

Transistor Characterization and Cadence/Matlab Scripting

Jeyanandh Paramesh

In class, we showed how to derive device characteristics (nch) using simple simulations. In this exercise, you will do the same for the transistors that you will be using for your designs in this class. You will do so using by using a combination of the ADE GUI, OCEAN scripts and Matlab scripts.

Carnegie Mellon University

Department of Electrical and Computer Engineering

Slide 2

Objectives

This exercise is particularly useful for three reasons:

- I. In previous classes, transistor parameters were given to you in some form. In practice, you will have to do extract such parameters on your own by running simple simulations on standalone transistors under controlled bias conditions. This exercise shows you how to do this.
- 2. A good understanding of transistor operation and simulation models is extremely valuable when designing high-performance circuits. This exercise will give you an opportunity to explore transistor models.
- 3. Scripting in Cadence and using Matlab (or an equivalent) is a valuable skill. This exercise will give you exposure to such scripting.

Schematic Setup

Carnegie Mellon University

Department of Electrical and Computer Engineering

Slide 4

ADE Setup

<u>L</u> aunch S <u>e</u> ssio	in Set <u>u</u> p <u>A</u> nalyses	⊻ariables <u>O</u> utp	uts <u>S</u> imu	Iation <u>R</u>	esults	<u>T</u> ools	<u>H</u> elp	c	ādence
1100 100	c 27 🛛 💩 🎾	â 🗹 🖻							
		Analyses			_				? 🖥 🗙 🔥 🗛 🤇
Design variables		Type	Enable		_	Argum	nents		ODC
Name	Value		2	I 20.000.4	0.1	diam'r.	Delute D		Ph. 1
	112		M	30 30G 4	U Logar	thmic	Points P	'er Decade	Start
Zinn	E0n	- 11							
3 luen	J								*
4 KK	1	_							~
5 Vuu	1.2	Outputs		_		_			? 🖥 🗙 🖸
6 Vas	JUUM	Nar	ne/Signa	/Expr	Value	Plot	Save	Save Op	tions
7 10	Iden*KK*Wf/1e-6					<u> </u>			0
		2 gm_by_	W						10
		3 KK					1000		
		4 Vgs			67.7				
		5 Idrain							
		6 Id_dc					Log .		
		7 gmld							
		8 gm					100		
		g In_Id_do	2				<u></u>		
		10 Vth							
		11 sqrt_ld_	dc				100		
		12 Av_op					100		
		13 gmld_ac	2						
		14 Av_ac					1		
		1000							
		Plot after s	imulation	Auto		Plottin	a mode	Replace	
-			in area off.		-	riouin	g moue.	C	_
2(61) Stimuli			Statu	s: Ready	T=27	C	Simulato	r: spectre	State: AC

- Add parameters in ADE
- Optionally, add outputs
 - You can play around with this. I use the calculator to compose outputs and then pull them into ADE
- Here, I have set up both DC and AC simulations
- Here, we will predominantly use DC results and so you can ignore the AC.

Parametric Analysis Setup

🚍 🕗 Parametric Analysis - spectre(15): ckts_tsmc65rf_2017 sim_nmoschar_gm_ft_v2 schematic							\odot	×				
Eile Analysis Help								cādence				
Ш	Ready							_				
	- 7	s ×	00	🛃 💷 🗕 Rur	Mode: Swe	eeps & Rang	es 🔽 📀 🤇					
kk Iden	Variable	Value 1 50n	Sweep?	Range Type From/To From/To	From 1 15n	To 10 150u	Step Mode Linear Decade	Steps/Decade 10 10	Inclusion List	Exclusion List		
62	Export Data	into a .csv fil	e									

For every transistor length

For every value of current density

Run DC Op point analysis

- Run the parametric analysis once directly from ADE
 - Inspect a few outputs (Vds, I_D, gm using the calculator)
- Make sure they are ok

Ocean Script

🚍 💮 Parametric Ana	lysis - spectre(15): c	kts_tsmc6	5rf_2017 s	im_nmoschar	_gm_ft_v2 sch	ematic		\odot \odot \otimes
<u>File A</u> nalysis <u>H</u> elp								cādence
🖻 Load				_				
Save Ocean Script	O O Marcel F Sweep? Range Type	e From	eps & Rang	es 🔽 📀 🧯	Steps/Decade	Inclusion List	Exclusion List	
Checkpoint	✓ From/To ✓ From/To	1 15n	10 150u	Linear Decade	10 10			
<u>Close</u>								
62 Revert								

- Save your simulation setup to an "Ocean" script (Note: Ocean is a scripting language in Cadence)
- You can run any Ocean script from the Cadence Interface Window (CIW) by typing load "my_ocn.ocn"

These are model files, but for a different process from what you will be using in this class

RAW Ocean Script (1)

Generation of the second secon

simulator('spectre)

design("/home/scratch/paramesh/sim nmosc ft v2/spectre/schematic/netlist/netlist") resultsDir("/home/scratch/paramesh/sim nmosc m ft v2/spectre/schematic" 🌖 modelFile(MC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt bip") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMc, '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TS_65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt dio") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt dio 33") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tracN65/../models/spectre/crn65gplus_2d5_lk_v1d0.scs" "tt_mim") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt dio dnw") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt dio 18") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt bip npn") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt 33") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt rfrtmom") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt mos cap 25") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt 18") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt disres") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt res") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt dio na") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk vld0.scs" "tt rfmos 33") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65qplus 2d5 lk v1d0.scs" "tt dio hvt") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt rfmvar") '("/afs/ece.cmu.edu/project/rfic/DesianKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65aplus 2d5 lk v1d0.scs" "tt rfmos 18") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt na") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt dio na33") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt dio lvt") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt rfres sa") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt na33") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65aplus 2d5 lk v1d0.scs" "tt dio esd") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt rfmim") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt dio 25od33") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt 25od33") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt mos cap") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt dio 25") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt dio 25ud18") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt 25") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt rfmos") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk vld0.scs" "tt 25ud18") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt dio na25od33") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt rfjvar") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt rfmos 25") '("/afs/ece.cmu.edu/project/rfic/DesignKits/TSMC/TSMC65/tsmcN65/../models/spectre/crn65gplus 2d5 lk v1d0.scs" "tt rtmom") --:**- paramTool.ocn Top L3 (Fundamental) ------

占 💥 🛱

RAW Ocean Script (2)

Department of Electrical and Computer Engineering

Modifying the script

- I usually modify the RAW ocean script to directly extract the information I need
- Instead of a parametric analysis, I put the run() statement in a for loop as shown

Extract width and length info of transistor from simulation output. This is only for error checking.

Simple.

- I have run the simulation once previously from the ADE GUI.
- Then I open the "results browser"
- Then I find the parameter I want to extract in the GUI, and send it to the calculator
- The command appears in the calculator, and I can copty/paste if from there into the OCEAN script

Write all extracted values to file.

Id_dc = -pv("M0" "id" ?result "dcOpInfo")

vgs = -pv("M0" "vgs" ?result "dcOpInfo") vds = -pv("M0" "vds" ?result "dcOpInfo") Vth = -pv("M0" "vth" ?result "dcOpInfo")

gm = pv("M0" "gm" ?result "dcOpInfo") gmb = pv("M0" "gmb" ?result "dcOpInfo") gds = pv("M0" "gds" ?result "dcOpInfo")

Cgg = pv("M0" "cgg" ?result "dcOpInfo") Csg = (-1 * pv("M0" "csg" ?result "dcOpInfo")) Cdg = (-1 * pv("M0" "cdg" ?result "dcOpInfo")) Cgd = (-1 * pv("M0" "cgd" ?result "dcOpInfo")) Cgs = (-1 * pv("M0" "cgs" ?result "dcOpInfo"))

Cjd =pv("M0" "cjd" ?result "dcOpInfo"); Cjs =pv("M0" "cjs" ?result "dcOpInfo"); region = pv("M0" "region" ?result "dcOpInfo")

Run simulation for next length value

printf("vgs=%g\n" vgs)

close(fp)

Extract all parameter values from simulation output.

- You will need the rgb and loadcolors scripts in the following Matlab script.
- You can find them in the class afs folder

I read the csv file into Matlab to plot the results


```
wx = device nch(k) . W;
    lx = device nch(k).L;
    iden = idx/wx;
    kx = k+8;
                                               Plot everything.
figure(1)
    subplot(241), h0 = plot(vqsx, loq10(idx)); hold on; grid on;
    set(h0, 'Color',rgb(colornames{mod(kx,numcolors)+3}), 'LineWidth',2, 'LineStyle', '-');
    ylabel('log10(Id) (A)'), xlabel('Vgs (V)'); grid on;
    %axis([-0.5 1.5 -36 -6])
    N vqsx = length(vqsx);
    S subthreshold = 1./(diff(log10(idx))./diff(vqsx));
    subplot(245),
   h0 = plot(iden, vqsx);
    ylabel('Vgs (V)'), xlabel('Iden (uA/um)'); grid on;
         hold on; grid on;
    set(h0, 'Color', rgb(colornames{mod(kx, numcolors)+3}), 'LineWidth', 2, 'LineStyle', '-');
    subplot(242), h0 = plot(iden,gmx./wx); hold on; grid on;
    set(h0, 'Color',rgb(colornames{mod(kx,numcolors)+3}), 'LineWidth',2, 'LineStyle', '-');
    ylabel('Transconductance per Unit Width (uS/um)'), xlabel('Iden (uA/um)');
    subplot(243), h0 = semilogx(iden,gmx./idx); hold on; grid on;
    set(h0, 'Color',rgb(colornames{mod(kx,numcolors)+3}), 'LineWidth',2, 'LineStyle', '-');
    ylabel('qm/Id (mS/mA)'), xlabel('Iden (uA/um)'); grid on;
    xlim([1.0e-2 1.5e2]);
```

- You can use this code to learn how to make professional-looking graphs in Matlab.
- See how all axes are labeled, label fonts sized to be readable etc.

```
subplot(247), h0 = semilogx(iden,20*log10(gmx./gdsx)); hold on; grid on;
set(h0, 'Color',rgb(colornames{mod(kx,numcolors)+3}), 'LineWidth',2, 'LineStyle', '-');
ylabel('Intrinsic gain gm/gds (dB)'), xlabel('Iden (uA/um)'); grid on;
xlim([1.0e-2 1.5e2]);
```

```
subplot(246), h0 = plot(iden,gmx./(Cggx*2*pi)/1e9); hold on; grid on;
set(h0, 'Color',rgb(colornames{mod(kx,numcolors)+3}), 'LineWidth',2, 'LineStyle', '-');
ylabel('Transit frequency fT (GHz)'), xlabel('Iden (uA/um)'); grid on;
```

```
K=1e3;
subplot(244)
h0 = plot(iden,K*Cggx/(wx*lx)); hold on;
set(h0, 'Color', rgb(colornames{mod(kx,numcolors)+3}), 'LineWidth',3, 'LineStyle', '-');
ylabel('Capacitance (fF/sq. um)'), xlabel('Iden (uA/um)'); grid on;
```

```
K2 = 1e-9;
subplot(248)
h0 = plot( iden,Cjdx/K2/wx, iden,Cjsx/K2/wx ); hold on;
set(h0, 'Color', rgb(colornames{mod(kx,numcolors)+3}), 'LineWidth',3, 'LineStyle', '-');
ylabel('Capacitance (fF/um)'), xlabel('Iden (uA/um)'); grid on;
```

```
end
```

```
lx = []; Vthx = [];
for k = 1:numDevices
    lx(k) = device_nch(k).L;
    Vthx(k) = mean(device_nch(k).data(:,4));
end
```

```
hh = figure(2)
hh.Color = [1 1 1];
h0 = plot(lx/1e-6, Vthx); grid on;
set(h0, 'LineWidth',3, 'LineStyle', '-');
ylabel('Threshold voltage (V)'), xlabel('Length (um)'); grid on;
```

```
rmpath('/afs/ece.cmu.edu/usr/paramesh/Matlab/Utilities');
```