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I. ABSTRACT 
 
Our project aims to automate the entire search and 
reconnaissance phase of disaster recovery operations. Our 
solution uses an iRobot Create 2 along with a LIDAR and 
Thermal Camera to autonomously explore any indoor 
environment, generate a map, and locate all people within it. 
We envision our project to be a prototype of the first stage to 
reaching the goal of fully automating such search missions. The 
fundamental functionality such as obstacle avoidance, complete 
exploration, and human detection that we implemented can be 
extended to a more robust robot base able to navigate through 
rough/uneven environments as well as be used in conjunction 
with other robots to simultaneously conduct such missions. 

II. INTRODUCTION 
 
The goal of our project is to automate the search phase of search 
and rescue operations in indoor environments. During search, 
first responders require two essential pieces of information – 
the map of the environment and the location of people within it. 
This is crucial as it allows first responders to conduct situational 
assessment as well as plan an efficient recovery path to rescue 
victims. We developed a solution which uses an iRobot Create 
2 mounted with a LIDAR Scanner, Thermal Camera and a 
Raspberry Pi Microcontroller to autonomously explore any 
indoor unknown environment in its entirety and place all people 
within it.  
 
Disaster recovery operations are often a race against time - to 
reach as many victims as possible in the shortest amount of time 
since the expectancy of life decreases exponentially after a 
certain period of time. As a result, the primary motivation of 
our project is to reduce the time taken by the robot to finish the 
search process as well as locate most victims.  
 
We use the technique of Frontier Exploration1 to autonomously 
explore an environment and use a Thermal Camera to detect 
people in the vicinity.  

III. CHALLENGES 
 
Below we highlight four key challenges a mobile robot faces 
in such operations.  
 
 

 

• Mapping/Localization - In order for the robot to 
navigate and find victims, it needs to be aware of its 
location in relation to the map of the environment. 

 
• Exploration – The robot must be able to answer one key 

question – How can we know that we have explored the 
entire environment? This becomes even more 
imperative when human-teleoperation is not possible. 
The robot must have a heuristic to explore and decide 
when exploration is complete.   

 
• Victim Detection - In order for a successful rescue 

phase, the robot needs to locate potential victims and 
overlay them on the map it generates.  

 
• Mobility - Disaster recovery environments are often 

characterized by hard-to-traverse terrains and obstacles. 
After some consideration, we determined that we would 
have to use a 3D depth scanner and much more 
sophisticated navigation algorithms in order to traverse 
the environment. As a result, we designated this 
challenge to be out of scope for our project. 

IV. ASSUMPTIONS 
 

Since the scope of our project is quite wide, we made a few 
assumptions about the environment we are operating in to 
narrow it down.  
 

1. Flat Terrain – We assume the terrain we are 
traversing to be flat and smooth, allowing us to use a 
2D depth scanner. Moreover, all obstacles have to 
cross the height of the LIDAR in order to be detected.  
 

2. Static Environment – Mapping is very susceptible to 
variations in the environment. So, we assume that the 
environment remains static for the duration of 
exploration. 

V. DESIGN REQUIREMENTS 
In order to satisfy the aforementioned challenges, the robot 
needs to meet the following specifications. 

 
1. Hardware  

a) The robot should be able to traverse the test 
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environment at a minimum of 2ft/s and be able to 
rotate in place. 

b) The robot should have a sensor capable of capturing 
depth information from the environment. 

c) The robot should have an attached embedded 
microcontroller to which instructions can be sent via 
pc. The robot should respond to instructions with the 
appropriate movement in the correct direction. 

d) The robot should have some sort of camera to capture 
information about the environment and the embedded 
system should be able to stream the captured 
information to the pc. 

 
2. SLAM  

a) The robot must localize itself within the environment to 
a precision of 1 ft in distance and 5 degrees in 
orientation. 

b) The robot must be able to generate a Grid Map of the 
environment using depth data from sensors. 

c) At every iteration, the robot must take no longer than 5 
seconds to generate a map and localize itself.  

 
 

3. Exploration 
a) The robot must be able to determine where to move in 

order to gain as much new information about the 
environment as possible. 

b) The robot must be able to generate a complete map of 
the environment with at least 90% coverage.  

c) The robot must avoid all collisions into obstacles/walls. 
d) The robot must be able to traverse an environment of 

size 1500 sq ft. within 12 minutes. 
e) The robot must be able to determine when it has 

completed exploring the entire environment.   
 

4. Human Detection  
a) The robot must be able to use sensor data to detect 

human presence.  
b) The robot must mark the position of humans to a 

precision of 2 ft in distance.  
c) The robot must be able to detect at least 90% of all 

potential victims.  
 

Meeting the SLAM specifications will allow the robot to know 
where it is in relation to the environment. This is a crucial 
starting point for the critical parts of our project - Exploration 
and Human Detection, since both of these require a local map 
of the environment and the pose of the robot to be known.  

 
One of the biggest risk factors for our project is Exploration - 
the ability of the robot to explore an entire unknown 
environment from any starting point. We need to be able to 
implement a robust algorithm that allows the robot to know 
where to go and how to reach there in order to achieve complete 
coverage. Specification 3.d requires that we reduce 
computation time and increase the time the robot spends 
exploring. This requires efficient path planning and goal 

searching. 
 

The other risk factor is human detection. Our specifications for 
human detection require that the robot is able to find at least 
90% of all potential victims. This specification follows directly 
from the goal of our operation which is to find as many potential 
victims as possible. The hardware we use for this functionality 
would need to work in conjunction with the exploration to 
overlay human positions on the map.  

VI. HARDWARE ARCHITECTURE 
 
Hardware and Design Tradeoffs 
 
The following section describes our choices and the tradeoffs 
we had to make while choosing the four major hardware 
components of our robot i.e the lidar, Raspberry PI, IMU sensor 
and thermal camera. We made these decisions considering our 
requirements, our budget as well as the ease of use. 
 
Mobile Robotic Platform 
 
The mobile robotic platform is the most important part of our 
robot as this would house all the sensors and move around the 
test area. Most robotic platforms met our speed requirements as 
the robot would move around relatively slowly (~3 km/h). We 
essentially had to choose between a 4 wheeled square mobile 
robot or a circular robot like the iRobot Create 2. While the 
iRobot afforded us some advantages like an extremely easy to 
use Python API, inbuilt obstacle avoidance and easy turning 
due to its circular shape, it also cost $200 and would leave no 
room for slack in our budget in case of any sensor or platform 
failure. We also needed to implement our own obstacle 
avoidance algorithm as it would have to work with the Path 
Planning node in order to plan the path and avoid obstacles at 
the same time. Our exact requirements and how closely the 
iRobot Create 2 and the 4 wheeled square mobile robot matched 
up with them are listed in the table below. 
 
 

Requirements iRobot 
Create 2 

4 Wheeled Mobile 
Robot 

Max Load > 6 
kg 

9 kg 15 kg 

Space for Lidar Mount 
needed. 

No mount needed. 
Can simply screw 
on top. 

Space for 
Thermal 
Camera 

Mount 
needed. 

No mount needed. 
Can simply screw 
on. 
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Space for 
Raspberry Pi 

Yes. Space 
in cargo bay. 

Space for 
embedded system 
on platform. 

Obstacle 
Avoidance 

Inbuilt Need to use lidar 
data and write own 
obstacle 
avoidance 
algorithm. 

Ease of Use Very easy to 
use Python 
API over 
USB Serial. 

No API. Need to 
control motors 
individually over 
USB serial. 

Turning Circular. Can 
easily turn in 
place. 

Need to 
individually control 
wheels to turn in 
place. 

Price 200$ 75$ 
 

Fig. 1. Tradeoffs between two robot chassis 

After going through the tradeoffs for each robot platform, we 
decided to choose the 4 wheeled mobile robot platform over the 
iRobot Create 2 primarily because of the cost and the mounts 
needed for the sensors on the iRobot Create 2. Although it 
would be much easier to use the iRobot, we decided that it 
would be safer to go with the 4 wheel mobile robot platform 
and implement the turning and obstacle avoidance on our own. 
Unfortunately, the robot we chose came with multiple parts 
missing and got immediately sold out after that. As a result, we 
were not able to replace the missing parts and had to return it. 
We decided to not waste further time by choosing another robot 
and decided to go with the iRobot Create 2 instead as it came 
fully assembled and we got a discount code for it which 
effectively made the cost $130.  The robot chassis we chose is 
shown in Fig. 2. 

 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 2. iRobot Create  

Embedded Microcontroller 

We essentially had to choose between a Raspberry Pi and 
Arduino. Both the Raspberry Pi and Arduino had a GPIO 
header to interface with all the sensors and the robot platform, 
both were equally easy to use and worked with ROS. In the end, 
we went with the Raspberry Pi because all of us had experience 
working with the Raspberry Pi in previous courses or research.  
We already have a Raspberry Pi 3A+ so we will not need to buy 
it. A complete list of all the GPIO ports we would be using 
along with the sensors we would be using them for is given 
below. A detailed wiring diagram of the connections we will be 
making is also given below in Fig 4. 
 

GPIO Pin(Pin 
Number) Sensor/Device 

Power(1) Lidar, Robot, Thermal 
Camera 

Ground(6,9) Lidar, Robot, Thermal 
Camera 

PWM(32) Lidar Motor 

RX1(8) Lidar 
TX1(10) Lidar 

RX2(16) Robot Control 
TX2(18) Robot Control 

SDA(3) Thermal Camera 

SCL(5) Thermal Camera 
Fig. 3. GPIO pins 

IMU  
 
The decision to include an IMU was made after deciding on the 
initial mobile robot platform. Since the platform we chose had 
very big wheels, the wheel’s odometry data could not be trusted 
as the test environments would have smooth surfaces. We 
decided to go with the Adafruit BNO055 9 DOF IMU with an 
accelerometer, gyroscope and magnetometer to help with initial 
State estimation. But, after switching to the iRobot Create 2, we 
realized that the wheels of the robot were small enough for us 
to trust the odometry given by the robot. Thus, we decided to 
exclude the IMU from our final design and just used the 
odometry data provided by the iRobot for state and position 
estimation.  
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Lidar 
 

We decided to go with a Lidar over a camera to capture depth 
information for SLAM primarily because of the computational 
cost of capturing depth information from a camera. In addition 
to this the camera would need to either be a 360-degree camera 
or we would have to rotate it to capture 360-degree information.  

 
There are a variety of extremely powerful Lidar sensors all of 
which would meet our requirements as we would just need a 
scan every 2 seconds and a 1-degree resolution. Essentially, we 
would just have to find the cheapest Lidar sensor that would 
meet all our requirements. Our exact requirements are listed 
below: 

 
- Distance Range: 0.2 m - 8 m since we are 

exploring indoor environments only 
- Frequency: 1 scan every 2 seconds 
- Field of View: 360 degrees since it avoids having 

to turn the robot after every movement.  
- Resolution: 1 degree, since we require it to be 

accurate enough so as to not collide with obstacles.  
 

We decided to go with the RPLidar A1M8 as it fulfilled all of 
these requirements and has a mount which can be easily 
screwed on top of our mobile robot. Moreover, it only costed 
99$ which would mean we could easily buy one more in case 
this one got damaged. The specifications of the RPLidar A1M8 
are given below. 

Thermal Camera 
 
To detect humans, we decided to use a Thermal Camera 
instead of a normal camera. This was because, it would be 
less computationally expensive as we would just get 
temperature readings and it would be much easier to filter 
them out. Using a normal camera would mean we would 
have to use OpenCV for image processing which would 
put more load on an already strained Raspberry Pi. We 
decided to use the Adafruit AMG8833 thermal camera. 
The thermal camera gives us results in 8x8 which we 
interpolate to 32x32 to detect humans. After testing it 
multiple times, we figured out the temperature range for 
humans and only detected humans when they were in that 
particular threshold. This would filter out a lot of false 
positives that we were initially concerned about as we are 
testing a range. 
 
3D Mount 
 
We created a 3D Mount for our robot that would be placed on 
top of the iRobot Create 2. This mount would have 
compartments for the Raspberry Pi as well as the thermal 
camera. The Lidar would be placed on top of the mount so that 
it is free to rotate and get information from the environment. A 
3D diagram of the mount is given below.  
 
 
 
 
 
 

Distance 
Range 

Field of 
View 

Angular 
Resolution 

Scan 
Rate 

0.15 - 12 m 360° 1° 5.5 Hz 

Fig. 4. Wiring Diagram 
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VII. SOFTWARE ARCHITECTURE AND DESCRIPTION 
 
An overview of all the software components and how they 
interact with each other is shown in figure 6. All of the nodes 
will be implemented using ROS, which handles communication 
between nodes running in parallel. Below, we provide a 
description of each of the nodes shown in the diagram.  
 
 
Simultaneous Localization and Mapping (SLAM):  
 
The SLAM subsystem answers one very important question for 
the robot - Where am I? It is responsible for generating a map 
of the environment as well as localizing the robot within it. The 
choice of our SLAM algorithm was influenced by two key 
choices we made - map representation and sensor data.  

 
We decided to use Occupancy Grid Maps to represent our 
environment. The figure below shows an instance of such a 
map. It consists of uniform cells with each cell containing a 
probability of it being occupied (0 for unoccupied and 1 for 
occupied). We use this representation because our end-goal was 
autonomous navigation and the nature of these maps lends itself 
very suitably to plan paths and avoid obstacles. For example, 
given such a map we could easily recognize if the robot is 
moving to a cell which is occupied and prevent it from doing 
so. 
 
Secondly, we decided to use a 2D Lidar sensor for extracting 
depth information from our environment. We chose a 2D Lidar 
over a 3D Lidar because navigating difficult and uneven 
terrains was out of the scope of our project. Moreover, 3D lidars 

 
 

generate far more points than a 2D Lidar making processing 
expensive. Since we want to reduce the time the robot is 
stationary, we decided against a 3D Lidar. Similarly, the large 
number of features generated by RGB cameras makes map 
creation expensive.   
 

 
Fig. 5. Occupancy Grid Map 

 
Given these 2 constraints of a Grid Map and 2D Lidar sensor 
and the fact that we are exploring an unknown environment 
without any pre-determined landmarks, we decided to use 
gmapping2 to implement this node which uses Iterative Closest 
Point for Scan Matching to improve robot localization and uses 
a Particle Filter to estimate the probability of every cell being 
occupied in the grid map.  
 

Fig. 6. Software Architecture 
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Navigation  
 
o Frontier Exploration  

 
Since we are exploring a completely unknown environment, we 
cannot use algorithms such as wall following to traverse the 
area since the environment may not have parallel walls or walls 
at right angles. Moreover, using such a heuristic cannot 
determine whether we have completed the search or not. As a 
result, we used the notion of frontiers to explore the 
environment. By definition, frontiers are cells at the boundary 
of known and unknown regions. At every iteration, we find 
clusters of frontiers on the map. We sort these clusters by size 
and use the heuristic to move to the center of the cluster with 
the greatest mass (number of frontier cells). Following from the 
definition of frontiers, once we find no more frontier cells, we 
have explored all unknown regions of the environment.  
 
There are cases in which frontiers exist but are unreachable. 
This might be because of noise in LIDAR readings, the LIDAR 
seeing through obstacles, or very narrow areas in the 
environment. In order to accommodate for these cases, we 
check whether the cluster of frontiers is reachable by a path not 
going through obstacles.  
 
In figure 7, frontiers are marked by orange cells. Notice how 
these cells exist at the boundary between known (white) and 
unknown regions (grey) regions.  
 
o Path Planning 

 
Once we have established frontiers on the map, which one 
should the robot proceed towards? Here, we decided to use the 
heuristic to move to center of the frontier cluster with the 
greatest mass.  
 
Once we have this goal and the current position of the robot, we 
use a traditional A* Search to find the lowest cost path to the 
goal cell. Each cell has a cost associated with it proportional to 
whether it is empty or occupied. This search returns a list of 
robot poses from current position to the goal position. This list 
is passed on to the robot control which executes the trajectory 
of the robot until the robot is within the set threshold of the goal 
cell.  
 
Upon initial testing, we noticed that due to the nature of A* 
search to find the shortest path, the robot would move very close 
to obstacles, resulting it in colliding against walls when making 
sharp turns. As a result, we made two key changes to our 
implementation. First, we added padding to obstacles on the 
map so that cells surrounding obstacles are also considered as 
obstacles themselves. This resulted in the path shifting away 
from obstacles. Second, we added an extra cost to our heuristic. 
We add a cost to each cell proportional to its distance to an 
obstacle up to a certain distance.  

 
The result of path planning with and without these changes can 
be seen in the figures below.  

Fig. 7. Planned Path (green) with and without expanded 
obstacles and heuristic 

 
o Reactive Obstacle Avoidance  

 
Whenever the robot executes a trajectory, we have a thread that 
continuously looks through the lidar scans to determine if the 
robot is going to collide against an obstacle if it executes the 
most recent control command. If the robot is bound to collide, 
this thread stops the robot in place and fetches a new trajectory 
from that point to the goal cell. 
 
Human Detection 

 
For human detection, we decided to use thermal images taken 
by a camera mounted on our robot. We made this decision 
because it poses a smaller computational cost as compared to 
RGB cameras. Since the thermal camera is stationary, we 
require the robot to make a 360-degree sweeps periodically, 
allowing us to scan for humans in the vicinity of the robot.  

 
One disadvantage of the thermal camera is that we cannot 
extract depth information from images since it only outputs an 
8x8 image. We overcome this by aligning the center of the Lidar 
and the Thermal Camera such that the vertical line running 
through the middle of our thermal images corresponds to the 
0th degree range measurement of the Lidar. As a result, when a 
human is detected, we correlate the angle of the thermal camera 
to an offset in the Lidar which gives us the distance of the 
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person from the robot. Given this distance (d), the angle (𝜃)	 
and the current position (x, y) of the robot, we find the position 
(x’, y’) solving the following equations –  
 

 
 
𝑑% = 𝑥 − 𝑥) % + 𝑦 − 𝑦) % 

𝜃 = tan/0(
𝑦) − 𝑦
𝑥) − 𝑥

) 

 
 

 
 

Another drawback to using a thermal camera is that it cannot 
discern between humans and other heat emitting objects like 
radiators or fireplaces. As a result, it is possible to detect 
multiple false positives. We plan on minimizing this risk by 
experimenting with temperature thresholds which are most 
often exhibited by humans. We found that for our thermal 
camera, temperature ranges in the range 24-29 OC.   

VIII. TESTING AND RESULTS 
 

Test Phase I: SIMULATED TESTING   
 
 Test Environment: 

→ A total of two test environment are used in this phase to 
ensure the pathing algorithm works as expected.  
→ The 2 test environments are shown in the figures below, 

with an approximate area of 1300 square feet and 2020 square 
feet respectively. 

 

 

 
Fig. 8. Simulated Test Environment 1 and 2 

 
Test Metrics:  
→ The time taken to navigate the simulated area should be 
below 5 minutes for an area of 1300 square feet and below 7 
minutes for an area of 2020 square feet.  
→ The proportion of time spent on computation should be    
below 50% of the entire time taken.  
→ The robot should not collide with walls or obstacles at all 
time.   

 
Results:  
→ The test metrics are evaluated for ten iterations in each 
test environment as shown in Table below.  
→ From the table below, we see that the average number of 
iterations taken for test environment 1 of 1300 square feet is 
9 iterations and the average number of iterations taken for test 
environment 2 of 2020 square feet is 16 iterations.  
→ The average time taken in test environment 1 is 211.76 s, 
which satisfy our metrics of below 5 minutes and the average 
time taken in test environment 2 is 389.7s, which also satisfy 
our metrics of below 7 minutes.  
→ The proportion of time spent on computation for test 
environment 1 and 2 are 32.5% and 41.0%, respectively, and 
they satisfy our metrics to keep the computation time below 
50% of the entire travel time.  
→ The simulated robot did not run into any collision in the 
ten runs in test environment 1 but did collide once in test 
environment 2. In order to prevent collisions in real testing, 
we have expanded obstacles and walls to reduce chance of 
collision.  

 

 

AVERA
GE 

NUMBE
R OF 

ITERAT
IONS 

AVER
AGE 
TIME 
TAKE

N 

PROPORT
ION OF 
TIME 

SPENT ON 
COMPUT

ATION 

RUNS 
WITH
OUT 

COLLI
SON 

TEST 
ENVIRON
MENT 1 

9 211.67 
s 32.5% 100 % 

TEST 
ENVIRON
MENT 2 

16 389.7 s 41.0% 90 % 

 
Test Phase II: REAL WORLD TESTING WITHOUT 
HUMAN DETECTION   

 
Test Environment: 

→ A total of four test environment are used in this phase 
to ensure the robustness of the path planning algorithm 
integrated with every component.  
→ The first test environment we used is the kitchen and 

hallway in an apartment with an approximate area of 150 
square feet as determined by The RViz map and shown in 
figure below.  
→ The second test environment we used is the hallway in 
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an apartment with an approximate area of 650 square feet as 
determined by the RViz map and shown in figure below.  
→ The third test environment we used is the right wing on 

the first floor of Hamerschlag Hall. It has an area of 
approximately 1000 square feet as determined by the RViz 
map.  
→ The final test environment resembles the area we 

constructed for public demo. It is 16 feet by 16 feet area, with 
a large room, a passage, and two small rooms and shown in 
figure below.  
 
 

 
 
 
 

 

 
Fig. 9 Test Environments 1, 2, 3, 4 

 
Test Metrics:  
→ The time taken to navigate the simulated area should be 
below 2 minutes for an area of 150 square feet, below 3 
minutes for an area of 256 square feet, below 5 minutes for 
an area of 650 square feet, and below 8 minutes for an area 
of 1000 square feet.  
→ The proportion of time spent on computation should be    
below 50% of the entire time taken.  
→ The robot should not collide with walls that causes failure 
at least 80 percent of the time.    

 
Results:  
→ The test metrics are evaluated for ten iterations in each 
test environment as shown in Table below.  
 
→ From the table below, we see that the average number of 
iterations taken for test environment 1 of 150 square feet is 3 
iterations and the average number of iterations taken for test 
environment 2 of 650 square feet is 6 iterations.  
 
→ The average time taken in test environment 1 is 93.8s, 
which satisfy our metrics of below 2 minutes and the average 
time taken in test environment 2 is 247.7s, which also satisfy 
our metrics of below 5 minutes.  
 
→ The proportion of time spent on computation for test 
environment 1 and 2 are 65.4% and 57.0%, respectively, and 
they do no satisfy our metrics to keep the computation time 
below 50% of the entire travel time.  
 
→ The rumba ran into collisions twice in the ten runs in test 
environment 1 and collided three times in test environment 2. 
Although the algorithm expanded the obstacle and walls, 
adding cost to path going near obstacles, it still appears that 
the localization of the robot can deviate from the actual pose 
of the robot that lead to collisions. However, the robot 
generally is able to recover from collision and re-plan its path 
forward.   
 

 

AVERAG
E 

NUMBER 
OF 

ITERATI
ONS 

AVERA
GE 

TIME 
TAKEN 

PROPORTIO
N OF TIME 
SPENT ON 

COMPUTAT
ION 

RUNS 
WITHO

UT 
COLLIS

ON 

TES
T 1 3 93.8 s 65.4% 80 % 

TES
T 2 6 247.7 s 57.0% 70 % 

TES
T 3 8 290.0s ~60% 70% 

TES
T 4 5 ~190s ~70% 90% 
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Test Phase III: REAL WORLD TESTING WITH THERMAL 
DETECTION INTEGRATED.  

 
Test Environment: 

→ A total of two test environment are used in this phase to 
ensure that the updated pathing algorithm as well as thermal 
camera detection works as expected.  
→ The first test environment we used is the kitchen and 

hallway in an apartment with an approximate area of 150 
square feet as determined by The RViz map and shown in 
figure below.  
→ The second test environment resembles the maze we 

constructed for public demo. It is 16 feet by 16 feet maze, 
with a large room, a passage, and two small rooms and shown 
in figure below.  
 

Test Metrics:  
→ Same as Test Phase 2.  
→ The robot should detect at least 90 percent of people in the 
unknown environment.  
→ The difference between the marked and actual position of 
the humans detected should be within 1 ft.     
 

Results:  
→ The test metrics are evaluated for ten iterations in each 
test environment as shown in Table below.  
→ From the table below, we see that the average number of 
iterations taken for test environment 1 of 150 square feet is 3 
iterations and the average number of iterations taken for test 
environment 2 of 256 square feet is 5 iterations.  
→ The average time taken in test environment 1 is 127.2s, 
which satisfies our metrics of below 3 minutes and the 
average time taken in test environment 2 is 242.0 s, which 
also satisfies our metrics of below 5 minutes.  
→ The proportion of time spent on computation for test 
environment 1 and 2 are 48.2% and 43.3%, respectively, and 
they both satisfy our metrics to keep the computation time 
below 50% of the entire travel time since the extra rotation 
times added in our algorithm reduces the percentage of total 
time spent on computation.  
→ The rumba run into collisions twice in the ten runs in test 
environment 1 and collided twice in test environment 2. 
Although the algorithm expanded the obstacle and walls, 
adding cost to path going near obstacles, it still appears that 
the localization of the robot can deviate from the actual pose 
of the robot that lead to collisions. However, the robot 
generally is able to recover from collision and re-plan its path 
forward.   
→ The overall percentage of people detected in the first test 
environment is approximately 83%. The thermal camera can 
only credibly identify humans within around a 1m range. it 
was not able to meet the metrics of identifying at least 90% 
of humans. The overall percentage of people detected in the 
second test environment is approximately 70%. The robot 
moves into a room and the lidar is able to map the entire room 
with high likelihood due to the relatively small size of the 
room, so it sometimes misses humans standing at the side of 

the wall due to limited range of thermal camera.  
→ The error between marked and actual position of humans 
detected is around 0.8 ft and 1 ft for test environment 1 and 
test environment 2, respectively. It satisfies the test metrics 
that the different between the marked and actual position of 
humans detected should be within 1 foot.    
 
 

 

AVER
AGE 

NUMB
ER OF 
ITERA
TIONS 

AVE
RAG

E 
TIME 
TAK
EN 

PROPO
RTION 

OF 
TIME 

SPENT 
ON 

COMPU
TATION 

RUN
S 

WITH
OUT 

COLL
ISON 

PERCA
NTAGE 

OF 
PEOPL

E 
DETEC

TED 

ERR
OR 

BET
WEE

N 
MAR
KED 
AND 
ACT
UAL 
POSI
TION 

TEST 
ENVIRO
NMENT 

1 

3 127.2 
s 48.2% 80 % 83% 0.8 ft 

TEST 
ENVIRO
NMENT 

2 

5 242.0 
s 43.3% 80 % 70% 1 ft 

 
Another issue we found is that in large test environments, the 
time taken by the robot to finish exploration had anomalies in 
which some runs would take 60-90s more to finish. This occurs 
because residual frontiers are left behind in areas the robot has 
already explored causing it to re-explore those areas. We think 
this might be happening due to noise in LIDAR data or the 
LIDAR not being able to get the rays back from some surfaces. 
 
Moreover, the time taken by the robot is bounded not only by 
the size of the environment but also by the structure since that 
determines how many computation iterations are needed.  

IX. PROJECT MANAGEMENT 

Budget 
 

Component Price 
iRobot Create 2 

 $162.00 

Adafruit AMG8833 IR 
Thermal Camera 

 
$39.95 

Power Bank 
 $34.95 

RPLidar A1M8 $99.00 
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The Gannt chart below shows our schedule for the project. 

 
 

X. SUMMARY 
 
Overall, our results and demo show that the capability of robot 
to fully explore unknown environments is very robust to 
changes in size and structure. On most occasions, the robot is 
able to start at any location and completely map the 
environment. On the other hand, due to the limited range of the 

thermal camera, there exists a considerable probability that the 
robot will not detect some humans in the area.  
 
Going forward, we think we could improve the human detection 
subsystem by using a Thermal Camera with a longer range or 
by switching to an RGB Camera instead. Moreover, another 
improvement that could be made is reducing computation 
times. This could be done by making optimizations in how we 
search for frontiers. Instead of repeating the search every 
iteration, we could store frontiers and mark them as seen using 
an additional check.  
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