18-500 Final Report: B3: Music Mirror 5/3/2024

Music Mirror

Luke Marolda, Matt Hegi, and Thomas Lee

Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract—Music Mirror is a comprehensive speaker attachment
that seamlessly manages song queueing, recommendations, and
crowd engagement. Users are able to steer the system through a
distributed web app that hosts a suite of song request and
consensus voting capabilities. Using our expertise in software
systems, machine learning, and hardware systems we were able
to develop a final product that can mount to any speaker to
provide a maximum of 200 concurrent users with 3 distinct song
request formats, as well as the ability to provide live user
feedback to alter the queue through vetoes and likes. Two of the
three song request formats include song recommendation
capabilities that are preferred to Spotify’s recommendations by
73.3% of users. Further, we prioritized an easily usable mobile
website with an average user onboarding time of 48.4 seconds, as
well as user engagement through a light strobing system that
transitions with songs in <100ms response time intervals. Finally,
we also support an endless queue via automated song
recommendations, volume adjustment through a button
interface, as well as safety mechanisms to prevent unsafe usage of
the light system and to avoid overly vulgar music content.

Index Terms—DJ, song, queue, DMX capable light fixture,
Audio Speaker, Raspberry Pi, web application

1. INTRODUCTION

THIS project aims to create an all-in-one music platform

for events. We replace a costly, difficult to locate &
coordinate, and not custom tailored human DJ for social
events such as weddings, house parties, and reunions with a
comprehensive smart jukebox system that handles song
queueing, crowd engagement, and accurately represents users
music tastes. Music is the centerpiece of such events and
similar gatherings: it is responsible for setting the atmosphere
of the event space, which dictates the mood of its guests and
allows them to get out of their shells and enjoy themselves
(and each other). Thus it is crucial that hosts employ a
competent music system, whether a DJ or a jukebox, that will
continuously be playing new songs, without allowing for a
silent (or even worse, a dull) moment that could derail the
entire momentum of the party. It is the system’s responsibility
to cultivate an exciting environment by playing crowd favorite
song requests and the best songs from their personal collection
that the guests will actually want to dance and sing along to.
Traditional DJs can only accomplish this well with years
and years of experience mixing, listening to large collections
of different song genres, and reading diverse crowds, and so
there is a shortage of good DJ talent, especially in places
outside of major cities with bustling young adult populations.
Additionally, even the best DJs will be of no use in a crowd
that does not match their target demographic, and to complete

the dance floor of the event another professional must be
hired, as a lighting designer must create the lighting rig to
sync with the music and illuminate the space. Therefore, for
most events, which are restricted by a combination of money,
time, compatibility, and availability, having a high quality
human DJ which garners a sufficient level of satisfaction from
its guests is infeasible.

In regards to jukeboxes currently available on the market,
they require users to be physically centralized at the device,
leading to inefficiencies in contention and the lack of the
ability to express opinions on songs other people queued.
Additionally, these jukeboxes require the guests to pay money
to queue songs, discouraging user engagement and acting to
generate revenue for the jukebox company at the cost of a
diminished listening experience for users.

The Music Mirror system addresses these problems by
providing a custom tailored suite of services at a
comparatively low cost, more efficiently, and with a much
greater degree of convenience. As a self contained package, it
is readily available, and with a flat component cost it is much
cheaper than the exorbitant hourly rate of a popular DJ or an
alternative solution such as an expensive jukebox, which has
significantly less functionality than our system.

The guests of the event will interact with the system through
our web application (in most cases on mobile platforms, which
are ubiquitous) on which they will be able to queue their
favorite songs, request more songs similar to ones that have
been played already, generate session song recommendations,
downvote songs to remove them from the queue (if it is vetoed
by the majority of active users), and provide live feedback on
the songs that have been played. As a result the guests will
feel more satisfied as they will feel as if their voice is being
heard, and be more likely to dance, sing, and enjoy the event
as the songs they actually want to hear are being played. This
democratization of the song queue will custom tailor the
experience for the guests, as it reflects the crowd’s tastes better
than a single human operator can.

Music Mirror will also use the tracklist of songs queued by
the users, their inputs (Upvotes and Downvotes to manually
indicate to the system what songs in the queue they liked or
didn’t like) to insert songs of its own to the collective queue
through the mentioned session recommendation feature. The
system will blend these characteristics to create
comprehensive music choices that not only support the
interests of the audience, but are novel and potentially new
songs for the users. This will be accomplished using a two-tier
recommendation system, pairing Spotify’s API
recommendation endpoint with a clever seed sampling model
that utilizes the live user feedback.

Finally, Music Mirror will operate its own lighting fixtures

18-500 Final Report: B3: Music Mirror 5/3/2024

via the DMX protocol automatically, manipulating the
warmth, colors, strobing, intensity, and overall pattern of the
lights to suit the atmosphere and the characteristics of the
music currently playing. This will add the final dimension of
engagement to our comprehensive system that does not come
standard with a regular DJ.

Full-scope physical automated music systems similar to
Music Mirror are not publicly available, and the archetype is a
novel concept in the general market. However, there are other
computer DJs that generate song recommendations (like the
Spotify DJ) which exist as pure software, applications that
allow human DJs to remotely collect song requests from the
crowd and then make a decision on them, and jukeboxes that
allow guests to walk up and directly queue songs from the
central device itself (and thus, is not much different from a
music player app just being open on a tablet that anyone can
touch). Music Mirror is the first to combine these services into
a single, comprehensive, automated platform, allowing for
remote song requests concurrently to be added directly to the
music queue, to inject its own novel song choices, and to
operate its own lighting fixtures to provide a holistic listening
experience.

1I. UsEe-CASE REQUIREMENTS

The target users of the Music Mirror system are hosts of
social events like weddings, bar gatherings, high school
reunions, corporate socials, and house parties, where music is
a key factor in the overall enjoyment of guests. In such events,
it is critical for the music being played to be enjoyed by the
event participants, but also to be representative of what the
majority of people want to hear. This multifaceted use-case
environment guided us in developing our system
requirements.

Music Mirror is a much more convenient, cost-effective,
and intelligent solution than a traditional human DJ or
electronic jukebox. We combine a set of features that allows
our system to be incredibly reflective of the event guest’s
music preferences. Event hosts will be able to simply pay a
low flat rate for the physical device instead of spending hours
and hundreds (or thousands) of dollars negotiating a time and
rate with a real DJ, buying an overpriced jukebox, or settling
for an alternative sub-par solution. To accomplish this, we
settled on a set of core use-case requirements to guide our
development process. The companion web app will be
intuitive and quick to acquire and learn to use, and guests will

VA NeSs

FNE e

o)
r&{?

Fig. 1. Overall physical system illustration

be able to queue songs on their own without external guidance
in under a minute. We will support 3 distinct song request
formats, as well as the ability to provide live user feedback to
alter the queue through vetoes and likes. Two of the three song
request formats include song recommendation capabilities that
we aim to be preferred to Spotify’s recommendations by users.
Further, we prioritized user engagement through our light
strobing system that transitions with songs and matches the
tempo and emotion of the corresponding songs. Finally, we
also support an endless queue via automated song additions,
volume adjustment through a button interface, as well as
safety mechanisms to prevent unsafe usage of the light system
and to avoid overly vulgar music content.

I11. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The complete physical system of Music Mirror is depicted
in Fig. 1. Event hosts will turn on and power the system, and
potentially swap out the speaker or the lighting fixture for
their own if they have a pre-existing device setup. Event
guests, which are the users of our system, interact with it by
accessing our web application. These users will type in any
songs they want to add to the queue, get song similarity or
session recommendations, and press enter, which will forward
the song request to Music Mirror. The songs on the centralized
queue will be collected from all the users and be displayed on
the web app. The rest of the functionality will be operated
automatically by the system, without requiring user
intervention.

Frontend

" User Interaction

: Extemal

Spotify APl
Web App
Websocket HTTPS Core System
Wifi
<HWebsocket— Speaker
RPI #2:
RPI#1:
Recommendation & ..
Core Infrastructure Controllers. DMX
"3 Lighting System
—Wabsocket—>

Fig. 2. Overall system diagram

The overall system is composed of four main subsystems:
the web application which is the user interface, the main
Raspberry Pi 4 (“RPi”) which acts as the “brain” of the system
receiving and managing the queue, the secondary Raspberry Pi
which aggregates user inputs and engagement to generate
novel recommendations (using a combination of our song
queue data processing and the Spotify Web API),, and the

18-500 Final Report: B3: Music Mirror 5/3/2024

physical interface, which actually plays the songs and flashes
the lights. A user will submit a song request on the web app,
which will communicate through a Web Socket to the main
RPi, which will add it to the queue, forward a formatted
request to the Spotify Web API to look for a playable song
match, and send the updated queue view back to the web app
client. The main RPi will query the Spotify API to receive
song data (e.g. the song’s genre, theme, tone, tempo, etc.) as
well as to actually play the song once it is next up in the
queue. The secondary recommender RPi will be available to
continuously generate new song recommendations when a
user requests, as well as when the queue runs out of songs
from users and inserts recommendations of its own.

A. Web Application

The web application (Hosted on the Core Pi) is the medium
through which the users will be able to request and vote on
songs as well as see the most updated version of the song
queue. We used WebSockets to ensure the server holding the
queue can initiate messages with the users at any point. This
ensures the users always receive the newest version of the
queue. The web app also has functionalities to keep track of
users' last actions, responsive CSS, and reconnection to the
app automatically after being away.

[Music mIRROR

Queued by: maroldaluke

dear prudence
tho Boaties

Queued by: johnny6

LA woman
the doors

Queued by: andrew

she said she said
the Beatles

[
[let's go crazy
[
|

Queued by: tamal500

Input Song

Fig. 3. Frontend Webapp

Above, we see how the web app looks for users of Music
Mirror. The system participants can both add a song to the
queue and vote for/against others in a user-friendly way.

B. Main Raspberry Pi Core

The main Raspberry Pi (RPi) contains modules responsible
for transferring the user song requests onto the queue, pruning
the queue for vetoed songs, keeping track of user actions,
issuing calls to the Spotify Web API to match requests to
playable songs, retrieve metadata about the songs, and playing
them on the audio speaker system. Additionally, this RPi core
is responsible for semantically matching user song requests to
queried resources from the Spotify Web API, to ensure the
correct song is being played. Further, this core will house an

authorization driver that utilizes Selenium and ChromeDriver
to automate user authentication with the Spotify Web API. The
main RPi core maintains these microservices using persistent
Java processes that are spun up on boot, through Maven
applications hosted on them.

C. Recommender Raspberry Pi Core

The second core is responsible for generating song
recommendations when queried by the main core. Whenever
the queue needs a song recommendation (from either a user
request, insertion between user requests, etc.), it will
communicate with the second RPi which will build a seed
query to send to the Spotify Recommendation endpoint, using
our custom sampling and seed generation methodology, which
then applies a refined ranking on the returned results from
Spotify to provide enhanced recommendations. This will also
involve housing an in-memory data structure to hold
characteristics of songs that have been played, as well as those
that have been recommended by our model. Additionally the
core transmits the song to our DMX lighting control program
hosted on this pi (Reccomender). After receiving the song in a
similar fashion to the recommending program, it sends
lighting signals to our physical lights [Described more in
Physical Interface (Audio & Lights)]

D. Physical Interface (Audio & Lights)

The system is highly modular and can connect to any
external bluetooth or AUX speaker. This is accomplished via
the Spotify Connect functionality, which allows us to control a
wifi-connected speaker via the Web API. To further increase
our modularity, we will be connecting with Spotify via a
wifi-based audio streamer, which will then allow us to route
the streamed audio to a bluetooth or directly-wired speaker.
This essentially allows us to widen our possible speaker
choices from just wifi-based speakers, which are expensive
and more difficult to find, to virtually any external speaker, as
the dominant speaker connection methods are bluetooth and
physically wired.

The system’s lighting controller operates the lighting
fixtures included in the system via DMX signals generated by
a long-running Java process propagated through an ENTTEC
DMX USB Pro converter. The lighting controller selects from
different sets of colors based on the characteristics of the
current song (acousticness, danceability, valence, energy)
pulled from the Spotify Web API, and modulates the strobing
frequency of the lights in real-time with tempo changes
throughout the song. Additionally, the ENTTEC DMX USB
Pro translates between the USB standard from the Raspberry
Pi to generic DMX signals, allowing Music Mirror to be
connected to any DMX-capable lighting fixtures that our users
may already have.

V. DESIGN REQUIREMENTS

To satisfy the use-case requirements there are several design

18-500 Final Report: B3: Music Mirror 5/3/2024

requirements covering both the hardware and software (as
well as the distributed system networking) aspects of the
Music Mirror system.

The primary method of interaction between the users and
the system is the web app, therefore it must be responsive as
well as easy to understand and use. Hence the latency from
placing a song request on the web app to the centralized
collective queue, and then pushing the updated view of the
queue back to the web app client must be under 1 second to be
quick and to prevent users from being frustrated using the app.
Additionally, it must take new users to take less than 1 minute
on average to learn how to use the web app on their own. This
will lower the barrier of entry and ensure that as many guests
as possible are accommodated by the system.

The system must have a sufficient capacity to fulfill the
use-case of an average sized social event. Primarily these
consist of gatherings such as weddings, reunions, and parties.
As a result our system needs to support a network of 100+
concurrently online users (interfacing through instances of the
web app), as the average size of an American wedding is
75-150 guests. Furthermore, the queue must hold at least 100
songs, to reach the target of a 6 hour average reception at 3.5
minutes per song. We also need to ensure that the songs users
request are actually the ones being played, so we require an
80% accuracy in semantic matches between the user requests
and the actually queried Spotify resources.

User satisfaction is also a critical consideration, hence our
system must ensure that the novel song recommendations it
produces are high quality. Therefore our target user approval
of the generated recommendations is that 75% of users prefer
our recommendations to Spotify’s naive recommendations.
This will assure event hosts that their guests will be enjoying
the songs that they are surprised with, with a small margin of
error, and shows that our models introduce novelty to existing
solutions.

The lighting must always be in sync with the music that the
system is playing at the moment. This serves to make the
guest experience feel immersive and coherent, and impress
users with a more complete event. Hence our target is to have
a <l sec response time between our generated light signals and
resulting light effects, in order to ensure that the lighting
always tracks the currently playing song accurately.

Additionally, we require some new updated features since
our last report at mid semester, which is that our system
supports an endless queue, meaning that music will always be
playing regardless of the number of users currently in our
system. We also aim to support safe volume adjustment
through a button interface.

Summary of quantitative requirements:

Specification Target Value
Web App to Queue Latency | <1 sec
User Web App Onboarding | <1 min

User Network Capacity > 100 users
Song Queue Capacity > 100 songs
Semantic Match Accuracy > 80%

Song Recommendations 75% Preference

LED Behavior music match | <1 sec response time

Accurate song classification

V. DEsIGN TRADE STUDIES

A. Using WebSockets rather than HTTP

We decided to go with WebSockets over HTTP for two
reasons. The first is that we want for both the clients and
server (Raspberry Pi) to have the ability to initiate
communication. The client needs to be able to request songs
and the server needs to be able to update the client queue
sometimes independently of client requests. An example of the
server needing to update on its own is when it recommends
songs to the clients. We understand that the server can still do
that in the HTTP protocol, but that brings us to our second
reason: we want real-time communication between the client
and server. Our app maintains a real-time queue for songs to
be played and songs to be removed from the queue. So users
must be looking at an accurate representation of what the
current state of the server is. So if one user queues a song or
puts the final dislike vote to remove a song from the queue, we
want it to be immediately updated for everyone. The best way
to support all of this functionality is through WebSockets [1].
So even though WebSockets are harder to implement than
HTTP requests, it allows us to have real-time updates to all
users.

B. Choosing the veto consensus protocol

When choosing the consensus protocol we thought about
who should have a say and how we could make that happen.
Here are a few possibilities we thought of: everyone with
access to the website, everyone who was ever at the event,
everyone who is currently at the event, and everyone who is
currently at the event and interacting with the app. We decided
that we wanted only people who are currently at the event
(since they are the only ones hearing the music) and only the
people interacting with the app (since they are the ones who
are actively voting). So to accomplish both of these we
decided to:

1. only host the website on a local host for the wifi so
only people on the wifi can access the website.

2. Implement a heartbeat system to check what users
have interacted with the app in a certain period of time. So
user’s votes will not count if they have not interacted with the
app. Once they are again active their actions will be re-added.
The way they can be active is any interaction with the page
more than just being on the screen.

18-500 Final Report: B3: Music Mirror 5/3/2024

We chose 30 minutes (about 10 songs) because people won’t
constantly be on their phones during Events. Also every 30
minutes our Spotify token updates so this is also a convenient
spot to mark users inactive to keep our async timing functions
to a minimum. If people cared what songs were playing next,
they would check at least once for every few songs playing.
We also have to consider what percentage of votes are needed
to remove a song from the queue. Since we already have
narrowed down the votes that count to only users that have
interacted with the app for the last 30 minutes we know that
they have had the chance to look at the soon-to-be-played
songs, so we think that a majority rule would work best. If
there are more dislikes than likes for a song then it will be
permanently removed from the queue.

C. Using a custom recommendation system

As mentioned, the Music Mirror system will incorporate a
model to generate novel song recommendations for the users.
A naive vanilla solution is to simply use Spotify’s
recommendation endpoint. However, we took this a step
further due to one core concept: the lack of real time user
feedback that goes into the Spotify model. In our system, as
more songs are played by the user, and more upvotes and
downvotes are provided for the songs that have been played,
our system gains critical context and insight into the music
taste of our users as well as the broader opinions of the
collective audience. We also have live sensor data such as our
loudness measure that can be utilized. This real time feedback
is something that would not be included into a naive API call
to Spotify’s model, which takes in an input seed of songs,
artists, albums, and other song characteristics such as BPM,
tone, acousticness, and a dozen other parameters. Therefore,
we have decided to build a second component of the model,
which incorporates this real-time feedback to generate more
effective seeds to be passed into this model. For example, if a
user specifies that they want to hear a song that is similar to
the last 5 songs played, how do we accomplish this? There is
no input to the Spotify model that would allow us to
distinguish between which of these 5 songs resonated the most
effectively with the audience. So, we implement a custom
sampling mechanism that takes a weighted sample of the song
characteristics that is directly correlated to the approval of the
songs (ie. the number of upvotes or downvotes each song has).
Further, we will include our physical measures (ie. the noise
sensor) into this seed generation as well, adding another
dimension of live feedback. This initial filtering provides
much better input data to the Spotify model, in turn generating
better song recommendations that are more representative of
the collective event opinion.

D. Choosing the semantic matching algorithm

A core tradeoff that we identified was the differences
between different semantic matching algorithms. We tested
with three different techniques, a simplistic string comparison,
a 1-gram character model, and using an embedding
transformer model. To analyze the performance of each, we
considered system performance in terms of latency and

memory usage, as well as matching accuracy between
expected matches and expected failures. We found that the
simplistic string comparison was too inefficient, but the
1-gram character model and the transformer model met our
accuracy requirements. However, it was noted that the
transformer approach utilized a lot of system memory and had
a slower latency, which meant the system performance was
worse than the 1-gram approach. But with the 1-gram model,
our accuracy wasn’t quite as good as the transformer, despite
the requirements being met. Therefore, we ended up choosing
the 1-gram character model for the default setting, but allow
users to still utilize the embedding model technique if they
prefer higher accuracy versus more user capacity and better
system performance.

Now on to the actual way we chose to do the veto. At the start
of the second 30-minute period, every 30 minutes the backend
will remove likes for users that have not been removed from
an inactive list, making sure we only remove likes/dislikes
once. We then add all users to the inactive dictionary for the
next 30-minute period. Users are taken off this hashmap when
they perform a page interaction on the front end which gets
sent over. We realize this is not a true 30-minute timeout. If a
user interacted with the page at the start of the first 30-minute
period and then did not interact until 59 minutes later their
likes would not get removed. We chose to do it this way after
considering things like JavaScripttiming functions and
keeping every single last user action on the backend and
somehow checking those every 30 minutes. The second one
would have put too much unnecessary stress on the backend
application. The issue with the first problem is that when users
go away from their screen on some phones (either locking
their phone or even just going to a different app) the
JavaScriptcode stops leaving the timing function useless.
Having the backend check user interactions in 30 minute
buckets gives us the best of both worlds (simplicity and
reliability).

E. Choosing the DMX signal generation library

Multiple different DMX signal generation software packages
were considered when building our real-time adaptive lighting
controller. These included the Open Light Architecture
framework, PyDMX, and native DmxPy, in addition to the
Java ported DmxPy version we ended up using. While all of
these libraries were capable of interfacing with our ENTTEC
DMX USB Pro converter and propagating control signals, we
found the Java version of DmxPy to be best suited for our
needs. While the other packages boasted more powerful
features that could potentially allow for more complex lighting
orchestration, they required more dependencies and were
much harder to learn how to use and set up. As our lighting
controller would be manipulating the DMX signals itself, we
found that the fine-grained and direct channel controls
provided by the DmxPy library were sufficient. Additionally,
as we made the lights match the tempo of the music at the beat
level, we found the more lightweight & quicker DmxPy to
work best. Finally, as the rest of our code base and Raspberry
Pi communication protocols we had implemented were in

18-500 Final Report: B3: Music Mirror 5/3/2024

Java, we found the Java port of DmxPy to integrate the most
seamlessly with our system.

VI. SYSTEM IMPLEMENTATION

Below, we discuss the system implementation, all of
which is housed nicely in a 3D-printed casing that can be seen
below. We split our discussion into the core subsystems of
Music Mirror.

Figure 4. Music Mirror Casing

A. Web App (Frontend)

As shown in Fig. 7. the web app will be hosted on the
Raspberry Pi. We are using the Spring Boot chat app [2] to
serve as a starting point for the web application because it has
a working implementation of Web Sockets using Java
Springboot. It starts the WebSocket in the Java backend and
can listen for events and messages that happen through the
connected JavaScript that the users will be able to interact
with through the HTML. The frontend has these
functionalities:

e Web Socket communication with the backend. The
front end uses Java Springboot’s Web Socket by
initializing with SockJS and using that socket
connection to subscribe to a bunch of actions the
backend can make to send messages to the front end.
These are actions like song removal and queue
updates which will then call specific functions on the
front end to update the queue that all users see. This
communication also works the other way in that the
JavaScriptfunctions can send messages over this
socket connection to invoke specific functions in the
backend Java code. Examples of this would be liking,
queueing, and sending user activity updates.

e Web socket reconnection when users are away and
Web Socket gets disconnected. Of course, we want
users to be able to go on different apps and close their
phones to go dancing, but during that time their
WebSocket could lose connection because of the
JavaScriptcode stopping execution. To combat this,
once the user comes back on to the screen we

reconnect the socket and load all user progress back +
what song queuing they missed.

e Responsive and colorful Ul components. By
comprising most of our CSS with flex containers, we
are able to fit our app to any width/height screen
within reason. Also when the screen width is too
small for the text queued, our app uses an animation
to have the song scroll for users to see the whole song
name rather than making the text very small. For
colorfulness, users are assigned one of 15 diverse
colors (not blue since that is for the music mirror
queue) randomly which will be the color of the song
element that is queued. The Music Mirror
recommendations will always be blue so they stick
out amongst other queues.

API Request Vating Module
Generator -«
.
A § """"""" H
H h 4
Response Web App
Contraoller
Authentication
Module e
v - b4 T
ChromeDriver Queue Controller ¢
o = Semantic Match »
¥ | T
Chrome Exe i A :
""""""""""""""""" User Request
i Receiver
MiniLM-LE-v2 _
Transformer
RPi 4 8GB

Fig. 5. Main Raspberry Pi core

B. Main Raspberry Pi Core

1. Queue Controller

This is our backend for the web application that uses
all the other modules seen in Fig. 4 (besides Web App
Controller) to provide our backend functionality which is:

1. Keep the queue in a ConcurrentLinkedQueue data
structure since multiple requests will be added at the
same time. This will hold the songs as well as votes
for and against them which will be held in a
concurrent list

2. Interact with this song queue to mark the current song
that is playing so it can queue it on the Spotify API
and send it to the lighting system. Also gets the song
requests and song resources from Spotify to update
the queue and show users immediately after.

18-500 Final Report: B3: Music Mirror 5/3/2024

3. Keep track of users in ConcurrentHashMap that has a
key of user_id and a value list that holds votes
against specific songs

4. Use another Concurrent dictionary to map queue_id
to the song object inorder to have O(1) queue
removal on the backend. All data structures will be
sharing the same song objects, not copies, to ensure
correctness and space efficiency

5. Keep track of users that have yet to send a heartbeat
for this 30 minute period. If a user's heartbeat times
out it will mark all of their votes as not counting and
adjust each song accordingly. Right when they
interact with the page again, their votes will be added
back to the songs still on the queue

6. Continuously listen for new users through Web
Sockets controlled in the User Request receiver to
add them to the dictionary and let them start to
vote/queue. This works because once the user joins
the web page it will send a connection request to the
backend to initialize another socket connection and
all other user functionalities

7. Any change in the queue it updates the frontend
accordingly

8. Use the Authorization model to make sure our
Spotify API connection always works by periodically
(30 min) refreshing our API key.

2. Semantic Matching & API Request Generator
Although it may seem trivial to find a song on Spotify that a
user requests, this is in fact not the case. The Spotify database
maintains song data in a very particular manner, and any
discrepancies in the way songs, artists, and albums are named

Request Receiver [—— Request Generator ——— Response

e

Play “Yesterday” by
“The Beatles”

Player] Successful Match [——— Semantic Match

Fig. 6. Semantic Match

may cause unintended difficulty when querying for song
resources. For example, say a user requests “Yesterday” by
“The Beatles”. Well, this song may be directly stored on
Spotify as “Yesterday”, or perhaps it contains extra
information such as “Yesterday (Remastered)”, or even
“Yesterday (10th Anniversary Edition)”. Even further,
Spotify’s search mechanism is imperfect. There could be many
different search results that are close matches, such as
“Yesterday - Remastered” by J Dilla or “Lost in Yesterday” by
Tame Impala. Obviously, a naive string matching algorithm
will not give us a high success rate in actually choosing the
songs that the users actually intended to play. That is why we
have the system interaction detailed above. We need a
semantic matching algorithm to choose between the songs that

Spotify’s API call responded with, and then if the desired song
is still not found, we will need to re-query the endpoint. Thus,
we paired Cosine Similarity with a tokenization process to
match between constructed strings of the desired and returned
song name, artist name, and album in which the song is from.
For the tokenization, we support the use of both an embedding
transformer, as well as a l-gram character model. For the
transformer, we used the MiniLM-L6-v2 model which takes in
an input string and embeds it in a 384 dimension vector space.
For the 1-gram model, we simply create vectors representing
the character frequency of the input and output strings.
Regardless of the embedding choice, we will have a
parameterized minimum similarity for us to choose a song,
which sits at 85%. We essentially iterate through the Spotify
search results, and choose the highest similarity that surpasses
the 85% boundary in order to determine a match. Once we
reach a successful match, the Spotify response also includes a
unique song ID which can then be used to actually access the
song resources via the player.

3. Voting Module (Veto Consensus)

As described carlier we will keep a few data structures to
keep track of the song queue and songs that should be vetoed.
At every user action, we will be updating votes for and against
each song. If we find that there are more active likes than
active dislikes of a current song then it will be removed from
the queue.

RPi 4 8GB
Song Attribute |
/ Storage » Ranker Model
A
¥ ¥
Model Seed |
LED Controller i

Fig 7: Recommender Pi

4. Authorization Module

To access the Spotify Web API, proper authorization is
needed. Essentially, we have a singular Spotify premium
account associated with the system that needs to allow the
system to access its resources. Typically, because this is a Web
API, it would be implemented via some graphic interface that
can be displayed to a user. Once you start up the system, an
authorization request is sent to Spotify to obtain an
authorization code that will be used to generate access tokens.
However, Spotify’s response to the authorization request is a
redirection to a callback URI, where the user can physically

18-500 Final Report: B3: Music Mirror 5/3/2024

click the proper approvals and proceed. However, our device
needs to be able to handle the auth process solely on the RPi
core because the system itself is the ‘user’ in the context of the
API and we don’t have a physical user interface where we
could access the internet and follow the callback URIL.
Therefore, we accomplish this process by using Selenium web
driver, in accompaniment with ChromeDriver to automate this
authentication process. The driver itself attaches to the
callback URI response, and then clicks on the necessary
buttons to approve of the needed provisions for the system.
Following this, the session is redirected back to our server.
This authorization process only needs to occur once, and then
the remainder of the system utilizes a returned refresh token to
then regenerate access tokens.

C. Recommender Raspberry Pi Core

1. Song Attribute Storage

To most effectively generate seeds for our recommendation
model, we need readily available access to song characteristics
and attributes that will be inputs to the model. Therefore,
whenever we add a song from Spotify onto the queue, we will
also send a request to gather the song’s analysis, and will store
these attributes in an in-memory map. We do not need to
utilize a database because the number of songs in which we
will store will not exceed the memory capabilities of the pi.
The actual attributes that are stored will be discussed in the
next section, but they will be easily accessible for the input
generator’s use.

2. Model Input Generator
As previously mentioned, our recommendation system utilizes
the Spotify recommendation endpoint, as well as a clever
sampling mechanism to generate the best possible seeds to
input into the model. We will have access to 15 different
parameters for the model, including: track, genre, artist,
acousticness, danceability, energy, instrumentalness, key,
liveness, loudness, mode, popularity, speechiness, tempo, and
valence. To select the values we will actually feed into the
model for a given user request, we will utilize the live user
feedback to build an exponentially weighted combination of
these attributes for each song being utilized in the seed. For
example, if the user requests a song to be played that is similar
to the last 5 songs that have been played, then to choose the
parameters to build a seed with, we will weight them by the
number of thumbs up / thumbs downs they have, with an
exponential factor used to parameterize how concentrated the
selected values are around the most highly rated of these 5.
This is an important distinction than something as naive as a
normal average, because this would produce very dull results.
To see this, consider the averaging of a song’s BPM. If you
had 5 songs, 2 with very slow BPMs and 3 with very fast, then
the average of these would simply be a dull medium paced
song. That is why we are interactively using context provided
by our users’ experience to inform which of these songs we
should place the highest weight on. In a way, it is a

reinforcement learning approach to improving Spotify’s naive
recommendations by introducing live feedback on the songs
being played and the recommendations provided.

3. Refined Song Similarity Recommendation

One of our requirements was to ensure song recommendations
that are more refined than Spotify’s. Therefore, to accomplish
this we used a two-tier model that takes Spotify’s generic
recommendations and then refines them with some
mathematical operations. Essentially, for a song similarity
recommendation we do similar to the above and generate a
seed to feed into Spotify’s song recommendation endpoint.
This will return 20-30 recommended songs, primarily based
off of their proprietary user data as well as song
characteristics. However, it is then our job to further refine the
results to ensure the returned song is the most ‘similar’ to the
input song. Thus, we developed a model that maps songs to a
9-dimensional vector space, where each dimension represents
one of the following characteristics: acousticness, danceability,
energy, instrumentalness, liveness, loudness, speechiness,
tempo, and valence. Now, our similarity problem has become
a math problem. To find the most similar song to the input of
the returned Spotify recommendations, we then apply a
standard L2-norm minimization to find the song with the
shortest distance away from the input song in this vector
space. We used min-max normalization during this process, to
avoid issues from the different ranges of the 9 characteristics.
Once we find the song with the minimum distance, we deem it
as the most ‘similar’ and return it as the refined
recommendation.

Figure 8. LED System and Speaker

4. LED Controller

The lighting fixtures attached to the recommender RPi
were controlled via DMX signals transmitted over a DMX
cable. These signals will be generated on board the
recommender RPi using a Java program which controls the
different channels (independently controllable groups of
LEDs) of the fixture by using the DmxPy interface (ported to
Java) to generate specific DMX outputs. The DMX channel
signals, which control the behavior and colors of the lights,
were determined based on the characteristics (acousticness,
danceability, valence, energy) of currently playing songs,
which were derived from the Spotify Web API. (Valence is

18-500 Final Report: B3: Music Mirror 5/3/2024

defined as the level of musical positiveness conveyed by the
song)

Type Color Scheme Characteristics

0 Full Range default

1 Acoustic/Warm high acousticness
2 Dance/Disco high danceability
3 Positive/Upbeat high valence

4 Sad/Moody low valence

5 Energetic high energy

Additionally, the lighting controller would maintain an
internal timer throughout the duration of the song’s runtime.
This would allow the controller to modulate the time delay in
between color changes in real time, such that the lights would
match the bpm as the currently playing song progresses
throughout its different tempo sections. Below is the formula
for the time delay in milliseconds as used by our lighting
controller, with a 10ms offset for switching the lights off after
the current beat:

timeDelay = Math.round((60 / tempo) * 1000) - 10

VIIL TEST, VERIFICATION AND VALIDATION

The software, hardware, and networking aspects of the

Categary | Description |Triats |Result
System Latency Direct Queue Requaest 20 102 msec
System Latency Recommendation Reguest 20 6.34% sec
Usar Capacity Max Concurrent Users 5 200 usars
Usar Capacity Usars Retained 5 87 50%
Queus Capacity Song Capacity 5 300 songs
Semantic Match Similarity Score - Maiches 15 83.90%
Semantic Match Similarity Score - Failures 15 TE.40%:
Lighting DMX Responss Tima 1 =100 msec
Web App Usa Avarage Onboarding 10 48.4 580
Web App Use Average Ease of Usa 10 4.5/5 rating
Recommendation Preference to Spaotify 15 T3.30%:

Figure 9: Summary of Test Results

Music Mirror system were rigorously tested to verify intended
behavior and validate the quality of our submodules. The
objective was to confirm that the user experience is intuitive,
smooth, and satisfying, and that the system can stand up to the
stressors of our target use-case scenarios. Below, we will go in
depth in regards to each test we performed, all of which are
summarized in the table above.

A. Tests for Web App to Queue Latency
Timestamped test song queue requests were issued from a

mock web application instance to the DJ system, and were
used to measure the time elapsed between inputting a request
and seeing the corresponding queue update return to the web
app. Over a set of 20 trials of direct queue song requests the
average latency was measured to be 102 ms, significantly
faster than our 1 second roundtrip time benchmark. Our
latency testing verified that our system would feel responsive
and seamless for users of our web application. This ensured
that our user operation throughput would remain high, and that
event guests would not be discouraged or frustrated when
engaging with our system.

B. Tests for User Web App Onboarding

In order to test the intuitiveness of our web app we planned
to collect data using real survey participants to determine how
quickly it takes an average new user to learn how to queue
songs and access the different functions of the app. We
accomplished this by surveying fresh users who have never
been exposed to our web app and measured how long it takes
them to feel confident about their understanding of it and be
able to make song requests and navigate the queue on their
own. We also measured their satisfaction with the ease of use
of the system. The target amount of time for this onboarding
was less than 1 minute. We met these goals by interviewing 10
participants, and found that their average onboarding time was
48.4 seconds. More specifically, the minimum onboard time
was 21 seconds and the maximum was 83 seconds. We found
that the average ease of use rating was 4.5/5. This was
fantastic to see and confirmed our use-case that our web app
must be easy to use as well as visually appealing and
enjoyable.

C. Tests for User Network Capacity

le7

324

=4
o
i

i
L]

e
=3
L

=
FS
"

Memory Usage (Bytes)

ra
%]
L

¥
=
L

=
o

0 25 50 75 100 125 150 175 200
Number of users

Figure 10: Memory Consumption vs. Users

To test network capacity a barrage of stress tests were
conducted to determine whether or not the critical user
interaction functions of our system hold up in the presence of
many concurrent users and a large volume of incoming
requests. In order to accomplish this, increasing numbers of
dummy users (up to 200) were connected to the system, and
we verified that the system can manage these large amounts of
websockets and accept requests from any of them at any time,

18-500 Final Report: B3: Music Mirror 5/3/2024

without decreasing system performance or running out of
memory. Additionally, we will send multiple concurrent
requests to the system all within one second of each other, and
verify that none of these requests are dropped and that the
system produces the correct behavior manipulating the queue.
This will ensure that our system will be able to accommodate
our use-case, which involves large numbers of guests at an
event issuing requests at random times. We ran this test with a
script that simulated the tests described above, and found the
system capable of handling 200 concurrent users. This
exceeded our target goal of >100 concurrent users. Further, we
found our memory consumption to be fairly independent of
the number of users, which is due to our lightweight design as
well as explicit garbage collection processes throughout the
system. These memory results are described in the above
figure.

D. Tests for Song Queue Capacity and Veto System

To test our song queue we used a shell script to simulate
different loads of users performing actions that our clients
would. Over the course of 5 trials, the entire Music Mirror
system was rebooted, and using a set of 5 simulated users
queuing 60 songs each the effective queue capacity was
verified to be over 300 songs. This far exceeded our target of
100 songs (~6 hours at 3.5 minutes per song), capable of
maintaining over 17 hours of play time, much longer than any
anticipated application of our system. Outperforming our song
capacity benchmark ensured that Music Mirror’s collective
song queue was sufficiently robust and voluminous in order to
meet the requirements of our use case. This way event guests
will be able to queue songs to their heart’s content and keep
their party going late into the night.

Music Mirror’s veto system was visually inspected by
connecting multiple users and attempted to Dislike & veto
songs from the queue. We verified that our users would be
able to prune the collective queue fairly and efficiently. This
would ensure the best overall listening experience for guests,
as well as improve the quality of the recommendations
generated.

E. Tests for Song Recommendations Quality

Because song recommendations are a subjective matter in
nature, we tested the quality of them with user feedback
surveys. To accomplish this, we had 5 in person interviews to
present users with an input song, our similarity
recommendation, and then Spotify’s naive recommendation,
and asked users which of the recommendations they preferred.
For each person, we had 3 trials of this process. For each of
the 3 trials, we tested with an alternative, rock, and rap song to
see how the recommendations performed across genres. We
saw that 11/15 trials resulted in our recommendations being
preferred, which is a 73.3% preferred percentage. Although
this fell slightly short of our >75% goal, we were happy with
these results as recommendations are very subjective, so we
felt this metric justified our improved ranking mechanism
sufficiently.

10

FE Tests for LED Behavior Matching Music

The lighting fixture’s LEDs were visually inspected
(checking that the color ranges displayed match Spotify’s song
attribute data) over a set group of songs played to verify that
the patterns and colors they are emitting match the genre and
tone of the songs playing. In addition, the response time of the
DMX lighting fixture system was verified to be quicker than
100ms, in order to support a wide range of different song
tempos. Songs with a high level of acousticness displayed
warm colors, songs with a low valence score (the measure of
musical positiveness of the song) displayed cooler colors, and
songs with a high level of danceability or energy utilized a
wider range of the available colors. Additionally, the lights
were synchronized to a 120 bpm and a 140 bpm metronome,
ensuring a sufficient level of fine-grained control over the
DMX control line. These tests confirmed that Music Mirror’s
lighting system would be able to properly classify the genre of
the currently playing song and match its tempo in real time,
enhancing the user experience. This increased level of
coherence would elevate the perceived level of
professionalism of events using the Music Mirror system.

VIIL.

We have been maintaining efficient systems to keep track of
our work progress and communicate our ideas, which are
discussed below. Apart from these, we also have scheduled
meeting times for Zoom calls every Wednesday and Friday
evening for higher level design choices and progress. .

A. Schedule

The schedule is shown in Fig. 8.. We have been using this
schedule to guide and track our work progress.

PROJECT MANAGEMENT

B. Team Member Responsibilities

Thomas

e Light controller

e Web app & internal
data structures

e Queuing/voting
functionality

Matt e User graphical

interface

e Web app
communication
with backend

e Queuing/voting
functionality

e Raspberry Pi
communication
between systems

Luke e Recommendation
RPi

implementation

18-500 Final Report: B3: Music Mirror 5/3/2024

e Authorization
Driver

e Semantic matching

e Speaker pipeline
connection

All Members e System Integration
e User satisfaction
surveys
e Testing
C. Bill of Materials and Budget
Fig. 11. Bill of Materials and Budget
Description Model Manufacturer Project Cost User Cost
Raspberry Pi 4 8GB CanaKit $0 $75
Raspberry Pi 4 8GB CanaKit $0 $75
Spotify Subscription Premium Spotify $10.99/Month ~ $10.99/Month
DMX Controlled Lights $350 Varied
Any Speaker $0 Varied
Wireless Audio Streamer Mini Airplay2 WiiM $89 $89
$471.97 $239+10.99*Months +

lights + speaker

The difference between the project and user Cost is that (for
example) we were provided with the Raspberry Pi’s so they
cost us $0 while they are 75 each to buy if a user were to
replicate our system. So the project cost is what we spent
while the user cost is what it will cost to build their own
system. We labeled the lights and speakers for users as varied
because any speaker will work and any DM X-controlled lights
will work.

D. Risk Management

A few of the risks were identified through our project
implementation. The main one was us being able to control the
lights. The lights were the last part of our system to initially
show up plus we could not get the lights to work at first and
had to pivot and get extra parts as we understood how the
lights worked more and more. We were able to manage this
risk by looking for help online and looking for help with a
previous team. We knew there were a lot of DMX resources
online in Python and a little in Java so we could use those to
try and learn more about what we were doing. Also, we knew
certain Python scripts worked so if we could not use the Java
code we could have pivoted to a Python script. We were also
in contact with an old capstone project that used DMX lights
and they also gave us debugging advice. Another risk was our
Web Socket set up, we originally tried to have our web app
run independently of the Raspberry Pi and just have
JavaScriptand html for the frontend which connects to our
Java code in the core on the backend. Despite many efforts
and hours we were not able to get the JavaScriptto JavaWeb
Socket set up. So we looked across the internet and found a
project with a tutorial [2] that had already implemented
WebSockets using Java Spring Boot. Similarly, the Pi
communication took some time to learn. For this one we
looked up our error codes online to find other people with
similar issues and were able to figure it out. So overall we
managed our risks by choosing a well-documented project so

11

we knew there was always another option if something did not
work.

IX. ETHicAL ISSUES

We took the time to ensure our design handled serious ethical
considerations. We will discuss our system’s ethical concerns
in the context of public health, public safety, and public
welfare.

While the potential public health consequences of the Music
Mirror project are mild at the worst, there are still some issues
that must be taken into consideration. Primarily, since the
system operates the lights and sounds of the venue, attendees
may be exposed to unsafe volume levels and nauseating or
blinding flashing lights. Therefore there is a design tradeoff in
determining the system’s capacities for volume and light
intensity, as louder performances and more vigorous lighting
displays may be more entertaining for the users but potentially
be unhealthy. Music Mirror addresses this issue by restricting
volume to a healthy range, and its strobing frequency to
prevent health complications such as epilepsy. Additionally,
the energy footprint of the system can have negative effects on
the environment. Again larger more complex systems may be
more entertaining, but may have a higher energy cost. Music
Mirror solves this issue by consuming comparable levels of
power to similar music playing and sound systems.

The Music Mirror system must ensure the public safety of
the users it affects. The main public safety considerations are
that of user privacy and protection from other users & abuse.
In regards to privacy, the tradeoff balances the need to collect
user data for satisfaction surveying, but protecting the user’s
privacy. Music Mirror will address this issue by hiding users’
data from each other and securely storing their information. In
regards to protecting users from each other, Music Mirror will
not allow direct user to user communication on the web app,
and making song voting anonymous. Also, there is the
potential for users to try and queue vulgar music, so we
implemented a safety check that will kick a user out of the app
if they try to queue a song including a preconfigured list of
“bad” words. This ensures safety for people who do not want
to consume vulgar content, such as children.

The system must promote public welfare, and not have
negative socio-political consequences. Music Mirror must
cooperate with the music industry, and encourage healthy
music consumption and production. The main potential issue
is that of unfairly representing different genres or types of
music, which may discriminate against different music
fanbases. In order to be favorable to welfare considering the
social factors, Music Mirror will completely democratize its

18-500 Final Report: B3: Music Mirror 5/3/2024

song requesting and recommendation service, giving all users
equal say, save for host privileges.

X. RELATED WORK

The Springboot Chat app [2] is similar to how we want to use
our WebSockets. That is why we are using it for our
WebSockets. This is a real-time chat app with a javascript and
HTML frontend and a Java backend so it's very similar to our
project.

XI. SUMMARY

In summary, we learned a lot about system design on our quest
to democratize our users’ listening experiences. We feel that
Music Mirror has the potential to be a staple in future
weddings, restaurants, parties, and other music listening
venues. We also learned the importance of performance
tradeoffs, such as memory consumption versus number of
supported users, which were the backbone of our development
process. Some future features we envision are not only
allowing users to veto a song off the queue, but also to be able
to vote on the positioning of a song in the queue. For example,
if all users want to hear a song really badly, they can vote for it
to be moved to the front of the queue. In addition, we aim to
add a provisional feature, which would allow this system to be
marketed better as a product. Currently, all users have equal
voting weights but say an owner of Music Mirror wanted to
still have some administrative control over the queue, then we
could make some minor changes in our implementation that
would allow for a specific user to have higher weighted votes,
giving them more control. Moving forward, we have big
aspirations for the future of Music Mirror.

GLOSSARY OF ACRONYMS

API — Application Programming Interface

DMX - Digital communication standard for controlling
lighting fixtures and stage effects

HTML — HyperText Markup Language

JSON - JavaScript Object Notation

RPi — Raspberry Pi

REFERENCES

[1] Ably. (n.d.). WebSockets vs HTTP. Retrieved February 15, 2024, from
https://ably.com/topic/websockets-vs-http
[2] Bouah A 2023. sprmg boot websocket chat-app. GltHub
d 5 b bsocket-ch

[3] rydercalmdown (n.d.). DMX lights. GltHub Retrieved March 1,2024,
from_https://github.com/rydercalmdown/dmx_lights

[4] Open Lighting Project. (n.d.). OLA on Raspberry Pi. Retrieved March 1,
2024, from
https://www.openlighting.org/ola/tutorials/ola-on-raspberry-pi/

[5]1 Spotify AB. (n.d.). Web API. Spotify for Developers. Retrieved March
1, 2024, from_https:/developer.spotify.com/documentation/web-api/

12

https://ably.com/topic/websockets-vs-http
https://ably.com/topic/websockets-vs-http
https://github.com/ali-bouali/spring-boot-websocket-chat-app.git
https://github.com/ali-bouali/spring-boot-websocket-chat-app.git
https://github.com/rydercalmdown/dmx_lights
https://www.openlighting.org/ola/tutorials/ola-on-raspberry-pi/
https://www.openlighting.org/ola/tutorials/ola-on-raspberry-pi/
https://developer.spotify.com/documentation/web-api/

13
18-500 Final Report: B3: Music Mirror 5/3/2024

Fig. 12. Detailed System Design

Spotify API

__________________________________ Key
| | Wifi——»
| Spotify Web API | — Websocket - Java Module
: : R Executable
: Song Resources <€— Remrgnrr;?::won User Queue J Player : Anter-Modulg -
| : ~-User Interaction—> Hardware
|
|

R
RasPi

RPi 4 BGB

SlimPAR PRO Q

USB LED Array

T |

' I

' I

' WiiM AirPlay2 External Bluetooth I

I Audio Streamer Speaker I

| I

M NEEE B

| API Request : ' '

| Generator I : :

| | | Frontend |

S S

' : RPi 4 8GB I [[

: I [[
I

| | : HTMLICSS :

I Authentication Song Attribute | | |

| isbles /, Storage || Renker Model : : T |

O e I R . — 1 | i |

[A : : A | | i |

| ChromeDriver | Queue Controller / : : : :

: » Semantic Match i : Model Seed

| A LED Controller Cihamine < | | i |

' ¥ .) I | |

! Chrome Exe ~ i = Lo .. |

: : § [| |

I User Request | | | I I

| MiniLM-L6-v2 HRCEIG b : ' Users !

| Transformer I I |

| I

| I

' I

18-500 Final Report: B3: Music Mirror 5/3/2024

14

Task Owner Progress week 4 week § week 6 week 7 week 8 week 9 week 10 week 11 week 12
2/12-21189 4/1-418

Project Abstract
Project Proposal
Design Presentation
Design Report
Ethics Assignment
Interim Demo.
Final Presentation
Flnal Demo

Reasearch
User Graphical Interface
Communication Channel with Backend
Queueing/voting Functionality
Testing

Order Sensors & Compute Hardware
Get familiar with hardware

Listen For & Accept User Queue Requests
Propagate Spolify Requests

Song Queue Voting Consensus

User Requests Semantic Maiching

User Typo Robusiness

Client Keep Alives

Queue Timing with Spotify Queue

Testing

Add Memory Fix

Model Construction & Fine-Tuning
Database Integration

/0 Processing Modules
Testing

DMX light control

DMX light integration
Testing

Speaker Pipeline Connection
Module Communication Protocel

Web App User Satisfaction
Song Recommendation User Satisfaction

Fig. 13. Gantt Chart

week 16
4/30-5/7

