,000,000 0.70 10 12.857



Timeline
● Key

○ Blues: Software
○ Red/Orange: Hardware
○ Green: Demo/Presentation

● Current Status
○ Schedule is slipping
○ Memory control complexity is 

much higher than anticipated
○ DRAM AXI is inconsistent with 

our interpretation of 
documentation



Risks
● Unknown Complexity

○ Schedule the components we are least confident in first to discover surprise complexity early 
in the schedule

● Complexity Overload
○ Utilize high quality software development techniques like pair programing, peer review, and 

frequent communication

● Off-the-Shelf Component Incompatibility
○ Integrate off-the-shelf components early in the schedule to discover the issues before they 

block later progress



Questions?


