
● Exceptions (pg. 35) 
○ Instruction Address Misaligned (0x0) 

■ An instruction address misaligned exception is generated on a taken 
branch of unconditional jump if the target address is not 4-byte aligned.  

■ JAL and JALR will generate misaligned instruction fetch exception if the 
target address is not 4-byte aligned 

○ Misaligned Address Load (0x4)/Store (0x6) 
■ A load or store to a misaligned address will generate a misaligned 

address exception 
■ A LR/SC to a misaligned address will generate a misaligned address 

exception 
○ Illegal Instruction (0x2) 

■ When writing an illegal value to a CSR, the hardware will generate an 
Illegal Instruction exception 

○ Instruction Access Fault (0x1) 
○ Breakpoint (0x3) 
○ Load Address Fault (0x5) 
○ Store Address Fault (0x7) 
○ ECALL (System Call) (0x8) 
○ Instruction Page Fault (0xC) 
○ Load Page Fault (0xD) 
○ Store Page Fault (0xF) 
○ Machine Timer Interrupt (0x8000_0007) 

■ Timer Tick 
○ Machine External Interrupt (0x8000_0009) 

■ Keyboard Events 
■ Other IO/Button Press 

○  
● Immediates 

○ Except for 5-bit immediates used in CSR instructions, immediates are always 
sign-extended (B type and J type) 

○ The immediate field used to encode branch offsets is in multiples of 2 (implied 
LSB is 0) 

● JALR 
○ JALR sets the LSB to 0 when computing the target 

● Memory 
○ Loads with a destination of x0 must still raise any exceptions and action any 

other side effects even though the load value is discarded 
○ RISC-V ISA permits misaligned loads and stores; however, our architecture 

will generate an exception 
● CSRs 

○ Instructions 
■ CSRRS (Atomic Read and Set Bits in CSR) 



● RD = CSR[csr] (0-extend); CSR[csr] = CSR[csr] | RS1 
■ CSRRW (Atomic Read/Write CSR) 

● RD = CSR[csr] (0-extend); CSR[csr] = RS1 
■ CSRRC (Atomic Read and Clear Bits in CSR) 

● RD = CSR[csr] (0-extend); CSR[csr] = CSR[csr] & ~RS1  
○ https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md 
○ CSRs 

■ mcycle RDCYCLE[H]  
● Cycles since boot 
● Encoded (0xC00, 0xC80) 

■ mtime RDTIME[H] 
● Wall Clock Time since epoch 
● Encoded (0xC01, 0xC81) 

■ minstret RDINSTRET[H] 
● Instructions retired 
● Encoded (0xC02, 0xC82) 

■ Performance Counters 
● Encoding (0xC03 - 0xC1F) High Bits (0xC83, 0xC9F) 
● Instructions Fetched (0xC03) 
● Forward Branch Instructions Retired/Executed (0xC04) 
● Backward Branch Instructions Retired/Executed (0xC04) 
● Forward Branch Instructions Prediction Correct (0xC05) 
● Backward Branch Instructions Prediction Correct (0xC05) 
● Forward Branch Instructions Prediction Incorrect (0xC06) 
● Backward Branch Instructions Prediction Incorrect (0xC06) 
● Cache Instruction Hits (0xC07) 
● Cache Instruction Misses (0xC08) 
● Cache Data Hits (0xC09) 
● Cache Data Misses (0xC0A) 
● LR/SC Success (0xC0B) 
● LR/SC Rejected (0xC0C) 
● Keyboard Interrupts Delivered in U-Mode (0xC0D) 
● Keyboard Interrupts Delivered in M-Mode (0xC0E) 
● Exceptions in U-Mode (0xC0F) 
● Exceptions in M-Mode (0xC10) 
● Timer Interrupts Delivered in U-Mode (0xC11) 
● Timer Interrupts Delivered in M-Mode (0xC12) 
● Forward Jump Instructions Retired 
● Backward Jump Instructions Retired 
● Forward Jump Instructions Predicted Correct 
● Backward Jump Instructions Predicted Correct 
● Forward Jump Instructions Predicted Incorrect 
● Backward Jump Instructions Predicted Incorrect 

https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md


■ Status CSR (ustatus, mstatus) (pg. 20) 
● Interrupts Enabled 

○ [0] = UIE 
■ Hardwire to 0 (no user traps) 

○ [3] = MIE 
■ 1 => Interrupts Enabled 
■ 0 => Interrupts Disabled 

○ [4] = UPIE 
■ Hardware to 0 (no user traps) 

○ Interrupts for lower privilege modes are always disabled, 
interrupts or higher privilege modes are always enabled 

■ No need to worry about interrupts being enabled 
when running U-Mode code; interrupts should 
always be enabled for U-Mode 

● Memory Privilege 
○ MPRV[17] 

■ Set to 0 (translation and protection behave as 
normal) 

○ MXR[19] 
■ Hardwire to 0 

○ SUM[18] 
■ Hardwire to 0 

○ TVM[20] 
■ Hardwire to 0 

○ TW[21] 
■ Hardwire to 0 

○ TSR[22] 
■ Hardwire to 0 

● Context Switch State 
○ FS[14:13] hardwired to 0 (no floating point unit) 
○ XS[16:15] hardwired to 0 (no extensions) 
○ SD[31] hardwired to 0 (no FS or XS) 

■ mtvec 
● Machine Trap Base Address Register (used to call M-Mode traps) 
● All traps are sent to the same handler and resolved dynamically in 

software 
● MODE[1:0] = 0 

○ All exceptions set pc to BASE 
● BASE[31:2] = HANDLER_ADDRESS 

○ Must be 4-byte aligned 
■ Trap/Interrupt Delivery 

● Transition from U-Mode to M-Mode 



○ MPIE[7] is set to MIE[3] (should be 1 since no nested 
traps) 

○ MIE[3] is set to 0 (all gates are interrupt gates) 
○ MPP[12:11] = 0 (U-Mode) 

● When a trap is delivered 
○ mcause is set with the trap cause 
○ mepc is set with the virtual address of the instruction that 

triggered the trap 
○ mtval is set appropriately with the error code 
○ MPP[12:11] in mstatus is set to the privileged mode at the 

time of the trap (0 if user mode, 3 if kernel mode) 
○ MPIE[7] in mstatus is set to MIE[3] (should be 1) 
○ MIE[3] in mstatus is cleared (to disable interrupts) 

■ Every interrupt/exception is an interrupt gate 
● MRET returns form kernel interrupt handler 

○ MIE[3] is set to MPIE[7] (should be 1 to enable interrupts) 
○ To enter user mode:  

■ MPP[12:11] should be 0 
■ Current Privilege is set to 0 

○ To remain in kernel mode 
■ MPP[12:11] should be 3 
■ Current privilege is set to 3 

○ MPP[12:11] is set to 0 (U-Mode) 
○ MRET sets the PC value to the value stored in mepc 

● An interrupt is delivered if it is enabled in mip and mie and global 
interrupts are enabled 

○ Interrupts are globally enabled if the privilege level is 
U-Mode or if the privilege level is M-Mode and MIE[3] in 
mstatus is enabled 

■ mip 
● MTIP[7] (Timer Interrupt Pending) 

○ Read-Only and is cleared when writing to memory-mapped 
M-Mode timer compare register 

● MEIP[11] (External Interrupt Pending) 
○ Read-Only bit that indicates a M-Mode external interrupt is 

pending (Keyboard Interrupt) 
○ MEIP is sset and cleared by platform-specific interrupt 

controller  
■ mie 

● MTIE[7] (Timer Interrupt Enabled) 
○ Should be set to 1 when leaving kernel mode for the first 

time on boot (this will prevent junk timer ticks during the 
boot sequence even if interrupts are enabled) 



● MEIE[11] (Machine External Interrupt Enabled) 
○ Enables machine external interrupts when set 
○ Used to enable keyboard interrupts at boot 

■ mscratch 
● Scratch register for holding context while U-Mode code is running 

○ Used like %esp3 
■ mepc 

● mepc[1:0] are always 0 
● mepc can never hold a PC value that would cause an 

instruction-address misaligned exception 
● When a trap is taken into M-Mode mepc is written with the virtual 

address of the instruction that encountered the exception 
■ mcause 

● The code indicating what event caused the trap 
● Interrupt[31] 

○ 1 => Cause is an interrupt 
○ 0 => Cause is exception/trap 

■ mtval 
● Breakpoints, Misaligned Address, and Page Fault exceptions load 

mtval with the faulting virtual address (like %cr2) 
● On illegal instruction, mtval is loaded with the instruction word 

■ stap 
● Supervisor Address Translation and Protection 
● MODE[31] 

○ 0 => No Virtual Address Translation 
○ 1 => Page Based 32-bit address translation 

● ASID[30:22] 
○ The address space identifier 

● PPN[21:0] 
○ The physical page number of the root page table (%CR3) 

● Writing to stap does not invalidate address translations. We also 
need to execute SFENCE.VMA after writing stap  

○ The implementation technically says we should apply the 
fence before the operation to set the new address space; 
however, if we implement the fence as a TLB invalidate it 
will make more sense to call the fence after the new 
translation is set up and it doesn’t seem like there would be 
any issues 

○ Encoding (CSR[11:0]) 
■ The upper 4 bits are used to specify the permissions for the CSR 
■ CSR[11:10] read/write (00, 01, 10) or read-only (11) 
■ CSR[9:8] encode lowest privilege level that can access the CSR 



■ Implementation will likely involve some sort of magical address translation 
and routing to a variety of locations (or a highly ported register file) 

● ECALL 
○ ECALL causes the epc register to be set with the address of the ECALL 

instruction, not the next instruction to run. 
■ Handlers need to advance PC appropriately to return 

● “M” extension 
○ MUL/MULH[S,U] 

■ Perform full 32*32 bit multiplication (MUL rd = [31:0] vs. MULH rd = 
[63:32]) 

○ DIV[U]/REM[U] 
■ Do not generate exceptions on divide by zero 
■ x/0 => DIV = -1 && REM = x 
■ INT_MIN/-1 => DIV = INT_MIN && REM = 0 

● “A” extension 
○ RISC-V ISA specifies SWAP, ADD, XOR, AND, OR, MIN[U], MAX[U] 

operations which we will not implement in hardware due to 
microarchitectural challenges.  

■ Instead we will implement the two atomic operations we need (SWAP and 
ADD) using LR/SC in assembly routines with a while loop around the 
operations in order to ensure they succeed. Because we are a single core 
architecture, it is extremely likely that these operations will succeed on the 
first try since the only way to trigger a failure will be to receive an interrupt 
between LR and SC 

○ LR/SC 
■ LR loads a word from address in RS1 and places the value in RD and 

registers a reservation for the address in RS1 
■ SC writes a word in RS2 to the address in RS1 if the reservation on the 

address in RS1 still is valid 
● SC writes a 0 to RD on success and a 1 to RD on failure 

■ Our architectural will require there be a at most a single address in a 
reservation 

● In order to help ensure safety, any interrupt, branch, load/store, or 
pipeline flush will automatically invalidate the reservation 

● M-Mode (3) 
○ Machine mode is entered at hardware reset 
○ Assembly test binaries will likely run in M-Mode 
○ Kernel will boot and run in M-Mode 

■ (We may not actually need to transition to supervisor mode, but it’s 
probably good practice) 

● U-Mode (0) 
● S-Mode (1) 

○ Not Implemented (Kernel Runs in M-Mode) 



● Reset 
○ Upon reset the privilege mode is M-Mode 
○ MIE and MPRV are set to 0 (disable interrupts) 
○ PC is set to an arbitrary reset vector (This should be synced between the boot 

loader and the compiler to map to _start) 
● VRAM 

○ A page of physical memory will be allocated that is register backed for VRAM 
○ This address should live in the kernel address space and always be direct 

mapped 
○ The memory controller will manage directing accesses to these addresses to the 

register array instead of going through the cache and DRAM 
● SFENCE.VMA (pg. 58) 

○ Flushes the TLB for ASID and an virtual address translation 
○ If rs1 = x0 && rs2 = x0 :: All translations are flushed 
○ If rs1 =x0 && rs2 != x0 :: All translations are flushed for the ASID in rs2 
○ If rs1 != x0 && rs2 != x0 :: The translation for virtual address in rs1 is flushed for 

all ASIDs 
○ If rs1 != x0 && rs2 != x0 :: The translation for virtual address in rs1 is flushed for 

the address space ASID in rs2 
● Virtual Memory Translation (pg. 62) 

○ VA[31:0] => VPN[1] = VA[31:22], VPN[0] = VA[21:12], PPO = VA[11:0] 
○ PA[33:0] => PPN[1] = PA[33:22], PPN[0] = PA[21:12], PPO = VA[11:0] = 

PA[11:0] 
○ The physical page number of the root page table is stored in satp CSR 
○ Page Table Entry 

■ Page Tables consist of 1024 page table entries each is 4 bytes (same as 
x86) 

■ Page Tables must always be page aligned 
■ Fields 

● PPN[1:0] = PTE[31:10] 
● RSW[1:0] = PTE[9:8] 

○ Reserved for Software 
● D = PTE[7] (Dirty) 

○ Not Used (Set to 1) 
● A = PTE[6] (Accessed) 

○ Not Used (Set to 1) 
● G = PTE[5] (Global) 
● U = PTE[4] (isUserAssessible) 
● X = PTE[3] (Executable) 

○ We’ll likely want all pages to be executable for compatibility 
with 410 kernels 

● W = PTE[2] (Writable) 



○ If a page table entry is writable, it must also be marked 
readable 

● R = PTE[1] (Readable) 
● V = PTE[0] (Valid) 

■ If RWX are all zero then this page table entry represents a page directory 
entry and represents a pointer to the next level in the page table hierarchy 


