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Abstract—BikeBuddy is intended to improve safety
for bicyclists by allowing them to have better situa-
tional awareness and giving other road users a better
understanding of cyclists’ intentions. This is accom-
plished through a waterproof system incorporating mi-
crowave radars that sense vehicles located behind, on
the side, and in front of the bicycle along with LED turn
signals with auto cancellation. An embedded computer
integrates information from the radars and provides
visual alerts to the bicyclist on a centrally mounted
display. The system achieves a 3% false negative and
26% false positive rate while having 95% distance de-
tection accuracy.

Index Terms—Bicycle, Embedded Systems, Radar,
Raspberry Pi, Safety, User Interface, Vehicle Detec-
tion, Magnetometer

1 INTRODUCTION

Bicycling is a healthy and environmentally friendly way
to travel. Cycling has become more popular over the past
years. However, the safety of cyclists on the road remains a
significant problem, especially in the congested metropoli-
tan areas. Bike commuters need a better safety system to
protect them when sharing the road with larger vehicles. A
waterproof bicycle safety system with blind spot detection,
rear and forward obstacle distance sensing, and turn sig-
naling with automatic cancellation will improve bike com-
muter safety through increased cyclists’ awareness of their
surroundings and vehicle awareness of cyclists’ intentions.
The alerts can be displayed on a mounted screen, enhancing
the situational awareness of the cyclists.

There are some existing technologies for bike safety, in-
cluding mirrors, Garmin Varia RTL510, and wearable de-
vices. A group in 2019 [6] did a similar project with LiDAR
and a safety vest to improve bike safety, and another team
in 2021 used microwave radars [2] for blind-spot detection
and had turn signals. Compared to the team that used
LiDAR, Our project used radar for blind spot and range
detection, enabling all-weather operation. Also unique to
our project compared to the other capstone projects, the
screen display centralizes the information in one place for
cyclists. The overall goal of the system is to provide bike
commuters with an easy-use system with better detection
accuracy to enhance their safety.

2 USE-CASE REQUIREMENTS

To fulfill the functionality of the system, the following
design requirements are proposed:

• Cost: The final system should cost ≤ $200

• Battery Life: The system should have at least 2 hours
of endurance. According to data from Strava [1],
the average commute distance in the U.S. is 8.3mi
(ca. 13 km). Assuming a biking speed of 15mi/h (ca.
24 km/h), a 2-hour endurance allows bikers to use the
system for a day of commute with buffer time.

• Detection Lead-Time: The system should give users
enough time to react. The human response time is be-
tween 100 ms and 300 ms. Some studies have found
that people need approximately 1.5 s response lead
time to react to road hazards [19]. So, the system
should give a warning at least 1.5 seconds before col-
lision.

• Uptime: ≥ 99.999%.

• Confusion Matrix:

– ≤ 40% False Negative

– ≤ 30% False Positives

The result from the 2019 project [6] had a false neg-
ative rate of 60% and a false positive rate of 41%.
The confusion matrix is set this way so that our sys-
tem performs at least 20% better than the previous
version.

• Ruggedness Rating: IPX4. The device should work
for commuters who commute in rainy conditions.
IPX4 means no rating for protection against solids
and “protection from sprays and splashing of water
in all directions” [11].

• Turn Signal Visibility: Minimum of 100 feet of visibil-
ity in daytime, 500 feet visibility after sunset. Penn-
sylvania law requires a red rear reflector or light to be
visible from 500 feet away between sunset and sunrise
[8]. Although our turn signals do not fall under that
law since they are not red, it sets a reasonable base-
line requirement for nighttime visibility. The 100 feet
(ca. 30 m) is a little more arbitrary, but it should be
sufficient for drivers behind to see and react in time.

Note: We dropped the Ease of Installation requirement
from the original design report since it would’ve been exces-
sively difficult to target this requirement for our prototype.
However, this requirement should still be considered for the
product that enters the market.

https://www.garmin.com/en-US/p/601468/pn/010-01980-00
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3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

Figure 1: Overall System

For readability, we have placed the block diagram as
Fig. 10 at the end of this document.

At a high level, our system consists of two functional ar-
eas integrated into one system: (1) Obstacle detection and
(2) turn signaling. The high-level system setup remained
similar as mentioned in the Design Report, except we have
changed ”Vehicle Detection” to ”Obstacle Detection” to
generalize it more from just vehicles to other things on the
road like cones.

3.1 Obstacle Detection

The obstacle detection subsystem is responsible for de-
tecting obstacles around the bicycle and displaying their
distances if in front or behind the bicycle or indicating if a
vehicle is in an adjacent lanes (for blind spot monitoring).

The sensing portion consists of two radar modules, one
mounted on the front of the bicycle and one mounted on
the rear of the bicycle. The front module is responsible
for tracking objects ahead, and the rear module monitors
objects both directly behind and in the adjacent lanes for
blind spot monitoring.

Both radar modules are Doppler radars, which allow
them to sense the speed and direction of objects in addi-
tion to distance and angle. Doppler radars work by mea-
suring the time it takes for radar pulses to return, along
with sensing the phase shift in the return signal due to the
movement of the object [21] [17].

One change from the Design Report is the segmenta-
tion strategy of the rear radar. Since we are using only a
single radar to cover the entire rear area, it requires that
we identify whether vehicles are in the same lane as us or
in adjacent lanes to provide the appropriate visuals.

Our previous approach consisted of slicing the radar’s
field of view (which is a semicircle shape) into sectors based
on the angle of the object, as we proposed in the Design
Report and is shown in Fig. 2.

Figure 2: Early rear radar segmentation scheme: the black
box is the radar and the green semicircle is the radar de-
tection zone (not drawn to scale), and each zone is labelled
with what lane a car within it would be considered

For our final strategy, we chose a more straightforward
approach where we simply decide which region a car is in
by its horizontal distance from the bicycle (e.g., how far
it is to the left or the right of the bicycle), with x = 0
centered on the bicycle. Objects to the left behind the bi-
cycle will have negative x values, whereas objects to the
right will have positive values. If the objects are within
±0.5m (for the rear in demo mode, in non-demo mode it
is within ±1m) horizontally of the bicycle, we consider it
to be behind the bicycle and therefore it will trigger the
rear range indicator. If instead the objects exceed those
thresholds, they will be treated as if they were in adjacent
lanes and will trigger blind spot indicators instead. This
is visualized in Fig. 3, although note that the direction of
travel is downwards so left of the bicycle is actually on the
right side of the diagram.
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Figure 3: Final rear radar segmentation scheme: The black
box is the radar, mounted at the rear of the bicycle. The
yellow markings delineate lane markings on the ground, the
green box indicates the area we consider to be “rear” of the
bicycle, the purple boxes indicate the area we consider to
be in the blind spot, and the red triangles indicate occlu-
sion of the radar detection due to the enclosure physically
blocking radio waves. Note that the radar detection zone
is a semicircle shape, so the actual distance detectable by
the radar varies.

The radars provide a list of detected targets and their
information to the Raspberry Pi, which filters the data and
then displays them in the appropriate manner (e.g., light-
ing up a blind spot indicator if a car is approaching on the
side).

To display warnings, we also have a small screen
mounted on the handlebar of the bicycle that is connected
to the Raspberry Pi. The display will flash colors in various
parts of the screen to indicate danger and warnings.

3.1.1 Forward and Rear Collision Warnings

In our original design report, we described forward and
rear collision warnings (sections 3.1.1 and sections 3.1.2).
For forward collision warnings (FCW), like in a car, the
system would alert you to brake if you are in danger of
colliding with the car in front of you. For rear collision
warnings (RCW), the system will warn you to move out of
the way if it determines the car behind you is moving too
fast to brake in time and might hit you.

We implemented these features in our prototype, but we
eventually disabled them because they were too noisy and
triggered too often. In addition, they would often block
other parts of the interface that we wanted to see. We
believe that one cause is that the equations used to esti-
mate the stopping distances required for both the bicycle
for FCW and the car for RCW were too conservative, so
they would trigger collision warnings too often. We also
should’ve implemented a feature that filtered out objects
that were traveling less than a certain velocity, such as

2m/s, to prevent the case where just walking around the
bicycle close would trigger alerts falsely.

3.1.2 Front and Rear Range Indicators

Despite the removal of FCW and RCW, we are still able
to give the user information on the distance of objects in
front and behind them as before. We utilize the distance
data provided by the radars and visually indicate their dis-
tances on the screen. This only applies to objects within
the region considered ”behind the bicycle” and ”in front
of the bicycle”, so objects within adjacent lanes will not
trigger these indicators.

3.1.3 Blind Spot Monitoring

For blind spot monitoring, any cars in adjacent lanes
(as described above) will trigger a blind spot indication re-
gardless of their distance from the vehicle. This is intended
to warn the user if a car is coming up on your side so you
don’t switch lanes and collide with them, just like how a
blind spot indicator on your car mirror would warn you.

Unlike in a car, however, we warn the user through vi-
sual indications on the display rather than indicators on a
mirror.

3.2 Turn Signaling

The turn signaling mechanism consists of the turn sig-
nal buttons that are located in the front of the bicycle, the
auto-cancellation system located in the middle of the bicy-
cle, along the actual turn lights located in the back of the
bicycle.

For the turn signal controls, we have two momentary
switches mounted on the handlebar of the bicycle. Press-
ing on the momentary switch will close a circuit to cause
a voltage change that is detectable by the Raspberry Pi,
causing it to turn on the turn signals. The turn signals can
then be turned off again by pressing either of the momen-
tary switches.

Additionally, for user convenience, the system will also
include an auto-cancellation system that is intended to au-
tomatically deactivate the turn signals once a turn is com-
pleted, much like a car would. This is implemented using
a magnetometer mounted on the center of the bicycle.

The magnetometer is used as a compass to give us the
heading of the bicycle, and the idea is that we’ll record the
starting heading of the bicycle when the turn signal is first
activated. Then, once the heading of the bicycle relative to
the starting heading exceeds a certain threshold, we’ll turn
off the turn signals.

The turn signals themselves are simply LEDs mounted
in the rear of the bicycle, with transistors controlled by the
Raspberry Pi.

3.3 Principles of Engineering

We wanted to build a system that was reliable and sim-
ple, and we needed to iterate the design multiple times to
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adjust any issues.

3.3.1 Source Code Management

We used Git as our source control system, hosted in a
Github repository. This allowed us to keep track of changes
and easily be able to revert some changes if they break
something.

3.3.2 Radars

For radars, we broke down the design into small phases.
We started by making sure of the basic functionality of the
radar using simple wire connections and breadboard. We
tested the functionality by using plotting and printing be-
fore moving on to implementing the detection algorithm.
During the implementation, we ran tests to identify the
detection outputs. We had to change the segregation of
the radar to make the system simpler to ensure a more
reliable output.

3.3.3 Hardware

For the electrical system, we needed to read the
datasheet of each component to ensure the designed cir-
cuits wouldn’t cause any piece of components to overload
themselves when creating the schematics. In addition to
checking numbers and calculating, we also did empirical
tests to ensure the numbers given were correct, such as
the LED turn-on voltage, LED on-chip resistor resistance,
transistor threshold voltage, etc.

During hardware testing, we used 3D printing and laser
cutting to rapidly prototype our parts to quickly iterate
and update hardware design to ensure the enclosures can
meet designed use-case requirements.

3.4 Principles of Science

When analyzing the data, we did multiple trials for dif-
ferent tests to ensure the accuracy of the data. In addition,
we went beyond the design requirements to explore possible
correlations between two parameters. We interpreted the
data in a scientific way, providing a reasonable explanation
for possible deviation from the expected value.

3.5 Principles of Mathematics

We have used numbers and algebraic calculations to
calculate the expected results of the system, as well as us-
ing them to validate our approach. For example, given the
power bank that we have, we used formulas to calculate the
requirements of the power consumption of the system (see
4 for more details). In dealing with MOSFET, we used
numerical analysis to determine if we were over the max
current allowance of the MOSFET (see 6 for more details).

4 DESIGN REQUIREMENTS

4.1 Power Limitations

The users would like a solution that will last long
enough for their daily commute, so this requires that the
design meet certain power usage limits.

Given a power bank of 26 800mAh and a target run
time of at least 2 h, we have a maximum current draw of:

I =
26 800mAh

2h
= 13.4A (1)

However, the specific power bank we’re using, the Anker
337, only supports a maximum of 3A per USB port and a
total of 6A. Therefore, our entire system must draw less
than 6A, with each system attached to a USB port draw-
ing less than 3A. That way, we can meet both the battery
electrical limitations and the total runtime requirement.

4.2 Simultaneous Targets

The rear radar needs to be capable of tracking at least
three separate vehicles in three different lanes, one for a car
directly behind the bicycle and one car each in the adjacent
lanes.

We previously had a minimum distance resolution sub-
requirement of 9 feet since a typical car lane width in the
U.S. is 9-12 feet for urban roads [22]. Minimum distance
resolution refers to how close two objects can get to each
other before the radar cannot distinguish between them.
However, this sub-requirement no longer makes sense due
to the way we’re segmenting the rear radar zone which
doesn’t depend on road lane width nor being able to iden-
tify vehicles from each other.

4.3 Data Transmission

The radar must be capable of communicating with a
baud rate of 115200 for UART communication with the
Raspberry Pi.

4.4 Radar Accuracy

The radar shall provide a minimum accuracy of ±10%
for all quantitative measurements (speed, distance, angle).

For velocity, it shall identify the correct direction of the
target ≥ 95% of the time.

4.5 Radar Data Update Frequency

The radar shall provide location updates for all detected
vehicles at a minimum frequency of 10 Hz.

4.6 Detection Distance

The system should have a minimum detection range of
14m. Section 2 describes that the system should provide
1.5 s response lead time for blind spot collision.

https://www.anker.com/products/a1277?variant=37437650665622
https://www.anker.com/products/a1277?variant=37437650665622
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Assuming a speed differential of 15 mph between the
car and the bicycle:

15mi/h = 24 km/h ∗ 1000m

1 km
∗ 1 h

3600 s
= 6.67m/s (2)

6.67m/s ∗ 1.5 s = 10m (3)

Therefore, the system needs to be able to detect objects
that are 10 m away to fulfill the requirement. Adding 30%
buffer, we need to ensure the detection range of the radar
will be at least 14 m.

5 DESIGN TRADE STUDIES

5.1 UI Framework

Here are some options that we considered:

1. Electron

2. Qt

3. Gtk

4. Tauri - this was added during testing because of the
high memory usage of Electron, and we wanted some-
thing conceptually similar to it but that had hopefully
lower resource usage.

Here are the criteria that we used to evaluate the frame-
works. Note that not every factor was weighted equally:

1. Cross-platform – Can it run on both MacOS and
Linux?

2. Language/Framework/Tooling Familiarity -
How familiar are already with the language, frame-
works, and tools?

3. Adoption – Who are the major users of it?

4. Baseline resource usage – How much CPU us-
age and RAM do we use to render roughly the same
things?

5. Cross-compileable – Can we easily build packages
for the RPi 4 from a host computer?

Sample ”Hello world” apps were created in all 4 frame-
works and their memory and CPU usage were measured.
Testing was conducted on a M1 MacBook Air running Ma-
cOS Sonoma (14.2.1) with 16 GB RAM.

The memory usage was obtained by using Activity Mon-
itor (like Task Manager, except for MacOS) and summing
up the relevant threads’ memory usage - e.g., for Electron
we have multiple threads running around so we need to
account for all of them. For calculating CPU usage, we
used an admittedly lot less scientific method where we just
watched the CPU usage of the threads and a value as the
max only if the CPU usage repeatedly hit it – e.g., hitting
1% CPU usage just once wouldn’t count, only if the usage
fluctuated up to 1% a few times.

Table 1 contains a summary of our testing, and a full
version with citations can be found here.

For Tauri, we were unable to find any major applica-
tions that we knew of that used it, which made us a little
more hesitant about whether it would be as production-
ready and usable for real-world apps as the other three.
Therefore, we ruled out considering it further.

In the end, the decision came down to performance over-
head vs. ease of development. Given that we were most
familiar with HTML/CSS/JavaScript for building UIs and
were comfortable using HTML/CSS/JavaScript (equally so
with C, more than C++), we’d rather use Electron despite
the performance overhead simply because the lower learn-
ing curve is more important to us.

5.2 Embedded System

Another decision we had to make was the choice of the
device to use as the compute module. Our final two con-
tenders were the Raspberry Pi 4 and 5. Some reasons why
we were focusing on Raspberry Pis is because they are avail-
able in the ECE inventory (hence zero cost for us) and have
good documentation and resources.

The Raspberry Pi 5 features significantly better perfor-
mance compared to the Raspberry Pi 4 (2 - 3x on many
benchmarks according to [27]). However, in exchange, the
peak power draw for the Pi 5 is 12 W vs. only 8 W for
Pi 4, and in one set of benchmarks the Pi 5 drew nearly
double power at idle and under load [4]. This can be an
issue for us as battery life endurance is one of the require-
ments, and having excessive power draw can make hitting
that difficult.

There were a few other minor considerations such as
the Pi 5 running hotter [4] and the USB max current being
limited on the Pi 5 to 600 mA compared to 1.2 A limit on
the Pi 4 using the same 3A charger [4] [15]. However, in
the end, the main tradeoff was between performance and
power draw.

We felt that the Pi 4 would have enough performance
to run our workload, so the additional performance was not
necessary. Therefore, we settled on the Pi 4.

5.3 Radar

Many sensors can provide distance information between
two objects, aiding blind spot detection and collision detec-
tion. Based on the use-case requirements described in 2, we
are interested in the following performance of a sensor:

• All-weather operation

• Line of Sight Requirements

• Range

• Accuracy

The following sensors are considered:

• Radar

• LiDAR

https://www.electronjs.org/
https://www.qt.io/product
https://www.gtk.org/
https://tauri.app/
https://docs.google.com/document/d/1aHzTlhqWZueQZs1ffh57dDll6ASmMpdW/edit?usp=drive_link&ouid=100976998417001896953&rtpof=true&sd=true
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Table 1: Comparison of various UI frameworks according to our metrics
Cross-
Platform

Language + Framework
Familiarity

Adoption Baseline
Resource
Usage
(Memo-
ry/CPU)

Cross
Compil-
able

Electron Yes We are familiar with
Javascript, HTML, CSS,
and some JavaScript UI
frameworks, but otherwise
no prior experience with
Electron

Used by many major
apps, like 1Password,
VSCode, Slack, and
Discord

106
MB/0.1%

Yes

Qt Yes We are less familiar with C++
and Python, no prior experi-
ence with Qt. It seems as if
you don’t need to use Qt tools,
but it’s recommended and we
aren’t familiar with it

VLC , FreeCAD , many
KDE apps

19.8
MB/0.0%

Seems to be
possible but
very com-
plicated

Gtk Yes We are familiar with C, but
otherwise no prior experience
with Gtk

Firefox , GIMP, Trans-
mission, GNOME desk-
top

22.6
MB/0.0%

Seems to
be possible
but compli-
cated

Tauri Yes We are familiar with
Javascript, HTML, CSS,
and some JavaScript UI
frameworks, but otherwise no
prior experience with Tauri

No known major apps
using it

74.6
MB/0.0%

Currently
not possible

• Ultrasonic Sensor

In order to support the usage of the system in rainy
conditions, the detection sensor will be covered by a water-
proofed cage. This means that we would require a sensor
that cannot be affected by ambient conditions. Due to
the enclosed cage, the sensor should also not be limited
by direct line of sight. Radar has advantages over LiDAR
as radar signals will be able to better penetrate weather,
allowing detection in bad weather conditions [18] [9]. Fur-
thermore, radar can penetrate solid materials, whereas it
is unlikely that LiDAR can pass through opaque materials,
which limits our enclosure material choices.

The range of the detection sensors needs to be greater
than 10 m per the use-case requirements. Both LiDAR and
radar can achieve this range. Ultrasonic sensors, although
they might be more cost-effective, typically have a shorter
range than what we require.

While accuracy is comparable, LiDAR typically has
very high precision in measuring distance, especially in the
short to medium range, whereas radar has a slightly lower
precision [9].

Combining all the factors above, radar stands out as
the most ideal detection sensor for this system. We have
chosen K-LD7 radar as the module because it would pro-
vide direct serial output, reducing the workload of signal
processing. However, one thing to note is that the K-LD7
will not register a target if the radar and the target are rel-

atively stationary [23]. For the specific case of bike blind-
spot detection, it is very unlikely that the vehicle behind
the bike will travel at the same speed as the bicycle. So, it
is considered reasonable to sacrifice such drawback for the
ability to detect in all weather conditions.

5.4 Turn signal and Auto-Cancellation

Since we’re planning to implement turn signals that
users can control with auto-cancellation, purchasing off-
the-shelf flashing lights from Amazon or other sources is
not feasible. The uncertainty of the wiring diagrams and
the complexity of figuring it out is comparable to design-
ing entirely new turn signals. Consequently, we explored
motorcycle signals, often sold as LED chunks. However,
our research revealed that common lightweight motorcycle
turn signal lights operate on a 12V power supply, typical for
motorcycles. Introducing motorcycle LEDs and a DC-to-
DC converter adds another layer of complexity. Therefore,
we’ve opted to purchase bright yellow LED chips to craft
our custom turn signals.

Regarding the turn switch, our initial plan was to buy
motorcycle turn switches, primarily for easy momentary ac-
tivation and convenient handlebar mounting. However, an
aftermarket motorcycle switch we acquired from Amazon
turned out to not be momentary, meaning it doesn’t return
to neutral after activation, causing it incompatible with the
auto-cancellation feature. As a solution, we’re purchasing
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waterproof momentary switches and customizing our turn
switches.

For the auto-cancellation feature, our original idea was
to use a potentiometer as a handlebar position sensor, con-
sidering the option of utilizing gearing to amplify turning
for more drastic readings. However, through observations,
we noticed that during bike rides, the handlebar rarely
turns more than 5 degrees on each side when making a
turn. Additionally, the maximum amplification achievable
through gearing would be at most three times, increasing
the required torque. This compounds the existing issue
of high-resistance potentiometers. Therefore, our current
plan involves using a magnetometer mounted on the Rasp-
berry Pi to measure the bike’s heading and implement auto-
cancellation based on the entire bike’s dynamics.

6 SYSTEM IMPLEMENTATION

6.1 Turn Signal

The schematic is shown in Fig. 4

6.1.1 Turn Signal Lighting

Our solution integrates 3 5V 1W LEDs (Hyunduo 5V
1W 200lm Yellow), each emitting 200 lumens of vibrant yel-
low light on each side of the bicycle (front left, front right,
rear left, rear right) for a total of 12 LEDs onboard the
bicycle. This configuration ensures signaling capabilities
both at the front and back of the bike, improving visibil-
ity for bikers and making them more noticeable by other
participants on the road.

To control the power supply, we will send control signals
to the gates of N-MOSFETs (BS170 from the 18-220 lab)
to regulate the power on and off from a separate 5V 3A
USB port on the power bank rather than powering them
from the RPi’s 5V pins.

Originally, we were expecting a total current draw of
2.4A combined from all the LEDs, assuming no resistor in
place:

I = 12× 1W

5V
= 12× 0.2A = 2.4A (4)

This would have far exceeded the maximum current out-
put from Raspberry Pi, so that’s why we used the combi-
nation of MOSFETs and a separate power source to illu-
minate the LEDs. However, it turns out that with resistors
inline, the current draw drops down to a peak of 200mA
which means we could theoretically power the LEDs from
the Pi. However, we decided to stick with powering the
LEDs from a separate USB port.

6.1.2 Auto-Cancelling

To improve the user experience, we’re implementing
turn signal auto-cancellation, similar to how cars will au-
tomatically deactivate your turn signal once you complete
a turn.

We used a magnetometer (Adafruit MMC5603) as a
compass in order to sense the heading of the bicycle. The
magnetometer itself is mounted on the center of the bicy-
cle, so as the entire bicycle turns the heading will change.
This is preferable to mounting it on the handlebars because
when stopping at a traffic light, some bicyclists turn their
handlebars to the side. We do not want to deactivate the
turn signals when they rotate it back to straight to con-
tinue moving as they haven’t finished (or started for that
matter) turning.

Using a magnetometer as a compass was not as trivial
as we thought. In the end, we also needed to perform com-
pass calibration (as described in Jason’s status reports) to
get the system to work reliably. The code used for calibra-
tion is primarily derived from a Jupyter notebook provided
by Adafruit [13].

The magnetometer is controlled by a Python script run-
ning onboard the Pi which reads the magnetic fields, ap-
plies calibration values, and then computes the heading.
The heading is then sent to the user interface program for
further use.

When the turn signal is first activated, the current head-
ing of the bicycle is recorded as the start heading. Then,
the heading of the bicycle is monitored at a rate of 10Hz,
and if it exceeds 30◦ in either direction of the starting angle,
the turn signals will be deactivated. Note that this 30◦ is
as measured by the magnetometer, but due to inaccuracies
in the magnetometer, the actual turn angle required does
deviate from this.

6.1.3 User Control

The user will control the turn signals through two wa-
terproof buttons (Twidec Momentary Push Button) that
are enclosed in a custom enclosure and communicate with
the Raspberry Pi. The buttons are directly wired between
GND and GPIO pins in the Pi which have the internal pull-
up resistors active. Therefore, when the switches are not
pressed the Raspberry Pi will read a logic high, but when
pressed the pin will read a logic low. The software on the
Pi will detect this and trigger a turn signal action.

Upon the initial button press, the appropriate LEDs
will begin blinking and an indicator will also blink on the
screen, similar to how a car has the turn signal indicator
blink on the dashboard. As mentioned above, if the bike’s
orientation deviates by around 30◦ from the starting di-
rection during the turn, the turn signal will automatically
deactivate. In cases where the user intends to change lanes
using the turn signal, they can press either of the two but-
tons to cancel the signal.

6.2 Radar

6.2.1 Hardware

The radar used for blind spot detection was mounted
at the back of the bike, facing the rear. The radar used
for front range indication was mounted in the front of the



18-500 Final Report - 3 May 2024 Page 8 of 18

Figure 4: Turn Signal Schematic[3][10][5][26]

bike, facing front. Both radars were enclosed by a water-
proof box, which was to ensure the all-weather operation
requirements. The radars were powered by the 5V output
from the Raspberry Pi. The Tx and the Rx pins of the
radar were connected to the UART Tx and Rx pins of the
Raspberry Pi. All the wiring of the radar went between it
and the Raspberry Pi.

The basic hardware setup remained unchanged for the
most part. After the initialization of the radar, however,
it did not work. We went to the datasheet to realize that
the radars required even parity pits for UART, but the de-
fault UART on the Raspberry Pi 4 did not support even
parity. We had to consult the datasheet to find the UART
ports that support even parity bits. We used UART2 and
UART3 on the Pi at the end.

6.2.2 Software

Figure 5: Radar Flow Chart

The radar sensor communicated with the Raspberry Pi
over UART. We opened the UART port and used the proto-
col 2,000,000-8E1. A Python driver was available to inter-
face with the K-LD7 radar module. However, since we only
used some functionalities of the radar, we did not need to
rely on the driver. The code was adapted from some sam-
ple codes from RFbeam on how to send the correct bits to
initialize the radar [25]. 5 shows the flow chart of commu-
nication. We were particularly interested in distance range,
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max velocity, and baud rate parameters for our detection
purpose.

Figure 6: Software Block Diagram

In addition to the UART issue described in the previ-
ous section, other challenges with the radar software setup
included de-noising the targets and sending them properly
to the UI interface. This is necessary because a single vehi-
cle can show up as multiple radar targets [12]. During the
first attempt, we plotted all the targets that were detected
to observe the detection results. However, it turned out
that there was a lot of noise in the data, where some data
points would get dropped across different frames. To solve
this issue, we discussed and wrote different algorithms on
the whiteboard to de-noise the results. The decision was to
sample all the data points across three consecutive frames.
Only the targets that appeared in all three frames would
be treated as an obstacle and sent to the interface. We
discovered that we could use named pipes to send the in-
formation between the radar processing script in Python
and the UI implementation in JavaScript. We packed the
data into JSON format and did some basic testing to verify
the communication.

6.3 User Interface Software

Our Raspberry Pi 4 runs off a standard Raspberry Pi
OS (which is based on Debian Linux [14]) installation, cre-
ated using the Raspberry Pi Imager.

Using Linux instead of an RTOS or other custom oper-
ating system gives us access to pre-written drivers for the
various peripherals (especially the display) and access to
more traditional desktop graphical frameworks. This sim-
plifies bring up significantly.

The user interface itself is built using Electron which
“is a framework for building desktop applications using
JavaScript, HTML, and CSS ... that work on Windows,
macOS, and Linux — no native development experience
required” [7]. This allowed us to initially start develop-
ing on a Mac and switch over to developing on Linux later
without having to rewrite anything.

Since working with just pure JavaScript, HTML, and
CSS can be a little difficult to accomplish what we want to
build, we used a framework called React. React actually
uses JSX which is JavaScript with syntax extensions [24],
but it allows us to accomplish everything we need to do in-
cluding things like styling, displaying live sensor data, and
handling user inputs.

We initially designed a mockup of the UI in a software
called Figma. The final UI looks like what is depicted in

Fig. 7.

Figure 7: From left to right, the images show the visuals
indicating a car in front at (1) far distance (2) medium dis-
tance (3) close distance (4) a car on the left side behind the
bicycle

To display the range of cars, we have what are called
”range indicators”, one for the front of the bicycle and one
for the rear. The range indicators consist of three arcs,
each colored a different color. The furthest arc is green
corresponding to if a car is far from you. The middle one
is yellow, and the closest arc is red indicating that a car
is close to you. This design is inspired by Toyota’s park-
ing assist proximity sensing system which can be seen in
the ”Distance Display” section of the 2021 Toyota Venza
manual.

The bicycle itself is represented by a blue triangle, but
it’s really just there to separate the front and rear range
indicators.

The blind spot indicators are orange vertical bars that
appear on the side of the screen when a car is in an adja-
cent lane. The bar will appear on the side that the vehicle
is approaching.

Lastly, the turn signals themselves are indicated by
blinking turn signal icons that are copied from Tesla’s turn
signal design which can be seen in the Tesla Model Y man-
ual. They only appear when the corresponding side’s turn
signal is activated.

Overall, the user interface software is responsible for
quite a bit of functionality of the system. Perhaps most im-
portantly, it displays the relevant information to the user.
Internally, it receives data from Python scripts that com-
municate with the radars and magnetometers and displays
them in an appropriate manner. And as mentioned above,
it also handles turn signal button presses and actually con-
trols the turn signal LEDs too.

To ease in testing the user interface’s logic and behavior
before all the hardware was ready, we built a debug system
that allows us to simulate radar data and turn signal but-
ton presses. In addition, it also displays live data such as
the radar data and the turn signal status. A screenshot of
it is shown in Fig. 8

https://en.wikipedia.org/wiki/Named_pipe
https://www.raspberrypi.com/software/
https://react.dev/
https://www.figma.com/
https://www.toyota.com/owners/warranty-owners-manuals/digital/article/venza-hv.2021.venza-hv/2021/om48k18u/ch04se050407/
https://www.toyota.com/owners/warranty-owners-manuals/digital/article/venza-hv.2021.venza-hv/2021/om48k18u/ch04se050407/
https://www.tesla.com/ownersmanual/modely/en_au/GUID-371B94E9-E74F-4BBB-9A55-5F4182894B99.html#D1E7234
https://www.tesla.com/ownersmanual/modely/en_au/GUID-371B94E9-E74F-4BBB-9A55-5F4182894B99.html#D1E7234
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Figure 8: A screenshot of the debug window for the user
interface.

7 TEST & VALIDATION

For most of the design specifications, we completed unit
testing and integrated real-world testing. Unit testing in-
volved evaluating the device indoors without installation
on a bike and conducting tests outdoors with the device
installed on a stationary bike. Real-world testing entailed
assessing the device in actual traffic conditions, with video
recording for subsequent analysis.

7.1 Power Consumption

Power consumption is a key component of our project.
Our goal is to ensure that our system can continuously op-
erate for more than 2 hours, so the total power consump-
tion needs to be less than 6 A given the requirements stated
previously.

After the system was installed, we conducted the test by
placing ammeters between the outputs of the battery pack
and RPi 4 and the LEDs. During the test, we made sure all
the LEDs were turned on and radars were actively detect-
ing to simulate a worst case workload. We then summed
the current draw of the RPi (and its peripherals) and the
LEDs to get the total power consumption. We took the
peak current of the system and the average current of the
system over 100 samples. Table 2 shows the collected in-
formation.

The result indicated that the entire system satisfied the
overall power consumption requirements. Furthermore, as
the RPi and LEDs each occupy a separate USB port, we
easily met the 3A per-USB port current limit.

7.2 Battery Life

The system was able to run well beyond 2 hrs. During
demo day, we powered the system from the battery pack
the entire time without recharging.

7.3 System Uptime

The system was up the entire 3 hour period of demo day,
which is 100%. This satisfied the up-time requirements.

7.4 Data Transmission

The radar was capable of communicating with a baud
rate of 115200 (2,000,000 in reality) for UART communi-
cation with the Raspberry Pi.

7.5 Radar Accuracy Baseline

These tests aimed to benchmark the performance of the
radar, noting the possible offsets between the real perfor-
mance and the datasheet. The following tests were per-
formed:

• Distance Accuracy: The radar was placed at a sta-
tionary location, and a car was placed more than 30
meters always from the radar. The car stopped at
5 different locations from the radar. The distance
output of the radar was recorded and the distance
between the car and the radar was measured using a
tape measure. The results are shown in Table 3.

The average error in the distance is 5.44%, which is
within the requirement of ≤ +/-10% deviation, so the
radar met the accuracy requirements with distance
measurements.

• Distance-Error Relationship: This test was not re-
quired by our design requirements. However, we were
curious about whether there was a relationship be-
tween the distance accuracy and the distance of the
object. The following graph was generated from the
data in 3

Figure 9: Radar Error vs. Distance

As we can see from the graph, there was no particular
relationship between the error of the radar and the
distance.
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Table 2: Current Draw Data

Device Peak Current (A) Avg. Current (A)

RPi 1.440703 0.947011
LEDs 0.199674 0.19727
Total 1.640377 1.144281

Table 3: Distance Accuracy

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Reported (m) 19.84 23.56 13.99 7.40 3.61
Actual (m) 21.01 24.82 15.19 7.42 3.33
Difference (m) 1.17 1.26 1.20 0.02 0.28
Percent Error (%) 5.57 5.08 7.90 0.27 8.41

Average (%) 5.44

• Speed: The radar was placed at a stationary location,
and the car was parked 30 m away from the radar to
start. The car traveled towards the bicycle at 5 mph
based on the speedometer on the car. The output
velocity of the radar was recorded. The test was re-
peated 3 times and an average was taken. The results
are shown in Table 4.

The average speed error of 7.00 % is within the
requirement of ≤ +/-10% deviation, so the radar
met the accuracy requirements with velocity mea-
surements. Note that we did not measure the actual
speed of the car using something like a radar gun, so
it’s possible the vehicle’s speed deviated from 5mi/h.

Although we did not specifically test the requirement
for correctly identifying the direction of the velocity,
the results from the speed test matched the direction
of the travel of the car.

• Maximum Range: The radar was placed at a station-
ary location, and the car was parked 30 m away from
the radar to start. The range of rear detection and
the range of side detection were both tested.

1. Rear Detection: The car was aligned to the cen-
ter of the radar and driven at a constant velocity
towards the bicycle. The data point at which the car
was first reliably detected was recorded. The test was
conducted 3 times and the results were averaged.

2. Side Detection: The car was aligned to the right
side of the radar and driven at a constant velocity
towards the bicycle. The data point at which the car
was first reliably detected was recorded. The test was
conducted 3 times and the results were averaged.

We required the object to be detected from at least
14m from the radar. The max range in this case was
25.14 m, which satisfied the requirement. The side

detection showed up at around 18 m, but the target
was not very reliable, so these data points were cho-
sen as they were constantly showing the target. We
also observed that, for this specific unit test, the far-
ther the car, the more likely it would be picked up by
the rear region.

• Data Update Frequency: No explicit data was
recorded for this test. However, from observation,
the users were able to get updates for obstacle infor-
mation in a timely fashion.

7.6 Detection Lead Time

The detection lead time was tested by putting the bike
that contained the system on the side of the road. We
started a timer when the blind spot detection warning was
triggered and stopped the timer when the car passed the
bike. The results varied between 1 second and 2 seconds.

Since the radar detection is based on distance, the de-
tection lead time would be affected by the speed differences
between the moving object and the bike. In the require-
ment, we assumed a 15 mph speed difference, which yields a
1.5 s lead time requirement. The road environment that we
tested on would have a speed difference of close to 30 mph.
So this was supportive evidence for sufficient detection lead
time.

7.7 Simultaneous Targets

This requirement was tested by having 3 people run-
ning towards the radar. All three targets were able to be
detected.

7.8 Radar Accuracy Confusion Matrix

The confusion matrix was computed based on the data
of the real-world testing in this video. In the test, we rode
the bike on the street while recording the output from our
system and the ground truth of the actual surroundings. In

https://youtu.be/qBFMUNKUvwM
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Table 4: Velocity Data

Trial 1 Trial 2 Trial 3

Velocity (m/s) -1.844444407 -2.330555651 -2.061111132

Average (m/s) -2.07870373
Average (mph) 4.649927815
Error (%) 7.00

Table 5: Max Range Data

Trial 1 Trial 2 Trial 3

Max Range (Rear)
Range (m) 25.30 24.87 25.24

Average (m) 25.14

Max Range (Right)
Range (m) 12.13 11.79 11.60

Average (m) 11.84

the 2.5-minute test, we rode the bike into different traffic
conditions that a rider might be in, such as in the bike
lane and making a turn in the turn lane. We compared
the video and the output from our system and recorded
the total time of the occurrence of false positives and false
negatives.

It yielded a false positive rate of 25.83 % and a false neg-
ative rate of 3.26 %, which were within our requirements
of ≤ 40% False Negatives and ≤ 30% False Positives.

7.9 Waterproof

We have initially planned on performing IPX4 water-
proof testing on our system. However, due to the complex
testing procedures of IPX4, we decided to modify the test
to something simpler yet still partially mimics a real-life
raining situation.

To test our waterproof system, we decided to make use
of the on-campus sprinkler system. Once part of our bike
is sealed, we push them next to the sprinkler and let the
components get sprayed directly to mimic a rainy situation.
We were able to fully wet the rear radar and LED modules,
and they were still functional after they were soaked. This
suggests that we should be able to meet our designed use-
case requirement: allowing commuters to ride their bike
with our system in the rain.

7.10 Turn Signal Brightness

The turn signal brightness was tested both in the day
and at night. We put the bike at a stationary location and
picked a spot that was 100 ft away from the bike during the
day and 500 ft away from the bike at night. Both distances
were measured by using Google Maps satellite images.

In both cases, we were able to see the turn signal of the
bike, meaning that it achieved the turn signal brightness
requirements. In a subsequent experiment using a transis-
tor that has a much higher current tolerance, we discovered
that the brightness of the LEDs was significantly decreased
due to higher resistance, so this change was reverted.

8 PROJECT MANAGEMENT

8.1 Schedule

The schedule and responsibilities are shown in Fig. 11.

8.2 Team Member Responsibilities

All team members worked on system integration and
testing.

• Jack: Radar initialization and implementation, radar
tuning

• Jason: User interface software, turn signal software
(to handle button inputs, LED outputs, and use the
magnetometer as compass to auto-cancel the signals)

• Johnny: CAD design for exterior, 3D printing, and
building enclosures, parts installation

8.3 Bill of Materials and Budget

The BOM as of writing this report is in Table 6. All of
the purchases were used.

8.4 Risk Management

Several risk factors were involved in this project:
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Table 6: Bill of materials

Part Name Quantity Cost Total

RPi 4 1 0 0
Hosyond 5 Inch IPS LCD 1 42.99 42.99
hdmi cable 0 0 0
RFbeam Microwave GmbH K-LD7 2 89.275 178.55
Anker Power Bank, 26,800 mAh 1 56.2 56.2
Feiteplus Handlebar Mount Switch 1 13 13
Hyuduo 1W 5V LED Chip Bulb 1 11.75 11.75
electrical wire 10 0 0
BS170 2 0 0
Twidec Momentary Push Button Switch 1 9.99 9.99
Adafruit MMC5603 1 11.19 11.19
Freenove Breakout Board 1 11.95 11.95
Techspark acrylics 2 8 16
McMaster-Carr printing filment 2 24.95 49.9
McMaster-Carr sealant 1 14 14
McMaster-Carr 4 in 1 cable 1 14.61 14.61
McMaster-Carr heat shrink 1 4.62 4.62
McMaster-Carr seal rubber 1 12 12

$446.75

8.4.1 Design

• Waterproof Case: One concern was making sure the
material and the setup of the case would not com-
promise the performance of our system. We man-
aged this risk by reviewing the documentation of the
radar which guided us on selecting radome materials
and the available materials. We also discussed this
topic with the instructors to determine the optimal
solutions.

• Auto-cancellation turn signals: We were not sure how
well the magnetometer would perform to detect head-
ing changes of the bike, which is the information sup-
plier for the auto-cancellation turn signals. We man-
aged the risk by allowing us to have backup plans like
using a potentiometer or flex sensors.

• Integration: The biggest risk during integration was
something would not work as intended, as we had
little time to correct it. We were facing issues with
our turn signals, which we realized were due to the
misuse of the transistors. We managed this risk by
working in parallel and identifying the key compo-
nents that needed to work first and prioritizing their
functionality.

• Radar: We wanted to make sure that we could get the
radar to work, but it was a big task from setting it
up to processing data. We managed this by breaking
down the tasks into smaller items. For each item, we
implemented them and did unit tests before moving
on to the next. This gave a good ”phase check” of
the system.

8.4.2 Logistics

The logistics risks were that we would run over time
for some tasks on the schedule. We managed this risk by
having around a week of slack time. It turned out that the
slack time was critical to the project’s success.

8.4.3 Resources

We wanted to make sure that our project would fall
within the allocated budget. Any greedy purchases would
risk us running over the budget. We managed this by be-
ing conservative during the first round of the purchases. We
researched available resources that we could use instead of
buying new ones. For each individual component, we re-
searched the pros and cons of different models and selected
the best that suited our needs. We also prioritized the key
components of the project first like the Pi and the radar.

9 ETHICAL ISSUES

Bike commuters would be the ideal users for our system
because they will directly benefit from the system as the
targeted group why this system is built. The bike com-
muter and the public who share the road with them are
most vulnerable. If the system fails, it will directly impact
their safety. If the system provides false information, then
they also run a higher risk of getting into an accident.

Our BikeBuddy will have a great impact on the global
scale. The system will be able to be installed on differ-
ent kinds of bicycles, so each individual around the world
could benefit from such a system. Bike safety is definitely
not only a local concern in Pittsburgh but an issue faced by
all bike commuters around the globe. We try to make the
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system generic so that it will be able to perform things like
blind-spot detection and illuminate turn signals in diverse
road and weather conditions. It will be designed to be able
to use and interpret the information easily. This system
will not only be beneficial to the cyclist community around
the world but to all the general public who shares the road.
It will likely reduce the number of crashes between the car
and the bike, creating a safer road environment. It will not
just be a system that will contribute to those in academics,
but a system that people can actually use, benefiting their
day-to-day lives on a bike, no matter where they are.

Integrating blind spot monitoring and turn signaling
features represents not only a technological advancement
but also an innovation intertwined with cultural factors. In
cultures where cycling is popular, these innovations can sig-
nificantly enhance safety, reflecting a commitment to pro-
moting responsible behavior on the roads and emphasizing
cyclists’ well-being.

In addition, clear and consistent signaling enhances ad-
herence to traffic regulations, contributing to a smoother
flow of traffic and improved road safety. When riders con-
sistently utilize turn signals, it becomes easier for law en-
forcement to monitor the traffic.

If we are able to encourage more people to bicycle in-
stead of taking their car by giving users more confidence in
their safety on the road, we can improve the environment
by taking more vehicles off the road. This will hopefully
improve air quality, reduce the use of fossil fuels, and reduce
noise pollution.

However, our product itself may have a slight nega-
tive environmental impact due to the materials involved
in building the system. For example, our battery (Anker
337) uses lithium, and the extraction of lithium can have
negative impacts on the environment. While our product
does not use large amounts of lithium compared to things
like electric vehicles or other resources such as rare earth
metals that are perhaps needed for things like the Rasp-
berry Pi, we nonetheless do contribute to these issues.

Public health is very relevant to our project. We are
searching for sustainable ways to travel and biking is one
of them. The goal of our project would be to let more peo-
ple feel safe about cycling and bring more people into this
domain. We would like to use our technology to mitigate
the risk of bike accidents and reduce the number of hospi-
tal visits due to accidents. One issue would be distraction-
related accidents. Although the system is aimed at safety,
it might distract the cyclists while they are reading the in-
formation. There are trade-offs between providing enough
information to the rider and not too much information. To
mitigate this, we are making the user interface simple and
clear, so that people do not need to read small text from
the display while riding.

This has an interconnection with public health consid-
erations. The safety of cycling has always been a major
topic, as traffic accidents due to bicycles are not reducing
every year. The project will enhance the situational aware-
ness of cyclists, providing them with more tools that they

can use to protect themselves while sharing the road with
larger vehicles.

Enhancing public welfare is every community’s goal.
People should be able to access products equally, espe-
cially those safety-critical equipment. Our project will try
to enhance such factors by allowing more people to have
access to a bike safety tool. This will address the issues
that people feel biking is too dangerous so they will stay
away from it. When more people start biking, the commu-
nity becomes greener, with less noise generated by cars and
other motor vehicles. This will enhance the happiness of
the community. One trade-off is between the price of our
system and its functionality. We do not want the system
to have lower quality just to make it cheap. Instead, we
are picking reasonable sensors and solutions that will fulfill
our requirements, while being relatively cheap.

10 RELATED WORK

Within ECE at CMU, there were several previous teams
that did something similar for their capstone.

A group in 2019 [6] has developed a similar bike safety
suit that included a safety vest, blind spot detection using
LiDAR, and a user interface app to control settings.

Another group in 2019 [28] seems to have developed a
system that seems to have used ultra-wideband technology
to localize bicycles and vehicles relative to each other [16].
Unlike other systems listed here, it seems that both the
vehicle and bicycle will receive alerts.

Finally, another group in 2021 [2] developed a mi-
crowave radar-based bicycle safety and awareness tool.

There also exist several product families out in the real
world that do something similar to our project.

For example, Garmin’s Varia series includes products
such as the Varia RTL515 which combines a tail light and
a radar to warn of vehicles approaching from behind, or
the Varia RCT715 which combines a taillight, radar, and
camera which saves footage in the case of an incident.

Other bicycle radars according to [20] include the Bry-
ton Gardia R300L which is a taillight (with brakelight func-
tionality) and radar, along with the Magicshine SEEMEE
508 which also combines a taillight (with brakelight func-
tionality) and radar. All these radars can see up to 140m
away (190m for the Gardia radar).

For the display and centralized hub, Garmin’s EDGE
series of bicycle computers seems to have some of the same
functionality. For example, they can have navigation data,
and when integrated with a radar, can display an approach-
ing vehicle on the screen.

Lastly, Amazon seems to carry bicycle turn signals, sim-
ilar to what we developed here. For example, this WSD-
CAM tail light includes features such as brake lights, turn
signals, anti-theft alarms, and horns.

https://www.garmin.com/en-US/c/sports-fitness/cycling-bike-computers-bike-radar-power-meter-headlights/?series=BRAND10561#shopallcycling
https://www.garmin.com/en-US/p/698001
https://www.garmin.com/en-US/p/721258
https://us.eshop.brytonsport.com/products/gardia-r300l-1
https://us.eshop.brytonsport.com/products/gardia-r300l-1
https://magicshine.com/products/seemee508-radar-taillight-safety-light
https://magicshine.com/products/seemee508-radar-taillight-safety-light
https://www.garmin.com/en-US/c/sports-fitness/cycling-bike-computers-bike-radar-power-meter-headlights/?series=BRAND482#shopallcycling
https://www.amazon.com/WSDCAM-Signals-Wireless-Rechargeable-Bicycle/dp/B0CJF981Y9
https://www.amazon.com/WSDCAM-Signals-Wireless-Rechargeable-Bicycle/dp/B0CJF981Y9
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11 SUMMARY

BikeBuddy provides a new solution to cycle safety by
allowing cyclists to gain more situational awareness with
tools like blind spot and range detection. The added turn
signals will also allow the cyclist to communicate with other
road users better, enhancing safety. The use of radar and
waterproof enclosures allows the system to function even
during adverse weather conditions, which allows the com-
muter to bike with such a system in the rain.

There were several lessons that we learned over the
course of this project. On the logistical side, we learned
that it’s important to run as many tasks in parallel as pos-
sible to save time. We also learned that even one week of
slack time wasn’t enough. More slack time can be helpful.

On the technical side, one thing we learned was that
magnetometers are not trivial to use as compasses. They
need to be calibrated, and nearby magnetic objects such as
the tool drawers in TechSpark can affect the accuracy of it.
If we were to do this again, we would have used an IMU
instead.

It is also a lot of complexity to use radars for object
detection, even if the radar already does data processing
for you. It was a persistent challenge to get the radar to
not be so noisy.

Lastly, make sure to read the datasheets, especially with
respect to the limits, and make sure you know what you’re
subjecting the device to. We blew up a bunch of MOSFETs
because we didn’t look at the current limits and pushed too
much current through them.

More positively, JavaScript proved to be quite versatile.
We were able to use it for desktop programming and some
embedded system tasks instead of just web development
which is really nice. The developer ecosystem is quite nice,
especially the hot-reloading which allows code changes to
automatically propagate to the running application.

Building a debug system for the user interface which al-
lowed us to simulate sensor inputs also proved to be quite
useful. We would strongly recommend building something
like this.

Glossary of Acronyms

• BSM - Blind Spot Monitoring

• RPi – Raspberry Pi
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