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Abstract—AutoPuzzlr is an unobtrusive automatic puzzle-

solving system that guides users as they work through a puzzle to 
speed up the lengthy process. We are using modern technology to 
allow our users to reap the mental benefits of solving puzzles while 
reducing the time committed and easing the difficulty. We utilize 
CV to make the product easy to use for puzzlers today. This is a 
niche and relatively untouched space commercially and no 
competing technology can claim the features that AutoPuzzlr will 
have, so we are pioneering a much more advanced and capable 
product for passionate puzzle solvers! 
 

Index Terms—Computer Vision, Feature Matching, Hand-
tracking, Point Detection, Puzzle, PyGame, Solving 

I. INTRODUCTION 

utoPuzzlr is a project that is designed to help a user 
complete a puzzle using modern technology and an 

intuitive user interface for the user to interact with. Solving 
puzzles offers mental and physical benefits, but sometimes 
these benefits can be difficult to reap, as puzzles are a 
significant time commitment and can be very difficult. Given 
the niche area, there are few other competing technologies, and 
no other technology claims to be able to handle the same set of 
features this project is able to boast. This project can claim a 
more technologically advanced and unobtrusive solution, using 
CV to take user input and provide a suggested piece location. 
The goals of this project are to be able to guide a user to build 
a puzzle through a touch interface on the physical puzzle itself. 
AutoPuzzlr will detect a user pointing at a piece for 3 seconds 
within 300ms and display where that piece should go in the 
larger puzzle within 4 seconds for any piece within the 
workspace. This will be achieved through the use of just a 
Logitech C920S webcam and a laptop computer. This project 
achieves an 82% accuracy for piece placement within 1.5 
inches of the final piece placement, and runs for 1.4 seconds on 
average for an individual piece. 

II. DESIGN REQUIREMENTS 

Our original design requirements were revised due to 
COVID-19 making our project remote, so the revised 
requirements are detailed in this section. For future reference, 
we have included the original requirements in italics and 
mentioned the changes. Our high-level user requirements are as 
follows: 

 End-to-end suggestion latency: 4 seconds to provide a 
suggestion to the user 

 Suggestion Precision: 1 inch between piece’s suggested 
and actual location (originally 0.5in) 

 Suggestion Accuracy: 80% of the time the piece will 
satisfy the precision requirement (originally 90%) 

We understand that we need to be able to account for some 
errors in the environment itself and that no computer vision 
code will be perfect so we thought that having a 80% suggestion 
accuracy would be a high enough placement accuracy score 
such that the user can rely on it, but if the piece does not fall 
within that 1 inch radius of where that piece should go, then that 
would be considered an inaccurate placement of a piece. The 
requirements were changed to reflect the decrease in accuracy 
from removing the Leap Motion controller from the hand-
tracking system due to COVID-19. Our design is robust for 
detailed pieces, but given that some puzzles have similar 
textures across wide swaths of the picture, there will be a circle 
of confidence of where that piece could be that will grow larger 
across similar areas. (e.g. in a puzzle with a lot of open sky with 
a lot of blank sky-blue pieces, then our accuracy will likely be 
a lot lower than a puzzle piece with a specific detail on it.) We 
chose a 4 second design time because of the limitations of 
technology and the algorithms we are using. We decided that 4 
seconds was a tight enough constraint such that it would still 
feel intuitive and useful to a user, but gave us enough time to 
compute where these pieces should go.  

We have outlined that there is a 4 second response time 
between user input (point) and system displaying its solution to 
the user. We have further subdivided this into the following list: 

 Point Detection: 500 milliseconds from actual point held 
for 3 seconds to point being recognized by CV system 
(originally 50ms) 

 Piece Identification: 300 milliseconds from point being 
recognized to identified piece (originally 500ms) 

 Piece Matching: 3 seconds from identified piece to 
suggested location returned to back-end 

 Response Latency: 50 milliseconds from a user tap 
notification or returned coordinates in the back-end a 
response graphic will be displayed. 

Our timing requirements are derived from estimates of 
computation power required for the algorithms that we are 
using. The point detection requirement changed significantly 
due to the detection being entirely CV-based, instead of using 
the optimized and production-ready Leap Motion controller. 
However, we were able to reduce the piece identification time 
since both pieces were now in the same module and this reduced 
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the overhead of passing data across a local socket as our original 
system was designed. 

Our hardware performance metrics are as follows: 
 Camera Field of View: 100% of our ~24”x24” 

workspace 

 Camera Sensor: 12+ MP resolution and good color 
identification 

These requirements are based off of the size of the puzzle and 
we have an upper limit of about 20” by 20” for our maximum 
puzzle size, and 200 pieces for maximum puzzle pieces. We 
came upon the 12+ MP resolution camera as this should be 
sufficient given the distance of the camera as well as the 
average size of puzzle pieces. We have also referred to previous 
projects using cameras that tested a few options at the scale 
we’re looking at and found 12+MP to be sufficient. 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

Our system architecture is described visually in Fig. 1 and at 
the end of this document. Our design has changed significantly 
since the design report, including the removal of a number of 
physical components, which is detailed below. These changes 
are largely due to being unable to work on-campus and in-
person due to COVID-19. 

Our system was originally composed of a PVC frame 
containing all of our components and defining the workspace 
for the user. This frame is no longer part of our project, as our 
hardware components have been revised to be just the webcam 
and laptop computer. These components were chosen to satisfy 

the user interaction requirements we set and we discuss the 
selection process in the following Section (IV).  

The software system is broken down into 3 libraries 
functioning like microservices - the piece solving system, the 

Fig. 1. A complete block diagram of out system architecture 

finger and point detection, and the user interface. The former 
two components each represent a core system operation in the 
user’s interaction cycle with the system. We have removed the 
animations builder in our original design, as we are utilizing the 
laptop screen for output rather than a projector.  

The user’s points are first recognized by the point detection 
system, which is triggered by the user interface to start looking 
for points at the appropriate stage. The system reports back the 
webcam frame for display, and the point coordinates and 
cropped image of the puzzle piece when a point is detected. 

Then, the piece matching system takes the cropped image of 
the puzzle piece from the user interface and identifies the piece, 
runs its feature and orientation matching algorithm, and reports 
the location of the suggested final location, as an image of the 
puzzle solution and coordinates of the guess, to the user 
interface to display. 

Finally, the user interface orchestrates the above operations 
according to the interaction cycle of the user and takes in input 
so that the user can move from piece to piece as they solve the 
puzzle.  

Our system is architected in this way so that there is clear 
separation of responsibilities between components and a high 
level of possible parallelization in the development process, 
since there is a clear API between otherwise independent 
components.  
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IV. DESIGN TRADE STUDIES 

Our project has undergone significant changes in physical 
components due to COVID-19. Some of the research discussed 
in this section are for components that are no longer part of our 
project, but for future reference we have chosen to include 
them. Removed components will be listed as such. 

A. Physical Components 

 Our final project requires just a camera and computer, and 
the projector, frame, and Leap Motion controller have been 
removed. We have specific functions for each of these 
components and carefully considered our options. 

1) Frame (Removed) 
 Our frame was designed keeping in mind that it needs to 

be portable, adjustable, and relatively cheap. We decided to use 
1.5” diameter Schedule 40 PVC due to its sturdiness, light 
weight, and price compared to wood. We decided on a 1.5” 
diameter because of its rigidity and reasonable weight. We will 
need to drill screws into some of the PVC connections in order 
to mount the projector. This diameter leaves room for this. 

 In addition, PVC piping has reliable connectors that 
include sliding components. We may need to adjust the heights 
of our projector or cameras in our prototyping efforts. Using 
PVC makes this easily possible.  

 Our design is susceptible to toppling over from the weight 
of the projector. We considered preventing this by adding a 
counterweight to the base of the frame or simply adding an 
extending pipe to the base. Adding an extension would have an 
effect on the user’s workspace. Thus, a counterweight was a 
better option. 

2) Surface 
Originally, we designed the system to cover the work surface 

in Duvetyne fabric to improve the Leap Motion controller’s 
performance. As this component has now been removed, we no 
longer require that particular fabric, but we do require a 
consistently colored background where the user’s hand and 
puzzle pieces will stand out to improve the performance of the 
finger detection system. 

3) Camera 
We considered a few options for our camera. Initially, we 

were debating whether to use a DSLR, a smart phone camera, 
or a personal web camera. Personal web cameras are the best 
choice for our project’s scope. That is to say, a DSLR camera 
or a smartphone have far too many functions that would go 
unused for us.  

The web camera we decided to use is the Logitech C920S. In 
choosing this, we mainly considered camera sensor size, 
megapixel count, and price. Thanks to CMU’s IDeATe and 
ECE departments we had lending access to a couple models 
including Logitech’s C615 and C920 webcams, and 
Quickcam’s Pro 9000 model. While each camera had a similar 
sensor size, the C920 has the largest megapixel count at 15 MP. 
Upon further testing, we decided that we would require this 
resolution to ensure our image recognition requirements. Past 
projects that have used OpenCV have succeeded using this 
camera. The C920S we purchased is an updated model of the 
C920 we tested and has the same specifications. 

4) Projector (Removed) 
Our projector was chosen based on size, throw ratio, lumens, 

and price. We would have liked to use a mini projector in order 
to cut down on weight, however they tended to have a low 
number of lumens. Since our product will be used in the light, 
we required at least 2500 lumens. In addition, we were looking 
for a high throw ratio in order to meet our requirements of 
projecting onto a 20” by 20” puzzle within a distance of 4 ft. 
The Apeman M7 mini and the Epson Powerlite 1776W were 
the only models that met the lumens and price specifications, as 
the Apeman was quite affordable and the Epson Powerlite was 
already owned by the ECE department. These and other 
projectors considered are shown in Fig. 2. Upon testing, we 
found that the Apeman projector projected a very wide screen 
that would limit us down to around 16” puzzle heights. The 
Epson Powerlite 1776W was the clear choice moving forward. 

5) Computer 
Our computation currently is being developed on a quad core 

i7 with a 2.6 GHz processor. Our system will run within the 
requirements on the average laptop computer, running an i5 
with a 1.7 GHz processor. We originally planned to use a 
Raspberry Pi 4 Model B computer, but since the frame and other 
hardware components were removed, there was little benefit to 
moving computation to the Pi. This also allowed us to continue 
to use the laptop screen as an output rather than adding a screen 
to the Pi. 

B. Piece Matching 

 Our piece matching relies heavily on a pipeline of image 
processing techniques, however we need to balance both the 
speed of these applications as well as how robust they are, and 
there is still a lot of tweaking to be done as we get the parts we 
need and see how everything translates computationally to the 
Pi.  

1) Technologies Used 
 We have decided to use the Python version of OpenCV 
version 4.2.0, as it was the most up to date version at the start 
of our project and the OpenCV community is vast and helpful 
in case we ran into any problems. 

2) Thresholding 
We have tested many methods, but for now we are planning 

on using OpenCV’s built in THRESH_BINARY_INV method 
for thresholding, in combination with THRESH_OTSU, in 
order to increase the confidence of our thresholding. (See 
labeled picture #2 in Fig. 3). We felt like this gave us the best 
combination of background filtering as well as the ability to 

  
Fig. 2. A table of various projectors we considered 
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clearly choose what part of the image is the puzzle piece. Fig. 3 
picture 4 preserves the picture, but that is not important for this 
step of our algorithm. Once we have this piece separated, we 
are able to extract only those pixel values and consequently 
detect features across them. 

3) Feature Detection 
While we could go with methods like SIFT and SURF we 

didn’t feel like it was necessary as they are not open source in 
all cases. While we had originally intended to use the ORB 
feature detector, we decided to pivot to the BRISK feature 
detection method as it ended up offering us better performance 
for detecting features, as it found key points more easily and 
reliably, as well as providing more reliable matches when using 
RANSAC. RANSAC was the method we chose to match the 
key points between images. RANSAC stands for Random 
Sample Consensus, which chooses a random amount of these 
key points and matches them between images (the piece image 
and the overall puzzle image) and attempts to find the strongest 
match between the two.  

4) Background Cloth 
 We had decided to use Duvetyne fabric as the base of our 

operations as compared to table surfaces, but this fabric did not 
come in time, as COVID forced us to change how we handled 
the background for the project, so we had to forego this portion 
of the project.  

C. Finger Detection 

 We wanted user interaction with our service to be as close 
to the reality of solving a puzzle, so we are utilizing the webcam 
to track the user’s hand and fingertip and detect a point in the 
workspace. This removes a hardware layer between users and 
their puzzles and allows us to get user input in an unobtrusive 
way. Some key design decisions for this subsystem included 
hand and fingertip identification methods, API design, and the 
surface of the workspace. These are covered in Sections IV.C.1-
4. Originally, we planned to use the Leap Motion controller to 
identify users’ hands and taps in the workspace, but this option 
was removed due to COVID-19. However, some of our

 
Fig. 3. An image of a puzzle piece after various thresholding operations 

research into the usage of the controller is included here for 
future reference, in Sections IV.C.5-9.  

1) Technologies Used 
As in the previous section, we have decided to use the Python 

version of OpenCV version 4.2.0. Refer to Section IV.B.1 for 
further details. 

2) Hand & Finger Identification 
The first step in point detection is identifying the user’s hand 

in the camera image. We considered a few options for doing 
this, chief among them using CV techniques like finding 
contours and image masking via a calibrated color histogram, 
and using an ML model for identifying hands. First, we 
considered the ML option. However, some research into current 
performance of hand detection in video streams ran at around 
21 fps on an average laptop, and couldn’t identify fingertips, 
just hands in general. We found one research paper on fingertip 
detection in particular, but as we were making this decision well 
into our project due to COVID-19, we decided it would take too 
much of our remaining development time to try to implement. 
Our other option was using a purely CV-based approach. This 
involved calibrating a color histogram, masking the image 
using the histogram to pull out the hand, and then finding the 
largest contour and the farthest point from its center to locate 
the hand and fingertip respectively. We decided this approach 
was better for our circumstances, as it used common OpenCV 
operations and we were able to use online resources and articles 
to learn more about these tasks. 

3) API Design 
Since this finger detection runs in Python 3, it can be 

integrated with the other modules as an object. Therefore, its 
API is defined such that it can be instantiated and interacted 
with via calling functions rather than waiting for event-based 
messages, as in the previous implementation (see Section 
IV.C.7). We decided to have the Finger Detection module 
provide the entirety of the webcam GUI in the user interface via 
a function, so that the user interface could simply draw UI 
elements around the webcam stream and not have to interact 
with that image itself.  

4) Work Surface 
While we no longer needed to specifically use Duvetyne 

fabric (see Section IV.C.9), we decided to require a consistently 
colored background different from your skin color from the 
user, so that the image masking would properly detect the hand 
and allow for the contours and fingertip to be properly detected.  

5) SDK (Leap Motion) 
 The Leap Motion controller was originally designed for 

using as a touchscreen/keyboard replacement or creating a 
virtual reality control surface. However, the company has since 
pivoted toward Virtual Reality applications and their recent 
libraries are exclusively for Unity/Unreal Engine. To use the 
latest SDK with a Python program, we would have to spin up a 
VR project on the Raspberry Pi. Therefore, we are utilizing an 
older Python SDK rather than the latest version so that we can 
avoid the unnecessary and significant computation overhead of 
running a VR project. 

6) Technologies Used (Leap Motion) 
 Our decision to use the older SDK constrained us to 
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Python 2.7 for interacting with the SDK and controller. 
However, we wanted to take advantage of the modern features 
and performant libraries available to us in Python 3.8.1, so we 
decided to separate the entire Tap Detection & Localization 
component into a separate process that communicates with the 
back-end via local socket. This decision allows us to separate 
the Python 2.7 code while still maintaining minimal latency by 
using local sockets. We decided that since these modules were 
part of the same program and would be running concurrently, 
we will be setting up the socket on initialization and closing it 
on teardown, which will greatly simplify development. 

7) API Design (Leap Motion) 
Since we are communicating with the back-end via local 

socket, we needed to define an API so that we can minimize 
data transferred and have a clear understanding of how both 
sides will communicate to support parallel development. We 
decided to have a call-and-response style of system, where the 
backend sends a trigger, and the service responds with the data 
on the following detected tap.  

We considered alternatives, such as constantly running 
detection and reporting every found tap, but this approach 
required the back-end to continuously monitor the received 
messages to make sure that it responded to the tap that the user 
intended to make when they are prompted by the system to tap 
a piece, rather than any randomly recognized taps made while 
computation on a previous piece was occurring. It made the 
most sense to only report a detected tap when the system was 
expecting one. 

8) Orientation (Leap Motion) 
Due to the original design goals of the Leap Motion 

controller, the software was optimized for using the controller 
face-up on a surface, tracking hands above it. Further research 
also showed that this older SDK included optimizations for 
tracking palms, since it assumed the upward-facing orientation. 
This orientation is not possible for our purposes, since the user 
will be tapping puzzle pieces directly on the work surface rather 
than tapping the air above them, so we experimented with the 
hand tracking under viable orientations - mainly, mounted 
overhead facing down, and mounted on a vertical column and 
facing sideways.  

We utilized software from Leap Motion to view the actual IR 
camera inputs to make these observations. We realized 
immediately that the tracking was extremely poor when 
oriented sideways, as most of the hand is blocked and only the 
side of a palm is visible to the camera. This proved to be nearly 
impossible for the tracking software to recognize, with the 
palm-tracking optimizations enabled or disabled. Overhead 
tracking was better, but the effective range was far lower than 
claimed in the data sheet. We were able to track hands up to 
approximately 10”, while the datasheet claimed two feet. One 
issue was certainly that our use case necessitated that the 
controller track the backs of users’ hands rather than the palms, 
but another issue was the work surface itself, which we discuss 
in the following section. Regardless, the downward-facing 
orientation is clearly the better option, and that is the orientation 
we decided to move forward with. 

9) Work Surface (Leap Motion) 
We had determined that the downward-facing orientation 

was our best option, but we hadn’t yet been able to reach the 
performance levels we were looking for and were promised in 
the device specifications. We continued to use the visualization 
tool and compared performance between the down-facing and 
standard, upward-facing orientations. We observed that the 
primary difference in the images between the orientations was 
the contrast of the hands against the background in the camera 
input, as shown in Fig. 4.A and Fig. 4.C. The surface below the 
hands was reflecting IR light back into the camera and washing 
out the image when the controller was down-facing, but there 
was no such reflection in the up-facing orientation and any 
hands in-frame were clearly contrasted against the background. 

We tested this hypothesis by holding the controller 6’ above 
the ground and tracking hands 4’-5’ above the ground. The 
distance to the ground would ensure that little to no IR light was 
reflected back into the camera and would accurately simulate 
the upward-facing orientation. With that setup, we were able to 
achieve the 2’ tracking distance that we were looking for, and 
looking at the image in the visualization tool, shown in Fig. 4.B, 
confirmed our hypothesis that the reflected IR light from a 
nearby surface was causing the tracking issues.  

We researched mitigations and discovered that an IR 
absorbent material covering the workspace would increase the 
contrast of the users’ hands and still allow them to work on a 
surface rather than 4’ in air. We found a few options, including 
Aktar foil and Duvetyne fabric. Aktar was an order of 
magnitude more expensive than Duvetyne ($199 and $17 for 
comparable amounts, respectively), so we decided to use a 
Duvetyne sheet to cover the work surface under the frame and 
to provide the necessary contrast for the Leap Motion 
controller. 

D. User Interface 

 The user interface both displayed instructions and 
information to the user, and orchestrated the two other software 
components. The key design decisions we made to fit our 
requirements and the requirements of the other services was the 
choice of language, and choice of framework used. 

1) Language Used 
Taking into account the skills and experience of the team, our 
primary language options are Python and C/C++. There are 
definite performance benefits to using C/C++, since it is a 

 
Fig. 4. Images of the camera input from the Leap Motion controller 
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compiled language. However, we decided to use Python 3.8.1 
(the latest version) for the bulk of this project because it is much 
more familiar to us and thus allows for a higher speed of 
development. Additionally, the OpenCV implementation in 
Python uses compiled C++ under-the-hood, so we are able to 
utilize the benefits of compiled OpenCV and use Python. 

2) Framework Used 
We considered a few Python UI frameworks, including 

PyGame, Kivy, and Tkinter. However, we eliminated Kivy 
since our team had experience with PyGame and Tkinter 
previously, but not Kivy. We then researched integrating 
OpenCV images and video streams with Tkinter and PyGame, 
and decided that the high-level constructs in PyGame, like 
surfaces and buttons, were more advantageous than Tkinter. We 
decided to move forward using PyGame 1.9.6. 

V. SYSTEM DESCRIPTION 

Unlike previous sections, where we have chosen to include 
research and discussion from our design report even in cases 
where it is no longer utilized in our project due to COVID-19, 
Section V details our project as it is in its final form. All 
components and discussion in this section describe the revised 
project. 

A. Physical Components 

1) Work Surface 
The work surface must be a consistent color and texture, 

different from the user’s hand. This is primarily to improve the 
accuracy of the finger detection system, since it relies on a color 
histogram and image masking to identify the region of interest 
of the hand. 

2) Computer 
Our software will run on an average laptop computer, 

running at minimum an i5 processor with a 1.7 GHz clock 
speed, and we have also tested with computers running i7 
processors with clock speeds from 2 – 2.6 GHz. 

3) Camera 
The Logitech C920S webcam provides the video stream of 

the workspace to the user. It must be mounted above the 
workspace, facing down. 

B. Piece Matching 

 Our computer vision relies heavily on a pipeline of image 
processing techniques.  

1) The Tap 
As previously mentioned, we had planned to use a Leap 

Motion controller to detect hand gestures, however due to 
COVID, we transitioned to using the Logitech C920S webcam 
and more heavily leverage the computer vision aspects of our 
project. Our project now leverages vision-based gesture 
detection using OpenCV further discussed in V.C. This tap is 
now being leveraged in OpenCV and it discussed in the next 
section. However, we can use the point of the finger that is 
identified in our gesture recognition pipeline as the point that 
we then can capture the image from. Having this point is not 
only helpful for the piece identification portion of our project, 
but it also gives us the ability to provide a seamless user 

interface and experience.  
2) Segmentation 

Once we have resolved the user’s tap location, through our 
software back-end’s coordinate re-mapping, we are able to 
determine the exact piece that is tapped by the user, and 
segment that piece out away from the background. We are then 
able to send this piece extraction image to the feature extraction 
portion of the pipeline. 

3) Feature Extraction  
Once we have the piece, we are looking to match isolated, we 

can run our feature extraction method to try to find parts of the 
puzzle piece with notable features like corners and edges, and 
map them to that piece. Features are extracted using the BRISK 
feature detector.  

4) Feature Matching  
Once we have these features, we are able to match them with 

the features extracted from the puzzle’s final image. From there 
we will perform different confidence checks to ensure that the 
algorithm is confident that it has found the right piece. These 
features are also fairly rotationally robust, meaning when the 
user taps a piece that piece will not have to be in the correct 
orientation for it to be recognized as the correct piece by our 
algorithm.  

These features are matched using RANSAC, which has been 
discussed earlier.  Once a match has been found, the system will 
display a rectangle around the part of the final puzzle that 
should contain the piece. These graphics are discussed further 
in Section V.D. A problem to note, is that since these pieces 
rely on key points to match the pieces in the puzzle, if there is 
a piece that is particularly “bland” or is lacking much texture, 
key points are not easily extracted. Figs. 5 and 6 show 
RANSAC and the final piece solution image. 

 

 
Fig. 5. A display of how RANSAC is matching points, and that it is able to 

place a rotated version of the piece. Due to RANSAC’s consensus 
information, it is able to show that the piece should be placed correctly, 
despite other key points being incorrectly matched. 
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Fig. 6. Below: A demonstration of how the piece matching visualization is 

shown. 

6) No-Key-Point Matching 
In the case that there are not enough key points to match the 

piece, there is a backup method that is on average much slower. 
This method involves template matching the piece in different 
rotations until it can approximate the best fit. This is used as a 
last case scenario, as most pieces of will have some features that 
can be extracted, however, in some puzzles with solid color 
pieces (such as those found in sky pieces) this backup step is 
vital. This is shown in Fig. 7. 

C. Finger Detection 

The finger detection component is an object that the user 
interface instantiates and interacts with. It is instantiated when 
the user interface is started. It opens the webcam and offers 2 
functions for the user interface to call. The function get_frame 
requires a Boolean value (if the calibrate key input is pressed), 
and returns a tuple of point coordinates, cropped piece image, 
and webcam frame image. The function returns the webcam 
frame image with the drawings on it, and if point detection is 
running and a point is detected, it returns the coordinates and 
the cropped puzzle piece at the location of the point. The second 
function start_tap_detection simply sets the flag for point 
detection to start, and must be called for every successive point. 
The name is a holdover from the initial development of this 
component, which detects taps using the Leap Motion 

 
Fig. 7. A demonstration of the backup pipeline working as it is able to place 

the piece without any detected key points. 

controller. The following sections describes the important 
operations in the image processing pipeline used in this 
component. 

1) Calibration 
The first step is calibrating the system to recognize the user’s 

hand by creating a color histogram. The frame displays 9 
rectangles at the center, which outline the 9 regions from which 
color is sampled to create the histogram. When the user presses 
the key to calibrate, the system samples the pixels from each of 
these regions. Then, using OpenCV functions cv2.calcHist and 
cv2.normalize (using the type cv2.NORM_MINMAX), the 
histogram is created. Now, every successive frame can be 
sampled using the color histogram to identify regions of skin 
where the hand is located. 

2) Locating the Hand 
On frames after calibration, the system is tracking the hand 

and fingertip. This is done through a series of operations on the 
original webcam image. Using the OpenCV function 
cv2.calcBackProject, the system segments out the image using 
the color histogram to only the regions with the right colors. 
Then, after some filtering and thresholding to smooth the image 
(using cv2.THRESH_BINARY), the system uses cv2.bitwiseAnd 
to mask the original image using the calculated threshold, 
leaving behind just the areas of the image with the user’s hand. 

Some accuracy issues in the system can manifest in this step 
when the background of the image includes many regions with 
similar colors to the user’s hand. This can create a contour with 
a much larger area than the hand. This can be mitigated with a 
consistently colored background different than the user’s hand, 
which is one of AutoPuzzlr’s requirements for use. 

3) Identifying the Fingertip 
Once the hand is identified, the system identifies all the 

contours in the image. Ideally, there should only be one, as 
everything but the regions of the hand should have been masked 
out. However, since it is possible that lighting conditions may 
make it hard to distinguish some other regions of the image, the 
system then looks for the contour with the largest area, which 
should, in most cases, identify the single contour making up the 
hand in the image. This is done using OpenCV functions 
cv2.findContours and cv2.contourArea. Finally, the system 
identifies the centroid, hull, and convexity defects of the 
identified contour, using the OpenCV functions cv2.moments, 
cv2.convexHull, and cv2.convexityDefects. Then, it identifies 
the convexity defect farthest from the center, which is likely to 
be the farthest extended fingertip of the hand. 

Some accuracy issues in the system can manifest in this step, 
in particular when significant portions of the arm are in frame. 
The arm is likely to be included in the masked image, so it is 
possible that the bottom of the frame where the arm ends is 
farther from the centroid then the extended fingertip. This can 
be mitigated in scenarios where it occurs by recommending that 
the user where long sleeves, but at the scale and workspace 
dimensions AutoPuzzlr is generally used in, it is unlikely to 
occur. 

4) Identifying a Held Point 
Once the fingertip’s location is determined, AutoPuzzlr adds 

it to a list of stored locations. As the frame rate of the 
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application (and therefore the rate of calls to get_frame) is 
controlled by PyGame, the system caps the length of this list to 
correspond to the number of frames in 3 seconds. Then, for each 
frame where it is looking for a point, it checks if 90% of the 
stored fingertip locations are within a certain radius of the 
current fingertip location. We use this percentage and radius to 
control for small movement and any inaccuracies in the pipeline 
which would otherwise void a valid point. If the stored list 
satisfies the percentage and tap radius, then we recognize a 
point. Finally, we crop the image of the puzzle piece from right 
beyond the tip of the fingertip by calculating the vector between 
the hand’s center and the fingertip to get the direction of the 
point, and extend it to locate the area being pointed to. Fig. 8 
shows the full webcam frame, including the center of the hand, 
the identified fingertip and stored locations, and the rectangle 
that is cropped when a point is detected. Finally, the component 
returns the coordinates, the cropped image from the tip of the 
fingertip, and the full webcam frame to be displayed to the user 
in the UI. If no point is found, it simply returns the frame. 

5) Conclusions 
Overall, despite the changes to the user input system due to 

COVID-19, we were able to implement a CV-based system that 
hit our revised specific requirements and still matched the 
original end-to-end requirement. The point identification takes 
between 250-300ms with an average of ~282ms, which is well 
within our revised requirement of 500ms. The piece 
identification is far faster, at an average ~10ms rather than our 
revised estimate of 300ms, because everything ran in the same 
system and we took a simpler approach to piece identification 
than we originally expected. Thus, our overall average time of 
identifying a point and puzzle piece, 292ms, is well within our 
original end-to-end requirement of 550ms. 

D. User Interface 

AutoPuzzlr’s user interface is created in PyGame, and 
consists of 3 primary screens displayed to the user. The user 
interface also orchestrates the 2 other components to get 
information and trigger operations at the appropriate times.  
 

 
Fig. 8. The drawn-on webcam display showing the identified center, fingertip, 

stored locations, and rectangle of the cropped image 

1) Title Screen 
The title screen simply presents AutoPuzzlr’s name and 

provides a jumping off point to the user experience. 
2) Setup Screen 

The first step in using AutoPuzzlr is providing the completed 
puzzle as a solution image, so the setup screen provides the 
options for doing that to the user. They can take a picture with 
the webcam or they can upload an image from their computer. 
We recommend they upload an image from their computer, as 
this allows them to crop the image and make sure the lighting 
is even.  

3) Solving Screen 
The main screen that users will spend the most time on is the 

solving screen, shown in Fig. 9. This shows the webcam’s video 
stream with the fingertip, hand, and tracked locations displayed 
on it in the same way as Fig. 8 does. It displays instructions for 
the user in the top bar, and shows all the pieces they have solved 
in the bottom bar. Once a tap is recognized, an overlay appears 
showing the piece’s location within the larger puzzle solution 
provided in the previous screen. This is shown in Fig. 10. 

The display loop for this screen also orchestrates the other 
two components. It calls get_frame and start_tap_detection on 
the finger detection component, and solve to kick off the piece 
matching pipeline as points are recognized and images are 
solved. 

VI. PROJECT MANAGEMENT 

A. Schedule 

Our complete schedule is expanded at the end of the 
document. In general, each team member has a task to complete 
every week. We were following a cycle of research, then into 
implementation-refinement cycle, and then into integration. 
After spring break, the COVID-19 lockdown caused a number 
of tasks to shift and you can see the changes reflected. This 
pushed integration farther back than we originally planned, as 
the entire UI had to be rewritten, and the Tap Detection 
component scrapped and Finger Detection component written. 

 
Fig. 9. AutoPuzzlr’s primary solving screen 
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Fig. 10. AutoPuzzlr’s piece solution screen 

B. Team Member Responsibilities 

Andrew took the lead on the Piece Matching aspects with a 
secondary responsibility in the integration of the software 
insofar as it is helpful for the piece matching code.  Aneek took 
the lead on finger detection and shares a bulk of the integration 
of the project with Connor.  Connor is heading the user 
interface, as well as helping Aneek with the integration of the 
user interface with the other software components. 

C. Budget 

We completed our project using less than half our budget. 
The complete Bill of Materials and their associated costs is 
included at the end of the report.  

D. Risk Management 

Our risk management has revolved around alternative 
computational methods, such as exchanging the Raspberry Pi 
for a laptop or AWS, and giving ourselves some slack. We gave 
ourselves plenty of budgetary room in case anything was to go 
wrong or we found out we would need more expensive parts or 
unexpected parts for any reason. We also gave ourselves the 
ability to forego the Leap Motion and go back with our fall back 
design which would involve more computer vision, where we 
designate a spot on the workspace for the user to place a piece 
for which then the computer vision pipeline is run. This turned 
out to be a great idea given that our plans were upended 
anyway, thus our conversion to a new project was fairly 
seamless given the COVID-19 situation. We took advantage of 
our plan to shift from the Raspberry Pi to a computer, and from 
the Leap Motion to a CV-based approach. 

VII. RELATED WORK 

There is very little related work available commercially. We 
have seen some other attempts on physical puzzles, but they 
were only preliminary results and didn’t end up working. We 
also found a simulation that was able to match pieces to a 
puzzle, but they had the pieces in the right orientation 
originally. Furthermore, the simulation was only working with 

virtual pieces which used perfect pieces, instead of the 
imperfections we are dealing with by using real world pieces. 

VIII. SUMMARY 

1) Fulfillment of Design Requirements 
AutoPuzzlr does meet the revised requirements we set out 

after the COVID-19 crisis changed our project, and most of our 
original design requirements as well. Overall, we were satisfied 
with our results, as we achieved most of our requirements. We 
were particularly pleased that removing the Leap Motion 
controller and revising our user input-related requirements did 
not lead to revising our high-level requirements, as we were 
able to satisfy our original requirement using the purely CV-
based system. 

For our high-level user requirements, we achieved: 
Requirements Result 

End-to-End suggestion latency of 4 seconds Avg. 1.4 sec, 
1.2 – 4.8s 

Suggestion precision of 1 inch 0-1.5in 

Suggestion accuracy of 80% 82% 

 
In terms of our CV-based component requirements, we 

achieved: 
Requirements Result 

Tap Detection within 500ms Avg, 282ms, 
247 – 303ms 

Piece Identification within 300ms Avg. 10ms, 
9 – 12ms 

Piece Matching within 3 seconds Avg. .86s, 
.3 – 4.5s 

Response Latency within 50ms Avg. 10ms 

 

B. Future work 

Some key improvements we would like to make include 
integrating some of the components that were removed due to 
COVID-19, including the physical frame, projector, and Leap 
Motion controller. In addition to these features, which were 
originally part of the design, we would like to expand this 
algorithm to not require a visual of the box front. This felt like 
it would be out of the scope of the time and budget constraints. 
Finally, we would like to explore more advanced CV 
techniques to scale this product up to puzzles larger than 
20”x20” and 200 pieces. 

C. Lessons Learned 

We think that there is a lot that can be learned from accurately 
and realistically giving yourself a good schedule. We think that 
a lot can be learned by accurately tuning your values to grab the 
relevant images as well as making sure that you take into 
account your development platform early on into development. 
We learned a lot about how to be flexible due to uncertain 
circumstances, as well as realizing that most projects will rarely 
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go to plan and it is important to keep an open mind and always 
be able to make a plan B. We also learned that sometimes errors 
stem from not reading documentation thoroughly. (Namely, 
knowing that OpenCV does not adhere to the RGB standard) 
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Item Cost Description Status 

Epson 
Powerlite 

1776W 
Projector 

0.00 
Borrowed 
from ECE 

dept. 
Did not use 

Logitech 
C920 

Webcam 
69.99 

Purchased 
on Amazon 

Arrived; 
Used 

Raspberry Pi 
4 Model B 

73.11 
Purchased 

on Adafruit 
Arrived; 

Did not use 

Duvetyne 
Sheet 

22.68 

Purchased 
via 

independent 
distributor 

Arrived; 
Did not use 

Leap Motion 
controller 

106.64 
Purchased 

on Adafruit 
Arrived; 

Did not use 

Total 272.42   

 
 
 
 
 


