
18-500 Design Report: 03/02/2020

1

Abstract—AutoPuzzlr is an unobtrusive automatic puzzle-

solving system that guides users as they work through a puzzle to
speed up the lengthy process. We are using modern technology to
allow our users to reap the mental benefits of solving puzzles while
reducing the time committed and easing the difficulty. We utilize
CV to make the product easy to use for puzzlers today. This is a
niche and relatively untouched space commercially and no
competing technology can claim the features that AutoPuzzlr will
have, so we are pioneering a much more advanced and capable
product for passionate puzzle solvers!

Index Terms—Computer Vision, Feature Matching, Hand-
tracking, Point Detection, Puzzle, PyGame, Solving

I. INTRODUCTION

utoPuzzlr is a project that is designed to help a user
complete a puzzle using modern technology and an

intuitive user interface for the user to interact with. Solving
puzzles offers mental and physical benefits, but sometimes
these benefits can be difficult to reap, as puzzles are a
significant time commitment and can be very difficult. Given
the niche area, there are few other competing technologies, and
no other technology claims to be able to handle the same set of
features this project is able to boast. This project can claim a
more technologically advanced and unobtrusive solution, using
CV to take user input and provide a suggested piece location.
The goals of this project are to be able to guide a user to build
a puzzle through a touch interface on the physical puzzle itself.
AutoPuzzlr will detect a user pointing at a piece for 3 seconds
within 300ms and display where that piece should go in the
larger puzzle within 4 seconds for any piece within the
workspace. This will be achieved through the use of just a
Logitech C920S webcam and a laptop computer. This project
achieves an 82% accuracy for piece placement within 1.5
inches of the final piece placement, and runs for 1.4 seconds on
average for an individual piece.

II. DESIGN REQUIREMENTS

Our original design requirements were revised due to
COVID-19 making our project remote, so the revised
requirements are detailed in this section. For future reference,
we have included the original requirements in italics and
mentioned the changes. Our high-level user requirements are as
follows:

 End-to-end suggestion latency: 4 seconds to provide a
suggestion to the user

 Suggestion Precision: 1 inch between piece’s suggested
and actual location (originally 0.5in)

 Suggestion Accuracy: 80% of the time the piece will
satisfy the precision requirement (originally 90%)

We understand that we need to be able to account for some
errors in the environment itself and that no computer vision
code will be perfect so we thought that having a 80% suggestion
accuracy would be a high enough placement accuracy score
such that the user can rely on it, but if the piece does not fall
within that 1 inch radius of where that piece should go, then that
would be considered an inaccurate placement of a piece. The
requirements were changed to reflect the decrease in accuracy
from removing the Leap Motion controller from the hand-
tracking system due to COVID-19. Our design is robust for
detailed pieces, but given that some puzzles have similar
textures across wide swaths of the picture, there will be a circle
of confidence of where that piece could be that will grow larger
across similar areas. (e.g. in a puzzle with a lot of open sky with
a lot of blank sky-blue pieces, then our accuracy will likely be
a lot lower than a puzzle piece with a specific detail on it.) We
chose a 4 second design time because of the limitations of
technology and the algorithms we are using. We decided that 4
seconds was a tight enough constraint such that it would still
feel intuitive and useful to a user, but gave us enough time to
compute where these pieces should go.

We have outlined that there is a 4 second response time
between user input (point) and system displaying its solution to
the user. We have further subdivided this into the following list:

 Point Detection: 500 milliseconds from actual point held
for 3 seconds to point being recognized by CV system
(originally 50ms)

 Piece Identification: 300 milliseconds from point being
recognized to identified piece (originally 500ms)

 Piece Matching: 3 seconds from identified piece to
suggested location returned to back-end

 Response Latency: 50 milliseconds from a user tap
notification or returned coordinates in the back-end a
response graphic will be displayed.

Our timing requirements are derived from estimates of
computation power required for the algorithms that we are
using. The point detection requirement changed significantly
due to the detection being entirely CV-based, instead of using
the optimized and production-ready Leap Motion controller.
However, we were able to reduce the piece identification time
since both pieces were now in the same module and this reduced

A0: AutoPuzzlr

Authors: Andrew Conduff, Connor Maggio, Aneek Mukherjee: Electrical and Computer Engineering,
Carnegie Mellon University

A

18-500 Design Report: 03/02/2020

2

the overhead of passing data across a local socket as our original
system was designed.

Our hardware performance metrics are as follows:
 Camera Field of View: 100% of our ~24”x24”

workspace

 Camera Sensor: 12+ MP resolution and good color
identification

These requirements are based off of the size of the puzzle and
we have an upper limit of about 20” by 20” for our maximum
puzzle size, and 200 pieces for maximum puzzle pieces. We
came upon the 12+ MP resolution camera as this should be
sufficient given the distance of the camera as well as the
average size of puzzle pieces. We have also referred to previous
projects using cameras that tested a few options at the scale
we’re looking at and found 12+MP to be sufficient.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our system architecture is described visually in Fig. 1 and at
the end of this document. Our design has changed significantly
since the design report, including the removal of a number of
physical components, which is detailed below. These changes
are largely due to being unable to work on-campus and in-
person due to COVID-19.

Our system was originally composed of a PVC frame
containing all of our components and defining the workspace
for the user. This frame is no longer part of our project, as our
hardware components have been revised to be just the webcam
and laptop computer. These components were chosen to satisfy

the user interaction requirements we set and we discuss the
selection process in the following Section (IV).

The software system is broken down into 3 libraries
functioning like microservices - the piece solving system, the

Fig. 1. A complete block diagram of out system architecture

finger and point detection, and the user interface. The former
two components each represent a core system operation in the
user’s interaction cycle with the system. We have removed the
animations builder in our original design, as we are utilizing the
laptop screen for output rather than a projector.

The user’s points are first recognized by the point detection
system, which is triggered by the user interface to start looking
for points at the appropriate stage. The system reports back the
webcam frame for display, and the point coordinates and
cropped image of the puzzle piece when a point is detected.

Then, the piece matching system takes the cropped image of
the puzzle piece from the user interface and identifies the piece,
runs its feature and orientation matching algorithm, and reports
the location of the suggested final location, as an image of the
puzzle solution and coordinates of the guess, to the user
interface to display.

Finally, the user interface orchestrates the above operations
according to the interaction cycle of the user and takes in input
so that the user can move from piece to piece as they solve the
puzzle.

Our system is architected in this way so that there is clear
separation of responsibilities between components and a high
level of possible parallelization in the development process,
since there is a clear API between otherwise independent
components.

18-500 Design Report: 03/02/2020

3

IV. DESIGN TRADE STUDIES

Our project has undergone significant changes in physical
components due to COVID-19. Some of the research discussed
in this section are for components that are no longer part of our
project, but for future reference we have chosen to include
them. Removed components will be listed as such.

A. Physical Components

 Our final project requires just a camera and computer, and
the projector, frame, and Leap Motion controller have been
removed. We have specific functions for each of these
components and carefully considered our options.

1) Frame (Removed)
 Our frame was designed keeping in mind that it needs to

be portable, adjustable, and relatively cheap. We decided to use
1.5” diameter Schedule 40 PVC due to its sturdiness, light
weight, and price compared to wood. We decided on a 1.5”
diameter because of its rigidity and reasonable weight. We will
need to drill screws into some of the PVC connections in order
to mount the projector. This diameter leaves room for this.

 In addition, PVC piping has reliable connectors that
include sliding components. We may need to adjust the heights
of our projector or cameras in our prototyping efforts. Using
PVC makes this easily possible.

 Our design is susceptible to toppling over from the weight
of the projector. We considered preventing this by adding a
counterweight to the base of the frame or simply adding an
extending pipe to the base. Adding an extension would have an
effect on the user’s workspace. Thus, a counterweight was a
better option.

2) Surface
Originally, we designed the system to cover the work surface

in Duvetyne fabric to improve the Leap Motion controller’s
performance. As this component has now been removed, we no
longer require that particular fabric, but we do require a
consistently colored background where the user’s hand and
puzzle pieces will stand out to improve the performance of the
finger detection system.

3) Camera
We considered a few options for our camera. Initially, we

were debating whether to use a DSLR, a smart phone camera,
or a personal web camera. Personal web cameras are the best
choice for our project’s scope. That is to say, a DSLR camera
or a smartphone have far too many functions that would go
unused for us.

The web camera we decided to use is the Logitech C920S. In
choosing this, we mainly considered camera sensor size,
megapixel count, and price. Thanks to CMU’s IDeATe and
ECE departments we had lending access to a couple models
including Logitech’s C615 and C920 webcams, and
Quickcam’s Pro 9000 model. While each camera had a similar
sensor size, the C920 has the largest megapixel count at 15 MP.
Upon further testing, we decided that we would require this
resolution to ensure our image recognition requirements. Past
projects that have used OpenCV have succeeded using this
camera. The C920S we purchased is an updated model of the
C920 we tested and has the same specifications.

4) Projector (Removed)
Our projector was chosen based on size, throw ratio, lumens,

and price. We would have liked to use a mini projector in order
to cut down on weight, however they tended to have a low
number of lumens. Since our product will be used in the light,
we required at least 2500 lumens. In addition, we were looking
for a high throw ratio in order to meet our requirements of
projecting onto a 20” by 20” puzzle within a distance of 4 ft.
The Apeman M7 mini and the Epson Powerlite 1776W were
the only models that met the lumens and price specifications, as
the Apeman was quite affordable and the Epson Powerlite was
already owned by the ECE department. These and other
projectors considered are shown in Fig. 2. Upon testing, we
found that the Apeman projector projected a very wide screen
that would limit us down to around 16” puzzle heights. The
Epson Powerlite 1776W was the clear choice moving forward.

5) Computer
Our computation currently is being developed on a quad core

i7 with a 2.6 GHz processor. Our system will run within the
requirements on the average laptop computer, running an i5
with a 1.7 GHz processor. We originally planned to use a
Raspberry Pi 4 Model B computer, but since the frame and other
hardware components were removed, there was little benefit to
moving computation to the Pi. This also allowed us to continue
to use the laptop screen as an output rather than adding a screen
to the Pi.

B. Piece Matching

 Our piece matching relies heavily on a pipeline of image
processing techniques, however we need to balance both the
speed of these applications as well as how robust they are, and
there is still a lot of tweaking to be done as we get the parts we
need and see how everything translates computationally to the
Pi.

1) Technologies Used
 We have decided to use the Python version of OpenCV
version 4.2.0, as it was the most up to date version at the start
of our project and the OpenCV community is vast and helpful
in case we ran into any problems.

2) Thresholding
We have tested many methods, but for now we are planning

on using OpenCV’s built in THRESH_BINARY_INV method
for thresholding, in combination with THRESH_OTSU, in
order to increase the confidence of our thresholding. (See
labeled picture #2 in Fig. 3). We felt like this gave us the best
combination of background filtering as well as the ability to

Fig. 2. A table of various projectors we considered

18-500 Design Report: 03/02/2020

4

clearly choose what part of the image is the puzzle piece. Fig. 3
picture 4 preserves the picture, but that is not important for this
step of our algorithm. Once we have this piece separated, we
are able to extract only those pixel values and consequently
detect features across them.

3) Feature Detection
While we could go with methods like SIFT and SURF we

didn’t feel like it was necessary as they are not open source in
all cases. While we had originally intended to use the ORB
feature detector, we decided to pivot to the BRISK feature
detection method as it ended up offering us better performance
for detecting features, as it found key points more easily and
reliably, as well as providing more reliable matches when using
RANSAC. RANSAC was the method we chose to match the
key points between images. RANSAC stands for Random
Sample Consensus, which chooses a random amount of these
key points and matches them between images (the piece image
and the overall puzzle image) and attempts to find the strongest
match between the two.

4) Background Cloth
 We had decided to use Duvetyne fabric as the base of our

operations as compared to table surfaces, but this fabric did not
come in time, as COVID forced us to change how we handled
the background for the project, so we had to forego this portion
of the project.

C. Finger Detection

 We wanted user interaction with our service to be as close
to the reality of solving a puzzle, so we are utilizing the webcam
to track the user’s hand and fingertip and detect a point in the
workspace. This removes a hardware layer between users and
their puzzles and allows us to get user input in an unobtrusive
way. Some key design decisions for this subsystem included
hand and fingertip identification methods, API design, and the
surface of the workspace. These are covered in Sections IV.C.1-
4. Originally, we planned to use the Leap Motion controller to
identify users’ hands and taps in the workspace, but this option
was removed due to COVID-19. However, some of our

Fig. 3. An image of a puzzle piece after various thresholding operations

research into the usage of the controller is included here for
future reference, in Sections IV.C.5-9.

1) Technologies Used
As in the previous section, we have decided to use the Python

version of OpenCV version 4.2.0. Refer to Section IV.B.1 for
further details.

2) Hand & Finger Identification
The first step in point detection is identifying the user’s hand

in the camera image. We considered a few options for doing
this, chief among them using CV techniques like finding
contours and image masking via a calibrated color histogram,
and using an ML model for identifying hands. First, we
considered the ML option. However, some research into current
performance of hand detection in video streams ran at around
21 fps on an average laptop, and couldn’t identify fingertips,
just hands in general. We found one research paper on fingertip
detection in particular, but as we were making this decision well
into our project due to COVID-19, we decided it would take too
much of our remaining development time to try to implement.
Our other option was using a purely CV-based approach. This
involved calibrating a color histogram, masking the image
using the histogram to pull out the hand, and then finding the
largest contour and the farthest point from its center to locate
the hand and fingertip respectively. We decided this approach
was better for our circumstances, as it used common OpenCV
operations and we were able to use online resources and articles
to learn more about these tasks.

3) API Design
Since this finger detection runs in Python 3, it can be

integrated with the other modules as an object. Therefore, its
API is defined such that it can be instantiated and interacted
with via calling functions rather than waiting for event-based
messages, as in the previous implementation (see Section
IV.C.7). We decided to have the Finger Detection module
provide the entirety of the webcam GUI in the user interface via
a function, so that the user interface could simply draw UI
elements around the webcam stream and not have to interact
with that image itself.

4) Work Surface
While we no longer needed to specifically use Duvetyne

fabric (see Section IV.C.9), we decided to require a consistently
colored background different from your skin color from the
user, so that the image masking would properly detect the hand
and allow for the contours and fingertip to be properly detected.

5) SDK (Leap Motion)
 The Leap Motion controller was originally designed for

using as a touchscreen/keyboard replacement or creating a
virtual reality control surface. However, the company has since
pivoted toward Virtual Reality applications and their recent
libraries are exclusively for Unity/Unreal Engine. To use the
latest SDK with a Python program, we would have to spin up a
VR project on the Raspberry Pi. Therefore, we are utilizing an
older Python SDK rather than the latest version so that we can
avoid the unnecessary and significant computation overhead of
running a VR project.

6) Technologies Used (Leap Motion)
 Our decision to use the older SDK constrained us to

18-500 Design Report: 03/02/2020

5

Python 2.7 for interacting with the SDK and controller.
However, we wanted to take advantage of the modern features
and performant libraries available to us in Python 3.8.1, so we
decided to separate the entire Tap Detection & Localization
component into a separate process that communicates with the
back-end via local socket. This decision allows us to separate
the Python 2.7 code while still maintaining minimal latency by
using local sockets. We decided that since these modules were
part of the same program and would be running concurrently,
we will be setting up the socket on initialization and closing it
on teardown, which will greatly simplify development.

7) API Design (Leap Motion)
Since we are communicating with the back-end via local

socket, we needed to define an API so that we can minimize
data transferred and have a clear understanding of how both
sides will communicate to support parallel development. We
decided to have a call-and-response style of system, where the
backend sends a trigger, and the service responds with the data
on the following detected tap.

We considered alternatives, such as constantly running
detection and reporting every found tap, but this approach
required the back-end to continuously monitor the received
messages to make sure that it responded to the tap that the user
intended to make when they are prompted by the system to tap
a piece, rather than any randomly recognized taps made while
computation on a previous piece was occurring. It made the
most sense to only report a detected tap when the system was
expecting one.

8) Orientation (Leap Motion)
Due to the original design goals of the Leap Motion

controller, the software was optimized for using the controller
face-up on a surface, tracking hands above it. Further research
also showed that this older SDK included optimizations for
tracking palms, since it assumed the upward-facing orientation.
This orientation is not possible for our purposes, since the user
will be tapping puzzle pieces directly on the work surface rather
than tapping the air above them, so we experimented with the
hand tracking under viable orientations - mainly, mounted
overhead facing down, and mounted on a vertical column and
facing sideways.

We utilized software from Leap Motion to view the actual IR
camera inputs to make these observations. We realized
immediately that the tracking was extremely poor when
oriented sideways, as most of the hand is blocked and only the
side of a palm is visible to the camera. This proved to be nearly
impossible for the tracking software to recognize, with the
palm-tracking optimizations enabled or disabled. Overhead
tracking was better, but the effective range was far lower than
claimed in the data sheet. We were able to track hands up to
approximately 10”, while the datasheet claimed two feet. One
issue was certainly that our use case necessitated that the
controller track the backs of users’ hands rather than the palms,
but another issue was the work surface itself, which we discuss
in the following section. Regardless, the downward-facing
orientation is clearly the better option, and that is the orientation
we decided to move forward with.

9) Work Surface (Leap Motion)
We had determined that the downward-facing orientation

was our best option, but we hadn’t yet been able to reach the
performance levels we were looking for and were promised in
the device specifications. We continued to use the visualization
tool and compared performance between the down-facing and
standard, upward-facing orientations. We observed that the
primary difference in the images between the orientations was
the contrast of the hands against the background in the camera
input, as shown in Fig. 4.A and Fig. 4.C. The surface below the
hands was reflecting IR light back into the camera and washing
out the image when the controller was down-facing, but there
was no such reflection in the up-facing orientation and any
hands in-frame were clearly contrasted against the background.

We tested this hypothesis by holding the controller 6’ above
the ground and tracking hands 4’-5’ above the ground. The
distance to the ground would ensure that little to no IR light was
reflected back into the camera and would accurately simulate
the upward-facing orientation. With that setup, we were able to
achieve the 2’ tracking distance that we were looking for, and
looking at the image in the visualization tool, shown in Fig. 4.B,
confirmed our hypothesis that the reflected IR light from a
nearby surface was causing the tracking issues.

We researched mitigations and discovered that an IR
absorbent material covering the workspace would increase the
contrast of the users’ hands and still allow them to work on a
surface rather than 4’ in air. We found a few options, including
Aktar foil and Duvetyne fabric. Aktar was an order of
magnitude more expensive than Duvetyne ($199 and $17 for
comparable amounts, respectively), so we decided to use a
Duvetyne sheet to cover the work surface under the frame and
to provide the necessary contrast for the Leap Motion
controller.

D. User Interface

 The user interface both displayed instructions and
information to the user, and orchestrated the two other software
components. The key design decisions we made to fit our
requirements and the requirements of the other services was the
choice of language, and choice of framework used.

1) Language Used
Taking into account the skills and experience of the team, our
primary language options are Python and C/C++. There are
definite performance benefits to using C/C++, since it is a

Fig. 4. Images of the camera input from the Leap Motion controller

18-500 Design Report: 03/02/2020

6

compiled language. However, we decided to use Python 3.8.1
(the latest version) for the bulk of this project because it is much
more familiar to us and thus allows for a higher speed of
development. Additionally, the OpenCV implementation in
Python uses compiled C++ under-the-hood, so we are able to
utilize the benefits of compiled OpenCV and use Python.

2) Framework Used
We considered a few Python UI frameworks, including

PyGame, Kivy, and Tkinter. However, we eliminated Kivy
since our team had experience with PyGame and Tkinter
previously, but not Kivy. We then researched integrating
OpenCV images and video streams with Tkinter and PyGame,
and decided that the high-level constructs in PyGame, like
surfaces and buttons, were more advantageous than Tkinter. We
decided to move forward using PyGame 1.9.6.

V. SYSTEM DESCRIPTION

Unlike previous sections, where we have chosen to include
research and discussion from our design report even in cases
where it is no longer utilized in our project due to COVID-19,
Section V details our project as it is in its final form. All
components and discussion in this section describe the revised
project.

A. Physical Components

1) Work Surface
The work surface must be a consistent color and texture,

different from the user’s hand. This is primarily to improve the
accuracy of the finger detection system, since it relies on a color
histogram and image masking to identify the region of interest
of the hand.

2) Computer
Our software will run on an average laptop computer,

running at minimum an i5 processor with a 1.7 GHz clock
speed, and we have also tested with computers running i7
processors with clock speeds from 2 – 2.6 GHz.

3) Camera
The Logitech C920S webcam provides the video stream of

the workspace to the user. It must be mounted above the
workspace, facing down.

B. Piece Matching

 Our computer vision relies heavily on a pipeline of image
processing techniques.

1) The Tap
As previously mentioned, we had planned to use a Leap

Motion controller to detect hand gestures, however due to
COVID, we transitioned to using the Logitech C920S webcam
and more heavily leverage the computer vision aspects of our
project. Our project now leverages vision-based gesture
detection using OpenCV further discussed in V.C. This tap is
now being leveraged in OpenCV and it discussed in the next
section. However, we can use the point of the finger that is
identified in our gesture recognition pipeline as the point that
we then can capture the image from. Having this point is not
only helpful for the piece identification portion of our project,
but it also gives us the ability to provide a seamless user

interface and experience.
2) Segmentation

Once we have resolved the user’s tap location, through our
software back-end’s coordinate re-mapping, we are able to
determine the exact piece that is tapped by the user, and
segment that piece out away from the background. We are then
able to send this piece extraction image to the feature extraction
portion of the pipeline.

3) Feature Extraction
Once we have the piece, we are looking to match isolated, we

can run our feature extraction method to try to find parts of the
puzzle piece with notable features like corners and edges, and
map them to that piece. Features are extracted using the BRISK
feature detector.

4) Feature Matching
Once we have these features, we are able to match them with

the features extracted from the puzzle’s final image. From there
we will perform different confidence checks to ensure that the
algorithm is confident that it has found the right piece. These
features are also fairly rotationally robust, meaning when the
user taps a piece that piece will not have to be in the correct
orientation for it to be recognized as the correct piece by our
algorithm.

These features are matched using RANSAC, which has been
discussed earlier. Once a match has been found, the system will
display a rectangle around the part of the final puzzle that
should contain the piece. These graphics are discussed further
in Section V.D. A problem to note, is that since these pieces
rely on key points to match the pieces in the puzzle, if there is
a piece that is particularly “bland” or is lacking much texture,
key points are not easily extracted. Figs. 5 and 6 show
RANSAC and the final piece solution image.

Fig. 5. A display of how RANSAC is matching points, and that it is able to

place a rotated version of the piece. Due to RANSAC’s consensus
information, it is able to show that the piece should be placed correctly,
despite other key points being incorrectly matched.

18-500 Design Report: 03/02/2020

7

Fig. 6. Below: A demonstration of how the piece matching visualization is

shown.

6) No-Key-Point Matching
In the case that there are not enough key points to match the

piece, there is a backup method that is on average much slower.
This method involves template matching the piece in different
rotations until it can approximate the best fit. This is used as a
last case scenario, as most pieces of will have some features that
can be extracted, however, in some puzzles with solid color
pieces (such as those found in sky pieces) this backup step is
vital. This is shown in Fig. 7.

C. Finger Detection

The finger detection component is an object that the user
interface instantiates and interacts with. It is instantiated when
the user interface is started. It opens the webcam and offers 2
functions for the user interface to call. The function get_frame
requires a Boolean value (if the calibrate key input is pressed),
and returns a tuple of point coordinates, cropped piece image,
and webcam frame image. The function returns the webcam
frame image with the drawings on it, and if point detection is
running and a point is detected, it returns the coordinates and
the cropped puzzle piece at the location of the point. The second
function start_tap_detection simply sets the flag for point
detection to start, and must be called for every successive point.
The name is a holdover from the initial development of this
component, which detects taps using the Leap Motion

Fig. 7. A demonstration of the backup pipeline working as it is able to place

the piece without any detected key points.

controller. The following sections describes the important
operations in the image processing pipeline used in this
component.

1) Calibration
The first step is calibrating the system to recognize the user’s

hand by creating a color histogram. The frame displays 9
rectangles at the center, which outline the 9 regions from which
color is sampled to create the histogram. When the user presses
the key to calibrate, the system samples the pixels from each of
these regions. Then, using OpenCV functions cv2.calcHist and
cv2.normalize (using the type cv2.NORM_MINMAX), the
histogram is created. Now, every successive frame can be
sampled using the color histogram to identify regions of skin
where the hand is located.

2) Locating the Hand
On frames after calibration, the system is tracking the hand

and fingertip. This is done through a series of operations on the
original webcam image. Using the OpenCV function
cv2.calcBackProject, the system segments out the image using
the color histogram to only the regions with the right colors.
Then, after some filtering and thresholding to smooth the image
(using cv2.THRESH_BINARY), the system uses cv2.bitwiseAnd
to mask the original image using the calculated threshold,
leaving behind just the areas of the image with the user’s hand.

Some accuracy issues in the system can manifest in this step
when the background of the image includes many regions with
similar colors to the user’s hand. This can create a contour with
a much larger area than the hand. This can be mitigated with a
consistently colored background different than the user’s hand,
which is one of AutoPuzzlr’s requirements for use.

3) Identifying the Fingertip
Once the hand is identified, the system identifies all the

contours in the image. Ideally, there should only be one, as
everything but the regions of the hand should have been masked
out. However, since it is possible that lighting conditions may
make it hard to distinguish some other regions of the image, the
system then looks for the contour with the largest area, which
should, in most cases, identify the single contour making up the
hand in the image. This is done using OpenCV functions
cv2.findContours and cv2.contourArea. Finally, the system
identifies the centroid, hull, and convexity defects of the
identified contour, using the OpenCV functions cv2.moments,
cv2.convexHull, and cv2.convexityDefects. Then, it identifies
the convexity defect farthest from the center, which is likely to
be the farthest extended fingertip of the hand.

Some accuracy issues in the system can manifest in this step,
in particular when significant portions of the arm are in frame.
The arm is likely to be included in the masked image, so it is
possible that the bottom of the frame where the arm ends is
farther from the centroid then the extended fingertip. This can
be mitigated in scenarios where it occurs by recommending that
the user where long sleeves, but at the scale and workspace
dimensions AutoPuzzlr is generally used in, it is unlikely to
occur.

4) Identifying a Held Point
Once the fingertip’s location is determined, AutoPuzzlr adds

it to a list of stored locations. As the frame rate of the

18-500 Design Report: 03/02/2020

8

application (and therefore the rate of calls to get_frame) is
controlled by PyGame, the system caps the length of this list to
correspond to the number of frames in 3 seconds. Then, for each
frame where it is looking for a point, it checks if 90% of the
stored fingertip locations are within a certain radius of the
current fingertip location. We use this percentage and radius to
control for small movement and any inaccuracies in the pipeline
which would otherwise void a valid point. If the stored list
satisfies the percentage and tap radius, then we recognize a
point. Finally, we crop the image of the puzzle piece from right
beyond the tip of the fingertip by calculating the vector between
the hand’s center and the fingertip to get the direction of the
point, and extend it to locate the area being pointed to. Fig. 8
shows the full webcam frame, including the center of the hand,
the identified fingertip and stored locations, and the rectangle
that is cropped when a point is detected. Finally, the component
returns the coordinates, the cropped image from the tip of the
fingertip, and the full webcam frame to be displayed to the user
in the UI. If no point is found, it simply returns the frame.

5) Conclusions
Overall, despite the changes to the user input system due to

COVID-19, we were able to implement a CV-based system that
hit our revised specific requirements and still matched the
original end-to-end requirement. The point identification takes
between 250-300ms with an average of ~282ms, which is well
within our revised requirement of 500ms. The piece
identification is far faster, at an average ~10ms rather than our
revised estimate of 300ms, because everything ran in the same
system and we took a simpler approach to piece identification
than we originally expected. Thus, our overall average time of
identifying a point and puzzle piece, 292ms, is well within our
original end-to-end requirement of 550ms.

D. User Interface

AutoPuzzlr’s user interface is created in PyGame, and
consists of 3 primary screens displayed to the user. The user
interface also orchestrates the 2 other components to get
information and trigger operations at the appropriate times.

Fig. 8. The drawn-on webcam display showing the identified center, fingertip,

stored locations, and rectangle of the cropped image

1) Title Screen
The title screen simply presents AutoPuzzlr’s name and

provides a jumping off point to the user experience.
2) Setup Screen

The first step in using AutoPuzzlr is providing the completed
puzzle as a solution image, so the setup screen provides the
options for doing that to the user. They can take a picture with
the webcam or they can upload an image from their computer.
We recommend they upload an image from their computer, as
this allows them to crop the image and make sure the lighting
is even.

3) Solving Screen
The main screen that users will spend the most time on is the

solving screen, shown in Fig. 9. This shows the webcam’s video
stream with the fingertip, hand, and tracked locations displayed
on it in the same way as Fig. 8 does. It displays instructions for
the user in the top bar, and shows all the pieces they have solved
in the bottom bar. Once a tap is recognized, an overlay appears
showing the piece’s location within the larger puzzle solution
provided in the previous screen. This is shown in Fig. 10.

The display loop for this screen also orchestrates the other
two components. It calls get_frame and start_tap_detection on
the finger detection component, and solve to kick off the piece
matching pipeline as points are recognized and images are
solved.

VI. PROJECT MANAGEMENT

A. Schedule

Our complete schedule is expanded at the end of the
document. In general, each team member has a task to complete
every week. We were following a cycle of research, then into
implementation-refinement cycle, and then into integration.
After spring break, the COVID-19 lockdown caused a number
of tasks to shift and you can see the changes reflected. This
pushed integration farther back than we originally planned, as
the entire UI had to be rewritten, and the Tap Detection
component scrapped and Finger Detection component written.

Fig. 9. AutoPuzzlr’s primary solving screen

18-500 Design Report: 03/02/2020

9

Fig. 10. AutoPuzzlr’s piece solution screen

B. Team Member Responsibilities

Andrew took the lead on the Piece Matching aspects with a
secondary responsibility in the integration of the software
insofar as it is helpful for the piece matching code. Aneek took
the lead on finger detection and shares a bulk of the integration
of the project with Connor. Connor is heading the user
interface, as well as helping Aneek with the integration of the
user interface with the other software components.

C. Budget

We completed our project using less than half our budget.
The complete Bill of Materials and their associated costs is
included at the end of the report.

D. Risk Management

Our risk management has revolved around alternative
computational methods, such as exchanging the Raspberry Pi
for a laptop or AWS, and giving ourselves some slack. We gave
ourselves plenty of budgetary room in case anything was to go
wrong or we found out we would need more expensive parts or
unexpected parts for any reason. We also gave ourselves the
ability to forego the Leap Motion and go back with our fall back
design which would involve more computer vision, where we
designate a spot on the workspace for the user to place a piece
for which then the computer vision pipeline is run. This turned
out to be a great idea given that our plans were upended
anyway, thus our conversion to a new project was fairly
seamless given the COVID-19 situation. We took advantage of
our plan to shift from the Raspberry Pi to a computer, and from
the Leap Motion to a CV-based approach.

VII. RELATED WORK

There is very little related work available commercially. We
have seen some other attempts on physical puzzles, but they
were only preliminary results and didn’t end up working. We
also found a simulation that was able to match pieces to a
puzzle, but they had the pieces in the right orientation
originally. Furthermore, the simulation was only working with

virtual pieces which used perfect pieces, instead of the
imperfections we are dealing with by using real world pieces.

VIII. SUMMARY

1) Fulfillment of Design Requirements
AutoPuzzlr does meet the revised requirements we set out

after the COVID-19 crisis changed our project, and most of our
original design requirements as well. Overall, we were satisfied
with our results, as we achieved most of our requirements. We
were particularly pleased that removing the Leap Motion
controller and revising our user input-related requirements did
not lead to revising our high-level requirements, as we were
able to satisfy our original requirement using the purely CV-
based system.

For our high-level user requirements, we achieved:
Requirements Result

End-to-End suggestion latency of 4 seconds Avg. 1.4 sec,
1.2 – 4.8s

Suggestion precision of 1 inch 0-1.5in

Suggestion accuracy of 80% 82%

In terms of our CV-based component requirements, we

achieved:
Requirements Result

Tap Detection within 500ms Avg, 282ms,
247 – 303ms

Piece Identification within 300ms Avg. 10ms,
9 – 12ms

Piece Matching within 3 seconds Avg. .86s,
.3 – 4.5s

Response Latency within 50ms Avg. 10ms

B. Future work

Some key improvements we would like to make include
integrating some of the components that were removed due to
COVID-19, including the physical frame, projector, and Leap
Motion controller. In addition to these features, which were
originally part of the design, we would like to expand this
algorithm to not require a visual of the box front. This felt like
it would be out of the scope of the time and budget constraints.
Finally, we would like to explore more advanced CV
techniques to scale this product up to puzzles larger than
20”x20” and 200 pieces.

C. Lessons Learned

We think that there is a lot that can be learned from accurately
and realistically giving yourself a good schedule. We think that
a lot can be learned by accurately tuning your values to grab the
relevant images as well as making sure that you take into
account your development platform early on into development.
We learned a lot about how to be flexible due to uncertain
circumstances, as well as realizing that most projects will rarely

18-500 Design Report: 03/02/2020

10

go to plan and it is important to keep an open mind and always
be able to make a plan B. We also learned that sometimes errors
stem from not reading documentation thoroughly. (Namely,
knowing that OpenCV does not adhere to the RGB standard)

REFERENCES
[1] Leap Motion Datasheet,

https://www.ultraleap.com/datasheets/Leap_Motion_Controller_Datashe
et.pdf

[2] OpenCV documentation, https://opencv.org/
[3] Research paper on Leap Motion latency,

https://pdfs.semanticscholar.org/3aab/d55945b1460620e78ff040e23a819
f1523dc.pdf

[4] Team B9, 18-500 ECE Capstone team, Spring 2019,
http://course.ece.cmu.edu/~ece500/projects/s19-teamb9/wp-
content/uploads/sites/35/2019/05/Final-Report.pdf

[5] Finger Detection and Tracking using OpenCV and Python,
https://dev.to/amarlearning/finger-detection-and-tracking-using-opencv-
and-python-586m

[6] PyGame Documentation, https://www.pygame.org/docs/

18-500 Design Report: 03/02/2020

11

18-500 Design Report: 03/02/2020

12

18-500 Design Report: 03/02/2020

13

Item Cost Description Status

Epson
Powerlite

1776W
Projector

0.00
Borrowed
from ECE

dept.
Did not use

Logitech
C920

Webcam
69.99

Purchased
on Amazon

Arrived;
Used

Raspberry Pi
4 Model B

73.11
Purchased

on Adafruit
Arrived;

Did not use

Duvetyne
Sheet

22.68

Purchased
via

independent
distributor

Arrived;
Did not use

Leap Motion
controller

106.64
Purchased

on Adafruit
Arrived;

Did not use

Total 272.42

