18-500 Final Report - May 14, 2021

Page 1 of 11

conFFTi: An FPGA Music Synthesizer

Authors: Hongrun Zhou, Jiuling Zhou, Michelle Chang
Electrical and Computer Engineering, Carnegie Mellon University

Abstract — The system is a digital music synthe-
sizer that accepts real-time input from a MIDI key-
board, synthesizes the sound via an FPGA, and outputs
the audio through a DAC circuit. User input is given
through controls on the MIDI keyboard, and the effects
of the modulations are being produced with a very short
latency that is undetectable to the human ear. The sys-
tem is capable of generating sounds with a selection of
waveforms, modulating the ADSR envelope, replaying
a sequence, and applying unison detune.

Index Terms — Music synthesizer, Audio, FPGA,
MIDI

1 INTRODUCTION

conFFTi is a FPGA-based digital hardware synthesizer
capable of providing the user with an intuitive musical com-
position experience. We chose to use FPGA for its low la-
tency, configurability, and portability —- all three of which
are vital characteristics for realistic and professional uses
of synthesizers. Our approach is advantageous compared
to other musical synthesizers on the market for its ability
to produce results at a low latency of less than 10 millisec-
onds, its reasonable price point, as well as its portability.
The output audio produced by our product is compliant
with the industry standard for audio signal processing, as
a 44.1kHz, 16-bit and dual channel signal.

Additionally, conFFTi is designed with an emphasis on
assisting with the musical composition process. The system
supports 4-note polyphony, giving the user freedom in their
choice of input. The system also provides 8 types of waves
with configurable duty cycles that gives an extra flare to
the sound. For sound effects, the system provides unison
detune and ADSR envelop that alter the sound signature.
For sequence generation, the system supports recorder and
arpeggiator, both allowing the user to generate a continu-
ous melody with a sequence of notes. With the aforemen-
tioned features, conFFTi is an effective and intuitive, yet
affordable and portable, musical synthesizer.

2 DESIGN REQUIREMENTS
2.1 Output quality: 44.1kHz, 16-bit, dual
channel

ConFFTi provides a high fidelity audio output at the
industrial standard CD quality with a sample frequency of
44.1kHz and a bit depth of 16 bits. The 44.1kHz sample
frequency is over the Nyquist frequency for the uppermost
limit of human hearing at 20kHz, which means the 44.1kHz
sample frequency is able to capture the full range of fre-
quencies that human can hear without aliasing.

2.2 Latency: <10ms

One of our goals is to bring low latency to a configurable
and expandable design. Modern hardware synthesizers typ-
ically have latency around 3ms while software synthesizers
have around 12 - 24ms [8]. We are setting the audio la-
tency to 10ms from MIDI input to audio output which is
the same as what similar past capstone projects have [5, 6].

However, with our preliminary calculation, the latency
of UART for each MIDI message is

3bytes/msg x (8 4+ 2)bits/byte / 31250baud = 0.96ms.

All the other digital modules will have either combinational
or single-cycle design. Therefore, the theoretical latency of
out system will be around lms.

Human ear is able to detect sounds that are 30ms
apart [1]. Our audio latency requirements way below this
physical limit. However, as a music production tool, lower
latency is always better.

To measure the latency of our system, we used an os-
cilloscope to capture both the MIDI input signal and the
DAC output signal, and compared the time difference of
the signals for a key press event.

2.3 Signal Shape distortion: <5%

We measured the frequency distortion by comparing the
waveforms produced by the synthesizer with the waveforms
produced from MATLAB scripts, and calculated the per-
centage of distortion. This effectively evaluates the quality
of our waveform synthesis technique.

2.4 Frequency deviation: <10 cents

As a music production instrument, it is important to
produce accurate sounds. We would like our user to per-
ceive the minimum level of pitch deviation on their end. To
measure this quantitatively, we used a commercial tuner to

18-500 Final Report - May 14, 2021

Page 2 of 11

detect the pitch of the generated sound of each note and
achieve a deviation that is less than 10 cents.

2.5 8 choices of waveform with duty cycle

Each of the audio processing pipelines is able to gener-
ate three basic waveforms: sine, pulse width, and triangle,
along with five waveforms that we sampled from musical in-
struments. The system allows for duty cycle modulations
for all of the waveforms produced. The user can choose the
waveform with the switches on the FPGA.

2.6 Effects: unison detune and ADSR

To support generation of more interesting sounds, we
support unison detune to each note. The unison detune ef-
fect augments the signal playing with multiple slightly out
of phase and detuned versions of the signal to produce a
fuller sound, like the violin section in an orchestra. The
user can adjust the degree of the detune with a single knob
on the keyboard.

The ADSR envelope specifies the amplitude profile over
time of each note. ADSR refers to the attack time, decay
time, sustain level, and release time for each note played.
These quantities can be controlled with four knobs on the
keyboard.

2.7 Polyphony: 4 notes

It is crucial for us to support harmony or chords as
they are essential to a practical music production environ-
ment. As we are developing a proof-of-concept product, we
decided that a 4-note polyphony support is sufficient for
demonstration purposes. A 4-note polyphony support al-
ready requires a development of a polyphony control unit
that can be easily expanded to support more notes if de-
sired. Since the number of audio processing pipelines would
need to match the number of notes played simultaneously,
we decide to cap this number at 4 so that we will have
enough logical elements on FPGA to support all the func-
tionalities.

In practice, 4-note polyphony is able to support most
chords as well.

2.8 Record and Play

With the recorder, the user can press a series of notes
at their desired rhythm while holding the record button.
Then, when the play button is triggered, the synthesizer
will replay the notes at the played rhythm.

2.9 Arpeggiator

The arpeggiator cycles through a series of notes that
the user plays to some tempo, pattern and rhythm.

The user will be able to configure the arpeggiator
tempo, mode, rate, octave and rhythm. Tempo specifies

the pace the notes will be playing, ranging from 40bpm to
240 bpm.

The mode specifies the order in which the notes are re-
played, including Up (rising in pitch), Down (descending
in pitch), Up/Down (rising in pitch followed by descending
in pitch), Played, Random, Chord (all notes played on ev-
ery rhythmic step), and Mutate (configurable with knob to
alter the arpeggio in unexpected ways).

The rate specifies the speed of the arpeggiated notes
using common musical note values: quarter (1/4), eighth
(1/8), sixteenth (1/16) and thirty-second (1/32) notes. Ad-
ditionally, user can turn the arpeggio notes into quarter,
eighth, sixteenth and thirty-second note triplets by using
the Triplet function.

The notes can be played across up to 4 octaves. For
example, an arpeggio that was C3, E3, and G3 at 1 octave
will become C3, E3, G3, C4, E4, and G4 when set to 2
octaves.

Lastly, the custom rhythm feature adds musical rests
to the arpeggio’s pattern, allowing for greater variations in
the arpeggios. We support three rhythmic patterns (note
only, note - rest - note, note - rest - rest - note) and a ran-
dom pattern where each step has a 50% chance of being
either a note or a rest.

3 ARCHITECTURE OVERVIEW

Figure 2: Overall system

conFFTi consists of just two main pieces of hardware: a
MIDI keyboard and an FPGA board. To connect the two
components, a MIDI breakout board is used to interface
the keyboard to the FPGA board. A DAC circuit is also

18-500 Final Report - May 14, 2021 Page 3 of 11
MIDI IrAUdE Processing Pipeline 1| MIDI
Keyboard .
Y l | EH | Dispatcher
5-pin DIN TRS I) | Pipeline
 MIDI Dispatcher- Waveform || AD|SR L | Mixer P
Breakout | 4| Oscilators envelopes | Output (AUDIO
Board [2 =" "=~ DAC
_ |aPio uaRT) o ____N____gPo@®@y

[FPGA |
I Audio I
| _ ——| Processing |— |
| Dispatcher Pipeline 1 |
| |
| Polyphony Audio |
| control Processing | DAC |
: MIDI Pipeline 2 | Driver :
l decoder Audio I
I Record and Processing |— I
l cycle Pipeline 3 I
| |
: Audio :
| | Processing [I
| Pipeline 4 |
C_ - ____________ J

Figure 1: Block diagram

necessary for enabling the connection between our system
with an 3.5mm audio jack.

The MIDI keyboard is in charge of taking in musical
note inputs from the users and providing a parameter con-
trol user interface. The keyboard of our choice, Launchkey
MINT Mk3 MIDI keyboard, provides a piano roll of two oc-
taves with 25 notes in total, which gives the user moderate
freedom in creating musical melodies. In addition to the
piano roll, it also provides 16 drum pads, 10 buttons and 8
rotary knobs, which could be programmed to control var-
ious parameters of the music synthesizer and arpeggiator.
See control mappings in Fig. 3.

The DE2-115 Cyclone IV FPGA acts as a hardware
platform for digital signals processing. The FPGA is pro-
grammed by SystemVerilog which generates synthetic mu-
sical sounds based on the music notes played by the user
on the MIDI keyboard. In order to perform this synthesis,
the workflow on the FPGA is broken down into four stages.

The first stage is a MIDI decoder. This stage takes in
MIDI signal inputs from the GPIO pin via UART, parsing
and aggregating the information into a MIDI event object
that the subsequent system components are able to inter-
pret. These events could be a changing value of a turning
knob, a hit on a particular drum pad, or a key-press on the
piano roll. If the MIDI event is a musical note, it will be
passed down to the following stages. Otherwise, the MIDI
event indicates a change in the state of the system, e.g. a

mode change, a parameter adjustment, in which case the
global state of this system will be updated in this stage.

The second stage is the dispatcher stage, where MIDI
NOTE ON/OFF events are routed to one of the four au-
dio processing pipelines. As illustrated in Fig. 1, the dis-
patcher module is consisted of two parts: the polyphony
and the recorder. The polyphony allows the user to simul-
taneously play four notes on the piano roll and hear the
synthesized sounds of all four notes at once. The recorder
allows the system to loop over a set of notes given by the
user. Both features are realized by keeping a short history
of the NOTE ON/OFF events.

The third stage is the audio processing stage. This
stage begins with waveform oscillators, which generates
audio samples over time with the given period and duty
cycle. One main oscillator oscillates at the period of the
pressed key, and four auxiliary oscillators at slightly longer
or shorter periods. The output of the oscillators are com-
bined, and the combined output is scaled with time-varying
ADSR envelopes. According to how the user sets up the
values on the attack, decay, sustain and release knobs on
the keyboard, the amplitude of the waveform will be scaled
differently. Lastly, the audio is scaled by the velocity of the
key press.

The fourth and final stage is the mixer and the DAC
driver. The mixer takes in all the outputs of the four
pipelines, normalizes the final waveform and passes the re-

18-500 Final Report - May 14, 2021 Page 4 of 11
Unison Attack duration Sustain height
Detune Decay duration Release duration Volume
Enables
Arpeggiator
Tempo Record and
Play
Mode
Rate

Rhythm

Figure 3: MIDI keyboard user interface design

sult to the DAC driver. The DAC driver encodes the audio
in 128 format and outputs to the DAC through GPIO pins.
To hear the result, the user can simply plug a wired head-
phone or a speaker to the audio jack on the DAC circuit.

4 DESIGN TRADE STUDIES
4.1 FPGA Choice

From the experience of similar past capstone projects [5,
6], we learned that to support 4 note-polyphony, the sys-
tem requires a large number of logical elements. Due to
the COVID-19 pandemic, each of the three members is lo-
cated in different parts of the United States. Therefore,
in order for us to develop the system in parallel, each of
us needs an FPGA. From ECE inventory, the FPGA mod-
els that potentially have enough logical elements and with
large number of units available are limited to DE2-115 and
DEO-CV. The DE2-115 board is a larger board with 114,480
logic elements [3], while the DEQ-CV has only 40,000 logical
elements [4]. To avoid switching board mid-development
which will cause a huge delay and shipping hassle, we de-
cided to go with the DE2-115 board.

4.2 MIDI Controller Selection

There are many mini MIDI controllers on the market.
There are two kinds of interfaces that these controllers of-
fer, the USB MIDI interface or the MIDI 5-pin DIN inter-
face. Most controllers in a low price range comes with the
USB output, but by choosing such a controller, we need
to either implement a USB controller or buy an external
USB device controller to parse the MIDI signals, which is
complex and expensive. In avoidance of this extra work,
we decided to work with a keyboard that offers the classic
DIN output and use a MIDI breakout board to interface
with the keyboard in the easiest possible fashion.

Another requirement for the MIDI controller is that it
needs to come with a good number of knobs and faders.
This is so that we can use these existing real estates to
provide an easy and intuitive user interface for manipulat-
ing various parameters on the synthesizer.

We did our research and found that the cheapest con-
troller that fits both two requirements is the Launchkey
MINI Mk3 MIDI keyboard. Even though this controller
comes at a higher price of $109.99, we think the choice is
reasonable because it reduces the complexity of develop-
ment and is affordable within our $600.0 budget.

4.3 Audio output

For audio output, we have two choices - using the audio
CODEC on the DE2-115 board or an external a DAC cir-
cuit. We initially tried use the on-board CODEC, but the
initialization of this device is unintuitive from the FPGA
logic side, as oppose to the on-board processor side. It’s
problematic since our system does not use the on-board
processor. Also, by using external circuit, our system is
less tied to a specific FPGA board. Therefore, we chose
to use an external DAC with audio jack for simplicity and
compatibility.

5 SYSTEM DESCRIPTION
5.1 Subsystem A — MIDI Interface And
Decoder

A standard MIDI protocol is shown in Fig. 4. The MIDI
signal is received from one of the GPIO pins on the FPGA
board at a baud rate of 31,250. The bitstream with 8+2
UART format is first deserialized into bytes in the UART
driver.

18-500 Final Report - May 14, 2021

Page 5 of 11

a bit 0 (LSB)
a bit 7 (MSB)

Stop bit

Start bit
a bit 0 (LSB)

a bit 7 (MSB)

Stop bit

Start bit
a bit 0 (LSB)

a bit 7 (MSB)

Stop bit

i g e L L e s | i gL . L L gL | i gL L . L L L L |

Start bit

Da
Da
Da
Da
Da
Da
Da
Da
Da
Da
Da
Da
Da
Da
Da
Da
Da
Da
Da
Da
Da
Da
Da
Da

P

320 ps | 320 us |
MIDI byte 2 (Data 1) MIDI byte 3 (Data2)

320 us
" "MIDI byte 1 (Status)

==t

Figure 4: Example 3-byte MIDI event

The supported MIDI events consist of three MIDI bytes.
The first byte is a status byte that tells whether the event is
a NOTE ON, NOTE OFF or a PARAMETER CHANGE.
The second byte contains information on the which MIDI
note is being played or which knob or fader is being modi-
fied. The third and final byte tells the new velocity or the
new value of the knob or fader.

! isStatus

0,

isStatus .
lisDataMsgl

isDataMsgl PARAM
lisDataMsgll CHANGE
isParam
Change

isNoteOn
isNoteOff

Figure 5: MIDI decoder FSM

5.2 Subsystem B — Dispatcher

This subsystem takes the MIDI events and dispatches
notes to each audio processing pipelines. The recorder
keeps a history of NOTE ON/OFF events and their times-
tamps. Upon replay, the recorder sends the event to
polyphony module according to the timestamps. The
polyphony module them decides how to dispatch the notes
to the pipelines.

5.2.1 Recorder

In recording mode, the recorder module uses a counter
to keep time. Upon receiving a NOTE ON/OFF event,
the event is pushed into a queue, along with the current
counter value as its timestamp. The timestamp when the
record button is release is also pushed into the queue.

When replaying the events, we keep track of the index
of the next event. The counter is incremented at each tick.
When the counter value matches the timestamp of the next
event, the event is sent to the polyphony module. Then the
index of the next event is incremented. The counter resets
when it reaches the last timestamp, i.e. the timestamp
when the record button is release.

5.2.2 Polyphony

The polyphony control module is described by the al-
gorithmic state machine (ASM) in Fig. 6. It implements
a first mote priority policy for notes that are not released,
where the the newly pressed notes are ignored once the
maximum polyphony is reached. For notes that are al-
ready in released stage (i.e. the key has been release but
the volume is slowly fading), a new note would take pri-
ority. In other words, once 4 notes has been pressed, any
additional notes pressed are ignored until any of the first 4
are released.

On NOTE ON event, the pitch and the velocity of
the notes is stored in pitches and velocity, respectively.
Then the polyphony control signals the respective pipeline
to start producing the note. On NOTE OFF event, the
release signal of that note is sent to its pipeline and the
note is marked as off.

MIDI Message
(NOTE ON/OFF, pitch, velocity)

NOTE ON NOTE OFF

has_zero(state) pitch in pitches

Yes

Yes

v A

i = index(pitches, pitch)
statefi]<=0
pitches[ij<=0
velocitiesl[ij<=0

i = first_zero(state)
state[ij<=1
pitches]i] <= pitch
velocities]i] <= velocity

*state is a 4 bit value. The i-th bit of state encodes the
occupancy status of the i-th pipeline.

Figure 6: Polyphony control ASM

18-500 Final Report - May 14, 2021

Page 6 of 11

5.3 Subsystem C -
Pipelines

Audio Processing

The system has four audio processing pipelines. Each
pipeline is comprised of five waveform oscillators and a
module controlling the ADSR envelope.

The waveform oscillators are in charge of generating
waveforms. The module is given the period and duty cy-
cle as a input. The generation of these waveforms is ac-
complished by a mix of direct computation and waveta-
bles. The audio is generated at 400kHz. A 16-bit phase
counter is incremented at each generation tick. The period
for the note being generated in number of generation cycles
is looked up in a period table. The number of generation
cycles of the FRONT and BACK segments is calculated by
multiplying the period with the duty cycle. A percentage
is calculated by phase / segment length, and this percent-
age is used to either calculate the current amplitude, or to
index the wavetable for the current segment.

The unison detune effect is accomplished by adding four
auxiliary oscillators to each pipeline. We are generating
linear detunes, meaning the frequency of the auxiliary os-
cillators are evenly spaced out on both sides of the main
oscillator. To achieve this, we approximate the detune pe-
riod shifts by period x period x detune parameter value.
The auxiliary oscillators then generates sounds at period
- 2 x period shift, period - period shift, period + period
shift, and period + 2 x period shift.

The ADSR module (Fig. 7) generates a scaling enve-
lope depending on the Attack, Delay, Sustain, and Release
values set by the user. This module uses a counter to keep
track of the current time into the ADSR process and cal-
culates the scaling percentage. The envelope is multiplied

with the detuned audio.

t = attack_time

isNoteOn

@ isNoteOff

t=decay time isNoteOff

isNoteOff

t = release_time

Figure 7: ADSR FSM

5.4 Subsystem D — Audio Mixing and Out-
put

The mixer simply takes in the outputs from the four au-
dio processing pipelines and adds them, normalizes them
into a final waveform, which will be passed to the DAC
driver.

The DAC driver samples the 400kHz audio down to
44.1kHz and encode it into I12S format before sending to
the DAC through GPIO pins.

Table 1: Pitch deviation across all octaves

Note Co C1 C2 C3 C4 C5 C6 c7 C8

wavelength (us) 60935 30625 15300 7631 3843 1903 962 469 232
frequency (Hz) 16.41 32.65 95.36 131.04 260.16 525.37 1039.00 2129.10 4309.80
target frequency (Hz) 16.35 32.70 9541 130.81 261.63 523.25 1046.50 2093.00 4186.01
deviation (cents) -6.34 2.65 0.91 -3.04 9.75 -7.00 12.45 -29.61 -50.45

18-500 Final Report - May 14, 2021

Page 7 of 11

6 TEST AND VALIDATION

6.1 Latency

We tested the end-to-end latency from the MIDI input
to DAC output using an oscilloscope. As can be seen from
Fig. 8, the yellow signal is the MIDI message sent from the
MIDI controller, the green signal is the DAC output. The
cursors in the picture is taking the time difference between
these two signal which is to be 3.30ms. This is meeting our
requirement of 10ms.

Additionally, we also took the latency of the system
from the MIDI input to DAC input. This metric is mea-
sured to be 940us as shown in Fig. 9. This shows that most
of the 3.30ms latency is coming from the DAC component
that we purchased, and the latency that came from our
system is very minimal.

KEYSIGHT

YS
TECHNOLOGIES

302.40Hz

Figure 8: Latency from MIDI input to DAC output

KEYSIGHT

TECHNOLOGIES

DS0-1 40227, MY59240350, 07.30.2019051435: Sun May 02 04:2:
" A a1V

I

Figure 9: Latency from MIDI input to DAC input

6.2 Correctness

We ensured correctness of our programs via unit tests.
For each of the feature we implemented, we wrote a unit
test to check that the module produces the output that we
expect from particular inputs. We ran these tests in a sim-
ulation environment using AlteraSim and VCS to check the
correctness of our programs.

6.3 Accuracy

We evaluated two metrics for accuracy — frequency dis-
tortion and shape distortion. Frequency distortion is mea-
sured using the oscilloscope. A square wave of a certain
note is played on the MIDI keyboard, and the audio signal
is captured on the oscilloscope. A single cycle of the audio
is taken using the cursor function to measure the period,
so that the frequency of this waveform can be calculated.
After that, this frequency is compared to the frequency of
this particular musical note. The deviation is calculated in
cents, which is a standard unit for measure pitch deviation.
The results are shown in Table. 1 and Fig. 10. The pitch
deviation is meeting our less than 10 cents requirement for
all notes below C6, which is the majority of notes, but not
the notes above C6. This is best we can achieve encoding
the period as a 16-bit integer. If we were to use a higher
precision, the cost of division in the oscillator will become
too large. Therefore we accept the result.

= avsolute deviation (cent) = goal (cent)

60
=3
@
(=)
c 40
i
®
=
3
° 20
=
[] g ——
co C1 C2 C3 C4 C5 C6 C7 cC8
Note

Figure 10: Pitch deviation in cents

Shape distortion is measured by comparing simulation
output of SystemVerilog against the software version of the
oscillators produced by MATLAB. The results are shown in
Table. 2. The shape distortion is kept very minimal across
signals of all frequencies, and meets our goal of less than
10% distortion across all notes.

Table 2: Shape distortion

period (# of data points) 50 500 5000
sine 0.20% 0.20% 0.42%

triangle 0.20% 0.20% 0.43%

square 0.00% 0.00% 0.00%

18-500 Final Report - May 14, 2021

Page 8 of 11

7 PROJECT MANAGEMENT

7.1 Schedule

The Gantt chart is in Appendix. B. We have divided our
project into 4 main checkpoints. By checkpoint 1, we aimed
to have a that is capable of receiving a single user input,
generating a single type of waveform, and producing an au-
dible output. By checkpoint 2, we aimed to achieve wave-
form generation of all 4 types of waves, 4-note polyphony,
as well as the final mixer that will combine the signals into
the output waveform. By checkpoint 3, we aimed to achieve
the normal mode effects including the ADSR modulations
and the unison, and we will also start with some basic im-
plementation of the arpeggiator. We found out that the
arpeggiator is already implemented by the keyboard so we
were able to skip it. By checkpoint 4, we aimed to have
a fully integrated system with all functionalities, including
additional ones.

7.2 Team Member Responsibilities

Hongrun worked on the MIDI keyboard interface and
the audio output, implementing the ADSR envelope, and
testing and verification. Jiuling worked on polyphony con-
trol, implementing a random number generator, the arpeg-
giator feature, and the integration efforts after each check-
point. Michelle worked on setting up the note-to-frequency
mappings, the value look-up tables for computing the sine
wave, and the unison detune effect.

A detailed breakdown of each of our responsibilities over
the course of the development process is color-coded in our
Gantt chart (Appendix. B).

7.3 Budget

The budget chart is included in the Appendix. A (Ta-
ble. 3). Since we are working on our project remotely,
we had to each purchase a set of the necessary equipment.
The respective quantities for each item are included in the
chart. We borrowed FPGA boards from the lab, so the
cost for the FPGA boards are not included in the budget
calculation.

7.4 Risk Management

Our risk mitigation strategy was to have early inte-
grated results. This made sure we have a product that
is working end to end early on. We were able to improve
our product by adding features that are contained and in
a manageable size each time. We were also able to see the
end to end result of each feature.

We had also planned two weeks of slack time at the
end, before the final presentation date, so that we had
time to catch up when we had debugging difficulties. These
pre-allocated slack time also enabled us to complete a few
stretch goals (i.e. duty cycle and wavetable synthesis).

8 ETHICAL ISSUES

Since our project is a gadget for entertainment purpose,
there were only minor ethical concerns. There were little to
none edge case operations to our product, especially when
our synthesizer is taken off of the FPGA and made into
PCB boards, which would eliminate the opportunity for
the users to abuse the FPGA for other purposes. We also
did not identify any victims that would substantially be
affected by our product adversely.

9 RELATED WORK

FPGA-based music synthesizer is indeed a popular Cap-
stone project idea, and in order to create something unique
from the previous projects, we have studied reports from
those projects from previous semesters. In particular, we
studied FMPGA [6] from the Fall 2020 semester and Sound-
cloud [5] from the Spring 2019 semester. These projects
gave us valuable insights on the expected risks, a good esti-
mation of workload, and also some tradeoffs that we should
consider. Others that we have studied includes FPGA Dig-
ital Music Synthesizer projects by students of other univer-
sities [2, 7].

10 SUMMARY

For our project, we aimed to implement a FPGA-based
music synthesizer with emphasis on effects that can aid
musical composition. As conFFTi combines benefits from
hardware and software synthesizers, users can enjoy an pro-
fessional and intuitive experience.

10.1 Lessons Learned

A big challenge we faced in our project emerged while
we were implementing the two physical interfaces — the
MIDI breakout board/FPGA interface via GPIO pins and
the DAC/FPGA interface. At one point, we found that
the off-the-shelf TRS cable we purchased that connects
the MIDI controller and the MIDI breakout board was not
functional. We had a difficult time isolating this issue, and
for some time was really worried that we could not get
them working in time. How we mitigated this unforeseen
situation was that everyone paused on planned tasks and
focused on working with alternative interfaces while wait-
ing for a new cable to arrive. The slack time we planned
came in handy and we spent a week on this problem. In
retrospect, we should have looked into these options before
settling on using DAC and the MIDI breakout board. This
would have saved us some time and reduced our stress when
dealing with this situation.

18-500 Final Report - May 14, 2021

Page 9 of 11

References

1]

BINAURAL HEARING. URL: https ://www . sfu.
ca/sonic - studio - webdav / handbook / Binaural _
Hearing.html.

Evan Briggs and Sidney Veilleux. FPGA Digital Music
Synthesizer. Tech. rep. Apr. 2015.

DEO-CV Board Specification. URL: https : / /www .
terasic . com. tw/cgi-bin/page/archive.pl?
Language = English & CategoryNo = 139 & No = 502 &
PartNo=2.

DEO-CV Board Specification. URL: https : / /www .
terasic . com.tw/cgi-bin/page/archive.pl?

[5]

Language = English & CategoryNo = 167 & No = 921 &
PartNo=2.

Jens Ertman, Charles Li, and Hailang Liou. “Check
Out Our Soundcloud: An FPGA Wavetable Synthe-
sizer”. May 2019.

Joseph Finn, Eric Schneider, and Manav Trivedi.
“FMPGA: The Frequency Modulating Programmable
Gate Array”. Dec. 2020.

Implementing a Sampling Synthesizing Keyboard on an
FPGA. 2007. URL: http://web.mit.edu/6.111/www/
£2005/projects/mmt_Project_Final_Report.pdf.

Martin Walker. The Truth About Latency: Part 1.
Sept. 2002. URL: https://www.soundonsound . com/
techniques/truth-about-latency-part-1.

https://www.sfu.ca/sonic-studio-webdav/handbook/Binaural_Hearing.html
https://www.sfu.ca/sonic-studio-webdav/handbook/Binaural_Hearing.html
https://www.sfu.ca/sonic-studio-webdav/handbook/Binaural_Hearing.html
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=502&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=502&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=502&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=502&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=921&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=921&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=921&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=921&PartNo=2
http://web.mit.edu/6.111/www/f2005/projects/mmt_Project_Final_Report.pdf
http://web.mit.edu/6.111/www/f2005/projects/mmt_Project_Final_Report.pdf
https://www.soundonsound.com/techniques/truth-about-latency-part-1
https://www.soundonsound.com/techniques/truth-about-latency-part-1

18-500 Final Report - May 14, 2021

Page 10 of 11

A

Budget and Material

’ Item Name \ Quantity \ Price ‘
DE2-115 Cyclone IV FPGA 3 N/A
Launchkey MINI Mk3 MIDI keyboard 3 $109.99
MIDI Breakout Board 3 $10.39
SinLoon 5 Pin Din MIDI Plug to 3.5mm TRS Stereo Male Jack Stereo Audio Cable 3 $6.32
Resistor kit (unused) 2 $6.99
DaFuRui Breadboard Jumper Kit 2 $13.99
MAX541 DAC (unused) 3 $19.74

$481.28
Table 3: Budget chart

’ Item Name \ Quantity \ Price ‘
DE2-115 Cyclone IV FPGA 1 N/A
Launchkey MINI Mk3 MIDI keyboard 1 $109.99
MIDI Breakout Board 1 $10.39
12S Stereo Decoder - UDA1334A Breakout 1 $6.95
SinLoon 5 Pin Din MIDI Plug to 3.5mm TRS Stereo Male Jack Stereo Audio Cable 1 $6.32
Jumper cable 3 N/A

$134.65

Table 4: Bill of Materials (for one system)

Page 11 of 11

18-500 Final Report - May 14, 2021

B Gantt Chart

CAPIA [BUId uopEUESa U LIS Wiau) yaday ulisag uoEuasald uBisag URIUFEA [ES0d04d
FOFN Anrayd - O L >

VZ0Z 1202

vidys [30EY “zidwg g "osin
i, - ¢ 142 T T :
adom@aul HE0Y - £ e H ' My -) Johy
I - USRI pg | iy = @ sy
pop o - uassour IR 7 oy - 07 o
- 1 ey (R o7 o - 2E e
aii - 1k [- - - s e

[pasnuf} AF0% Sipvy - | 0 | ARy | A

oG 1IN - L D

i wagshs ind [T - oy - oo ochy
Gocry- ¢ v (N ¢ v - 52
wqmBEadry - ¢ 16y [(- v - 0z o
wogiBaw) wasts g -z 7 Ldy ([TEE
{pasnun g uasskun] gsn e 23000 opmg - L idys TR ¢ vy - s
ubisap soveiBBadry - £ 1he) [IEEER oz v - 22 e
o fusydied - 2 1942 [EE - = -
[spseauhs + vopemws) dnas wawuaweg - 0 14 [T | v - | =

vonesmuaf sequne wopuey - £ 1040 [IET - -

3| ELSARM IOy m_L__n.;...m_m punog - W.h_..:u_ FAEW - 9T
LIDIEUES SUMEp UOs|W - EXND 7 Ml 7 Jid
BUMap wisiu - m...u.-ﬂ j | sy
uruBuoH 850 - 1%D £ iy
Funrul . LofEEze ares (AS) - LD 7 Y - G JEW
SIBUIN Buiddews bayy eou ‘Enpow aws ;)07 -JdED | JEP i

dres pisucnaLg

HSOY UUCyBaBMm - SIS QEfER

	INTRODUCTION
	DESIGN REQUIREMENTS
	Output quality: 44.1kHz, 16-bit, dual channel
	Latency: <10ms
	Signal Shape distortion: <5%
	Frequency deviation: <10 cents
	8 choices of waveform with duty cycle
	Effects: unison detune and ADSR
	Polyphony: 4 notes
	Record and Play
	Arpeggiator

	ARCHITECTURE OVERVIEW
	DESIGN TRADE STUDIES
	FPGA Choice
	MIDI Controller Selection
	Audio output

	SYSTEM DESCRIPTION
	Subsystem A – MIDI Interface And Decoder
	Subsystem B – Dispatcher
	Recorder
	Polyphony

	Subsystem C – Audio Processing Pipelines
	Subsystem D – Audio Mixing and Output

	TEST AND VALIDATION
	Latency
	Correctness
	Accuracy

	PROJECT MANAGEMENT
	Schedule
	Team Member Responsibilities
	Budget
	Risk Management

	ETHICAL ISSUES
	RELATED WORK
	SUMMARY
	Lessons Learned

	Budget and Material
	Gantt Chart

