
● Exceptions (pg. 35)
○ Instruction Address Misaligned (0x0)

■ An instruction address misaligned exception is generated on a taken
branch of unconditional jump if the target address is not 4-byte aligned.

■ JAL and JALR will generate misaligned instruction fetch exception if the
target address is not 4-byte aligned

○ Misaligned Address Load (0x4)/Store (0x6)
■ A load or store to a misaligned address will generate a misaligned

address exception
■ A LR/SC to a misaligned address will generate a misaligned address

exception
○ Illegal Instruction (0x2)

■ When writing an illegal value to a CSR, the hardware will generate an
Illegal Instruction exception

○ Instruction Access Fault (0x1)
○ Breakpoint (0x3)
○ Load Address Fault (0x5)
○ Store Address Fault (0x7)
○ ECALL (System Call) (0x8)
○ Instruction Page Fault (0xC)
○ Load Page Fault (0xD)
○ Store Page Fault (0xF)
○ Machine Timer Interrupt (0x8000_0007)

■ Timer Tick
○ Machine External Interrupt (0x8000_0009)

■ Keyboard Events
■ Other IO/Button Press

○
● Immediates

○ Except for 5-bit immediates used in CSR instructions, immediates are always
sign-extended (B type and J type)

○ The immediate field used to encode branch offsets is in multiples of 2 (implied
LSB is 0)

● JALR
○ JALR sets the LSB to 0 when computing the target

● Memory
○ Loads with a destination of x0 must still raise any exceptions and action any

other side effects even though the load value is discarded
○ RISC-V ISA permits misaligned loads and stores; however, our architecture

will generate an exception
● CSRs

○ Instructions
■ CSRRS (Atomic Read and Set Bits in CSR)

● RD = CSR[csr] (0-extend); CSR[csr] = CSR[csr] | RS1
■ CSRRW (Atomic Read/Write CSR)

● RD = CSR[csr] (0-extend); CSR[csr] = RS1
■ CSRRC (Atomic Read and Clear Bits in CSR)

● RD = CSR[csr] (0-extend); CSR[csr] = CSR[csr] & ~RS1
○ https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md
○ CSRs

■ mcycle RDCYCLE[H]
● Cycles since boot
● Encoded (0xC00, 0xC80)

■ mtime RDTIME[H]
● Wall Clock Time since epoch
● Encoded (0xC01, 0xC81)

■ minstret RDINSTRET[H]
● Instructions retired
● Encoded (0xC02, 0xC82)

■ Performance Counters
● Encoding (0xC03 - 0xC1F) High Bits (0xC83, 0xC9F)
● Instructions Fetched (0xC03)
● Forward Branch Instructions Retired/Executed (0xC04)
● Backward Branch Instructions Retired/Executed (0xC04)
● Forward Branch Instructions Prediction Correct (0xC05)
● Backward Branch Instructions Prediction Correct (0xC05)
● Forward Branch Instructions Prediction Incorrect (0xC06)
● Backward Branch Instructions Prediction Incorrect (0xC06)
● Cache Instruction Hits (0xC07)
● Cache Instruction Misses (0xC08)
● Cache Data Hits (0xC09)
● Cache Data Misses (0xC0A)
● LR/SC Success (0xC0B)
● LR/SC Rejected (0xC0C)
● Keyboard Interrupts Delivered in U-Mode (0xC0D)
● Keyboard Interrupts Delivered in M-Mode (0xC0E)
● Exceptions in U-Mode (0xC0F)
● Exceptions in M-Mode (0xC10)
● Timer Interrupts Delivered in U-Mode (0xC11)
● Timer Interrupts Delivered in M-Mode (0xC12)
● Forward Jump Instructions Retired
● Backward Jump Instructions Retired
● Forward Jump Instructions Predicted Correct
● Backward Jump Instructions Predicted Correct
● Forward Jump Instructions Predicted Incorrect
● Backward Jump Instructions Predicted Incorrect

https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md

■ Status CSR (ustatus, mstatus) (pg. 20)
● Interrupts Enabled

○ [0] = UIE
■ Hardwire to 0 (no user traps)

○ [3] = MIE
■ 1 => Interrupts Enabled
■ 0 => Interrupts Disabled

○ [4] = UPIE
■ Hardware to 0 (no user traps)

○ Interrupts for lower privilege modes are always disabled,
interrupts or higher privilege modes are always enabled

■ No need to worry about interrupts being enabled
when running U-Mode code; interrupts should
always be enabled for U-Mode

● Memory Privilege
○ MPRV[17]

■ Set to 0 (translation and protection behave as
normal)

○ MXR[19]
■ Hardwire to 0

○ SUM[18]
■ Hardwire to 0

○ TVM[20]
■ Hardwire to 0

○ TW[21]
■ Hardwire to 0

○ TSR[22]
■ Hardwire to 0

● Context Switch State
○ FS[14:13] hardwired to 0 (no floating point unit)
○ XS[16:15] hardwired to 0 (no extensions)
○ SD[31] hardwired to 0 (no FS or XS)

■ mtvec
● Machine Trap Base Address Register (used to call M-Mode traps)
● All traps are sent to the same handler and resolved dynamically in

software
● MODE[1:0] = 0

○ All exceptions set pc to BASE
● BASE[31:2] = HANDLER_ADDRESS

○ Must be 4-byte aligned
■ Trap/Interrupt Delivery

● Transition from U-Mode to M-Mode

○ MPIE[7] is set to MIE[3] (should be 1 since no nested
traps)

○ MIE[3] is set to 0 (all gates are interrupt gates)
○ MPP[12:11] = 0 (U-Mode)

● When a trap is delivered
○ mcause is set with the trap cause
○ mepc is set with the virtual address of the instruction that

triggered the trap
○ mtval is set appropriately with the error code
○ MPP[12:11] in mstatus is set to the privileged mode at the

time of the trap (0 if user mode, 3 if kernel mode)
○ MPIE[7] in mstatus is set to MIE[3] (should be 1)
○ MIE[3] in mstatus is cleared (to disable interrupts)

■ Every interrupt/exception is an interrupt gate
● MRET returns form kernel interrupt handler

○ MIE[3] is set to MPIE[7] (should be 1 to enable interrupts)
○ To enter user mode:

■ MPP[12:11] should be 0
■ Current Privilege is set to 0

○ To remain in kernel mode
■ MPP[12:11] should be 3
■ Current privilege is set to 3

○ MPP[12:11] is set to 0 (U-Mode)
○ MRET sets the PC value to the value stored in mepc

● An interrupt is delivered if it is enabled in mip and mie and global
interrupts are enabled

○ Interrupts are globally enabled if the privilege level is
U-Mode or if the privilege level is M-Mode and MIE[3] in
mstatus is enabled

■ mip
● MTIP[7] (Timer Interrupt Pending)

○ Read-Only and is cleared when writing to memory-mapped
M-Mode timer compare register

● MEIP[11] (External Interrupt Pending)
○ Read-Only bit that indicates a M-Mode external interrupt is

pending (Keyboard Interrupt)
○ MEIP is sset and cleared by platform-specific interrupt

controller
■ mie

● MTIE[7] (Timer Interrupt Enabled)
○ Should be set to 1 when leaving kernel mode for the first

time on boot (this will prevent junk timer ticks during the
boot sequence even if interrupts are enabled)

● MEIE[11] (Machine External Interrupt Enabled)
○ Enables machine external interrupts when set
○ Used to enable keyboard interrupts at boot

■ mscratch
● Scratch register for holding context while U-Mode code is running

○ Used like %esp3
■ mepc

● mepc[1:0] are always 0
● mepc can never hold a PC value that would cause an

instruction-address misaligned exception
● When a trap is taken into M-Mode mepc is written with the virtual

address of the instruction that encountered the exception
■ mcause

● The code indicating what event caused the trap
● Interrupt[31]

○ 1 => Cause is an interrupt
○ 0 => Cause is exception/trap

■ mtval
● Breakpoints, Misaligned Address, and Page Fault exceptions load

mtval with the faulting virtual address (like %cr2)
● On illegal instruction, mtval is loaded with the instruction word

■ stap
● Supervisor Address Translation and Protection
● MODE[31]

○ 0 => No Virtual Address Translation
○ 1 => Page Based 32-bit address translation

● ASID[30:22]
○ The address space identifier

● PPN[21:0]
○ The physical page number of the root page table (%CR3)

● Writing to stap does not invalidate address translations. We also
need to execute SFENCE.VMA after writing stap

○ The implementation technically says we should apply the
fence before the operation to set the new address space;
however, if we implement the fence as a TLB invalidate it
will make more sense to call the fence after the new
translation is set up and it doesn’t seem like there would be
any issues

○ Encoding (CSR[11:0])
■ The upper 4 bits are used to specify the permissions for the CSR
■ CSR[11:10] read/write (00, 01, 10) or read-only (11)
■ CSR[9:8] encode lowest privilege level that can access the CSR

■ Implementation will likely involve some sort of magical address translation
and routing to a variety of locations (or a highly ported register file)

● ECALL
○ ECALL causes the epc register to be set with the address of the ECALL

instruction, not the next instruction to run.
■ Handlers need to advance PC appropriately to return

● “M” extension
○ MUL/MULH[S,U]

■ Perform full 32*32 bit multiplication (MUL rd = [31:0] vs. MULH rd =
[63:32])

○ DIV[U]/REM[U]
■ Do not generate exceptions on divide by zero
■ x/0 => DIV = -1 && REM = x
■ INT_MIN/-1 => DIV = INT_MIN && REM = 0

● “A” extension
○ RISC-V ISA specifies SWAP, ADD, XOR, AND, OR, MIN[U], MAX[U]

operations which we will not implement in hardware due to
microarchitectural challenges.

■ Instead we will implement the two atomic operations we need (SWAP and
ADD) using LR/SC in assembly routines with a while loop around the
operations in order to ensure they succeed. Because we are a single core
architecture, it is extremely likely that these operations will succeed on the
first try since the only way to trigger a failure will be to receive an interrupt
between LR and SC

○ LR/SC
■ LR loads a word from address in RS1 and places the value in RD and

registers a reservation for the address in RS1
■ SC writes a word in RS2 to the address in RS1 if the reservation on the

address in RS1 still is valid
● SC writes a 0 to RD on success and a 1 to RD on failure

■ Our architectural will require there be a at most a single address in a
reservation

● In order to help ensure safety, any interrupt, branch, load/store, or
pipeline flush will automatically invalidate the reservation

● M-Mode (3)
○ Machine mode is entered at hardware reset
○ Assembly test binaries will likely run in M-Mode
○ Kernel will boot and run in M-Mode

■ (We may not actually need to transition to supervisor mode, but it’s
probably good practice)

● U-Mode (0)
● S-Mode (1)

○ Not Implemented (Kernel Runs in M-Mode)

● Reset
○ Upon reset the privilege mode is M-Mode
○ MIE and MPRV are set to 0 (disable interrupts)
○ PC is set to an arbitrary reset vector (This should be synced between the boot

loader and the compiler to map to _start)
● VRAM

○ A page of physical memory will be allocated that is register backed for VRAM
○ This address should live in the kernel address space and always be direct

mapped
○ The memory controller will manage directing accesses to these addresses to the

register array instead of going through the cache and DRAM
● SFENCE.VMA (pg. 58)

○ Flushes the TLB for ASID and an virtual address translation
○ If rs1 = x0 && rs2 = x0 :: All translations are flushed
○ If rs1 =x0 && rs2 != x0 :: All translations are flushed for the ASID in rs2
○ If rs1 != x0 && rs2 != x0 :: The translation for virtual address in rs1 is flushed for

all ASIDs
○ If rs1 != x0 && rs2 != x0 :: The translation for virtual address in rs1 is flushed for

the address space ASID in rs2
● Virtual Memory Translation (pg. 62)

○ VA[31:0] => VPN[1] = VA[31:22], VPN[0] = VA[21:12], PPO = VA[11:0]
○ PA[33:0] => PPN[1] = PA[33:22], PPN[0] = PA[21:12], PPO = VA[11:0] =

PA[11:0]
○ The physical page number of the root page table is stored in satp CSR
○ Page Table Entry

■ Page Tables consist of 1024 page table entries each is 4 bytes (same as
x86)

■ Page Tables must always be page aligned
■ Fields

● PPN[1:0] = PTE[31:10]
● RSW[1:0] = PTE[9:8]

○ Reserved for Software
● D = PTE[7] (Dirty)

○ Not Used (Set to 1)
● A = PTE[6] (Accessed)

○ Not Used (Set to 1)
● G = PTE[5] (Global)
● U = PTE[4] (isUserAssessible)
● X = PTE[3] (Executable)

○ We’ll likely want all pages to be executable for compatibility
with 410 kernels

● W = PTE[2] (Writable)

○ If a page table entry is writable, it must also be marked
readable

● R = PTE[1] (Readable)
● V = PTE[0] (Valid)

■ If RWX are all zero then this page table entry represents a page directory
entry and represents a pointer to the next level in the page table hierarchy

