Exceptions (pg. 35)

o

o O 0 O O O O O O

o

Instruction Address Misaligned (0x0)
m An instruction address misaligned exception is generated on a taken
branch of unconditional jump if the target address is not 4-byte aligned.
m JAL and JALR will generate misaligned instruction fetch exception if the
target address is not 4-byte aligned
Misaligned Address Load (0x4)/Store (0x6)
m A load or store to a misaligned address will generate a misaligned
address exception
m A LR/SC to a misaligned address will generate a misaligned address
exception
lllegal Instruction (0x2)
m When writing an illegal value to a CSR, the hardware will generate an
lllegal Instruction exception
Instruction Access Fault (0x1)
Breakpoint (0x3)
Load Address Fault (0x5)
Store Address Fault (0x7)
ECALL (System Call) (0x8)
Instruction Page Fault (0xC)
Load Page Fault (OxD)
Store Page Fault (OxF)
Machine Timer Interrupt (0x8000_0007)
m Timer Tick
Machine External Interrupt (0x8000_0009)
m Keyboard Events
m Other IO/Button Press

Immediates

o

JALR

o

Except for 5-bit immediates used in CSR instructions, immediates are always
sign-extended (B type and J type)

The immediate field used to encode branch offsets is in multiples of 2 (implied
LSB is 0)

JALR sets the LSB to 0 when computing the target

Memory

o

CSRs

Loads with a destination of x0 must still raise any exceptions and action any
other side effects even though the load value is discarded

RISC-V ISA permits misaligned loads and stores; however, our architecture
will generate an exception

Instructions
m CSRRS (Atomic Read and Set Bits in CSR)

RD = CSR]csr] (0-extend); CSR[csr] = CSR[csr] | RS1

m CSRRW (Atomic Read/Write CSR)

RD = CSR]csr] (0-extend); CSR[csr] = RS1

m CSRRC (Atomic Read and Clear Bits in CSR)

RD = CSR]csr] (0-extend); CSR[csr] = CSR[csr] & ~RS1

o https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md

o CSRs

m mcycle RDCYCLE[H]

Cycles since boot
Encoded (0xCO00, 0xC80)

s—mtime-RBHMEH]
. ; I
+—Eneoded{(6xCH1-0xE8H
m minstret RDINSTRET[H]

Instructions retired
Encoded (0xC02, 0xC82)

m Performance Counters

Encoding (0xCO3 - 0xC1F) High Bits (0xC83, 0xC9F)
Instructions Fetched (0xC03)

Forward Branch Instructions Retired/Executed (0xC04)
Backward Branch Instructions Retired/Executed (0xC04)
Forward Branch Instructions Prediction Correct (0xC05)
Backward Branch Instructions Prediction Correct (0xC05)
Forward Branch Instructions Prediction Incorrect (0xC06)
Backward Branch Instructions Prediction Incorrect (0xC06)
Cache Instruction Hits (0xCQ7)

Cache Instruction Misses (0xC08)

Cache Data Hits (0xC09)

Cache Data Misses (0xC0A)

LR/SC Success (0xCO0B)

LR/SC Rejected (0xC0OC)

Keyboard Interrupts Delivered in U-Mode (0xCOD)
Keyboard Interrupts Delivered in M-Mode (0xCOE)
Exceptions in U-Mode (OxCOF)

Exceptions in M-Mode (0xC10)

Timer Interrupts Delivered in U-Mode (0xC11)

Timer Interrupts Delivered in M-Mode (0xC12)

Forward Jump Instructions Retired

Backward Jump Instructions Retired

Forward Jump Instructions Predicted Correct

Backward Jump Instructions Predicted Correct

Forward Jump Instructions Predicted Incorrect

Backward Jump Instructions Predicted Incorrect

https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md

Status CSR (ustatus, mstatus) (pg. 20)
e Interrupts Enabled

o [0]=UIE
m Hardwire to 0 (no user traps)
o [3]=MIE

m 1 => Interrupts Enabled
m 0 => Interrupts Disabled
o [4]=UPIE
m Hardware to 0 (no user traps)
o Interrupts for lower privilege modes are always disabled,
interrupts or higher privilege modes are always enabled
m No need to worry about interrupts being enabled
when running U-Mode code; interrupts should
always be enabled for U-Mode
e Memory Privilege

o MPRVI[17]

m Set to 0 (translation and protection behave as

normal)

o MXR[19]

m Hardwireto 0
o SUM[18]

m Hardwireto 0
o TVM[20]

m Hardwireto 0
o TWI[21]

m Hardwireto 0
o TSR[22]

m Hardwireto 0
e Context Switch State
o FS[14:13] hardwired to 0 (no floating point unit)
o XS§[16:15] hardwired to 0 (no extensions)
o SDI[31] hardwired to 0 (no FS or XS)
mtvec
e Machine Trap Base Address Register (used to call M-Mode traps)
e All traps are sent to the same handler and resolved dynamically in
software
e MODE[1:0]=0
o All exceptions set pc to BASE
e BASE[31:2] = HANDLER_ADDRESS
o Must be 4-byte aligned
Trap/Interrupt Delivery
e Transition from U-Mode to M-Mode

o MPIE[7] is set to MIE[3] (should be 1 since no nested
traps)
o MIE[3] is set to 0 (all gates are interrupt gates)
o MPP[12:11] = 0 (U-Mode)
e When a trap is delivered
o mecause is set with the trap cause
o mepc is set with the virtual address of the instruction that
triggered the trap
mtval is set appropriately with the error code
MPP[12:11] in mstatus is set to the privileged mode at the
time of the trap (0 if user mode, 3 if kernel mode)
MPIE[7] in mstatus is set to MIE[3] (should be 1)
MIE[3] in mstatus is cleared (to disable interrupts)
m Every interrupt/exception is an interrupt gate
e MRET returns form kernel interrupt handler
o MIE[3] is set to MPIE[7] (should be 1 to enable interrupts)
o To enter user mode:
m MPP[12:11] should be O
m Current Privilege is setto 0
o Toremain in kernel mode
s MPP[12:11] should be 3
m Current privilege is set to 3
o MPP[12:11]is set to 0 (U-Mode)
o MRET sets the PC value to the value stored in mepc
e Aninterrupt is delivered if it is enabled in mip and mie and global
interrupts are enabled
o Interrupts are globally enabled if the privilege level is
U-Mode or if the privilege level is M-Mode and MIE[3] in
mstatus is enabled

+—MEIEHHMaehine-ExternaHnterruptEnabled)
o—Enablesmachine-externabHnterrupts-whenset
e—Usedto-enablekeyboard-interrupts-atboot
m mscratch
e Scratch register for holding context while U-Mode code is running
o Used like %esp3
m mepc
e mepc[1:0] are always O
e mepc can never hold a PC value that would cause an
instruction-address misaligned exception
e When a trap is taken into M-Mode mepc is written with the virtual
address of the instruction that encountered the exception
m mcause
e The code indicating what event caused the trap
e Interrupt[31]
o 1=>Cause is an interrupt
o 0 => Cause is exception/trap

e Breakpoints, Misaligned Address, and Page Fault exceptions load
mtval with the faulting virtual address (like %cr2)
e Onillegal instruction, mtval is loaded with the instruction word

m stap
e Supervisor Address Translation and Protection
e MODE[31]

o 0 => No Virtual Address Translation
o 1 =>Page Based 32-bit address translation
e ASID[30:22]
o The address space identifier
e PPN[21:0]
o The physical page number of the root page table (%CR3)
e \Writing to stap does not invalidate address translations. We also
need to execute SFENCE.VMA after writing stap
o The implementation technically says we should apply the
fence before the operation to set the new address space;
however, if we implement the fence as a TLB invalidate it
will make more sense to call the fence after the new
translation is set up and it doesn’t seem like there would be
any issues
o Encoding (CSR[11:0])
m The upper 4 bits are used to specify the permissions for the CSR
m CSR[11:10] read/write (00, 01, 10) or read-only (11)
m CSR][9:8] encode lowest privilege level that can access the CSR

m Implementation will likely involve some sort of magical address translation
and routing to a variety of locations (or a highly ported register file)
e ECALL
o ECALL causes the epc register to be set with the address of the ECALL
instruction, not the next instruction to run.
m Handlers need to advance PC appropriately to return
e “M” extension
o MUL/MULHIS,U]
m Perform full 32*32 bit multiplication (MUL rd = [31:0] vs. MULH rd =
[63:32])
o DIV[UJVREM[U]
m Do not generate exceptions on divide by zero
m x/0=>DIV=-18&& REM =x
m INT_MIN/-1 => DIV = INT_MIN && REM =0
e “A” extension
o RISC-V ISA specifies SWAP, ADD, XOR, AND, OR, MIN[U], MAX[U]
operations which we will not implement in hardware due to
microarchitectural challenges.
m Instead we will implement the two atomic operations we need (SWAP and
ADD) using LR/SC in assembly routines with a while loop around the
operations in order to ensure they succeed. Because we are a single core
architecture, it is extremely likely that these operations will succeed on the
first try since the only way to trigger a failure will be to receive an interrupt
between LR and SC
o LR/SC
m LR loads a word from address in RS1 and places the value in RD and
registers a reservation for the address in RS1
m SC writes a word in RS2 to the address in RS1 if the reservation on the
address in RS1 still is valid
e SC writes a 0 to RD on success and a 1 to RD on failure
m Our architectural will require there be a at most a single address in a
reservation
e In order to help ensure safety, any interrupt, branch, load/store, or
pipeline flush will automatically invalidate the reservation
e M-Mode (3)
o Machine mode is entered at hardware reset
o Assembly test binaries will likely run in M-Mode
o Kernel will boot and run in M-Mode
m (We may not actually need to transition to supervisor mode, but it's
probably good practice)
e U-Mode (0)
e S-Mode (1)
o Not Implemented (Kernel Runs in M-Mode)

Reset

Upon reset the privilege mode is M-Mode

MIE and MPRYV are set to 0 (disable interrupts)

PC is set to an arbitrary reset vector (This should be synced between the boot
loader and the compiler to map to _start)

A page of physical memory will be allocated that is register backed for VRAM
This address should live in the kernel address space and always be direct
mapped

The memory controller will manage directing accesses to these addresses to the
register array instead of going through the cache and DRAM

SFENCE.VMA (pg. 58)

o O O O

Flushes the TLB for ASID and an virtual address translation

If rs1 = x0 && rs2 = x0 :: All translations are flushed

If rs1 =x0 && rs2 != x0 :: All translations are flushed for the ASID in rs2

If rs1 1= x0 && rs2 != x0 :: The translation for virtual address in rs1 is flushed for
all ASIDs

If rs1 1= x0 && rs2 != x0 :: The translation for virtual address in rs1 is flushed for
the address space ASID in rs2

Virtual Memory Translation (pg. 62)

o

o

VA[31:0] => VPN[1] = VA[31:22], VPN[0] = VA[21:12], PPO = VA[11:0]
PA[33:0] => PPN[1] = PA[33:22], PPN[0] = PA[21:12], PPO = VA[11:0] =
PA[11:0]
The physical page number of the root page table is stored in satp CSR
Page Table Entry
m Page Tables consist of 1024 page table entries each is 4 bytes (same as
x86)
Page Tables must always be page aligned
Fields
e PPN[1:0] = PTE[31:10]
e RSWI[1:0] = PTE[9:8]
o Reserved for Software
e D =PTE[7] (Dirty)
o Not Used (Setto 1)
e A =PTE[6] (Accessed)
o Not Used (Setto 1)
G = PTE[5] (Global)
U = PTE[4] (isUserAssessible)
X = PTE[3] (Executable)
o We'll likely want all pages to be executable for compatibility
with 410 kernels
e W =PTE[2] (Writable)

o If a page table entry is writable, it must also be marked
readable
e R =PTE[1] (Readable)
e V =PTE[0] (Valid)
m [f RWX are all zero then this page table entry represents a page directory
entry and represents a pointer to the next level in the page table hierarchy

