
18-500 Final Project Report: 05/07/2019

1

I. ABSTRACT

Our project aims to automate the entire search and
reconnaissance phase of disaster recovery operations. Our
solution uses an iRobot Create 2 along with a LIDAR and
Thermal Camera to autonomously explore any indoor
environment, generate a map, and locate all people within it.
We envision our project to be a prototype of the first stage to
reaching the goal of fully automating such search missions. The
fundamental functionality such as obstacle avoidance, complete
exploration, and human detection that we implemented can be
extended to a more robust robot base able to navigate through
rough/uneven environments as well as be used in conjunction
with other robots to simultaneously conduct such missions.

II. INTRODUCTION

The goal of our project is to automate the search phase of search
and rescue operations in indoor environments. During search,
first responders require two essential pieces of information –
the map of the environment and the location of people within it.
This is crucial as it allows first responders to conduct situational
assessment as well as plan an efficient recovery path to rescue
victims. We developed a solution which uses an iRobot Create
2 mounted with a LIDAR Scanner, Thermal Camera and a
Raspberry Pi Microcontroller to autonomously explore any
indoor unknown environment in its entirety and place all people
within it.

Disaster recovery operations are often a race against time - to
reach as many victims as possible in the shortest amount of time
since the expectancy of life decreases exponentially after a
certain period of time. As a result, the primary motivation of
our project is to reduce the time taken by the robot to finish the
search process as well as locate most victims.

We use the technique of Frontier Exploration1 to autonomously
explore an environment and use a Thermal Camera to detect
people in the vicinity.

III. CHALLENGES

Below we highlight four key challenges a mobile robot faces
in such operations.

• Mapping/Localization - In order for the robot to
navigate and find victims, it needs to be aware of its
location in relation to the map of the environment.

• Exploration – The robot must be able to answer one key

question – How can we know that we have explored the
entire environment? This becomes even more
imperative when human-teleoperation is not possible.
The robot must have a heuristic to explore and decide
when exploration is complete.

• Victim Detection - In order for a successful rescue

phase, the robot needs to locate potential victims and
overlay them on the map it generates.

• Mobility - Disaster recovery environments are often

characterized by hard-to-traverse terrains and obstacles.
After some consideration, we determined that we would
have to use a 3D depth scanner and much more
sophisticated navigation algorithms in order to traverse
the environment. As a result, we designated this
challenge to be out of scope for our project.

IV. ASSUMPTIONS

Since the scope of our project is quite wide, we made a few
assumptions about the environment we are operating in to
narrow it down.

1. Flat Terrain – We assume the terrain we are
traversing to be flat and smooth, allowing us to use a
2D depth scanner. Moreover, all obstacles have to
cross the height of the LIDAR in order to be detected.

2. Static Environment – Mapping is very susceptible to
variations in the environment. So, we assume that the
environment remains static for the duration of
exploration.

V. DESIGN REQUIREMENTS
In order to satisfy the aforementioned challenges, the robot
needs to meet the following specifications.

1. Hardware

a) The robot should be able to traverse the test

Aditya Ranade, Electrical and Computer Engineering, Carnegie Mellon University
Akshat Jain, Electrical and Computer Engineering, Carnegie Mellon University

Wenxin Xiao, Electrical and Computer Engineering, Carnegie Mellon University

Project AutoMapper
18500 – ECE Capstone Final Report

18-500 Final Project Report: 05/07/2019

2

environment at a minimum of 2ft/s and be able to
rotate in place.

b) The robot should have a sensor capable of capturing
depth information from the environment.

c) The robot should have an attached embedded
microcontroller to which instructions can be sent via
pc. The robot should respond to instructions with the
appropriate movement in the correct direction.

d) The robot should have some sort of camera to capture
information about the environment and the embedded
system should be able to stream the captured
information to the pc.

2. SLAM

a) The robot must localize itself within the environment to
a precision of 1 ft in distance and 5 degrees in
orientation.

b) The robot must be able to generate a Grid Map of the
environment using depth data from sensors.

c) At every iteration, the robot must take no longer than 5
seconds to generate a map and localize itself.

3. Exploration
a) The robot must be able to determine where to move in

order to gain as much new information about the
environment as possible.

b) The robot must be able to generate a complete map of
the environment with at least 90% coverage.

c) The robot must avoid all collisions into obstacles/walls.
d) The robot must be able to traverse an environment of

size 1500 sq ft. within 12 minutes.
e) The robot must be able to determine when it has

completed exploring the entire environment.

4. Human Detection
a) The robot must be able to use sensor data to detect

human presence.
b) The robot must mark the position of humans to a

precision of 2 ft in distance.
c) The robot must be able to detect at least 90% of all

potential victims.

Meeting the SLAM specifications will allow the robot to know
where it is in relation to the environment. This is a crucial
starting point for the critical parts of our project - Exploration
and Human Detection, since both of these require a local map
of the environment and the pose of the robot to be known.

One of the biggest risk factors for our project is Exploration -
the ability of the robot to explore an entire unknown
environment from any starting point. We need to be able to
implement a robust algorithm that allows the robot to know
where to go and how to reach there in order to achieve complete
coverage. Specification 3.d requires that we reduce
computation time and increase the time the robot spends
exploring. This requires efficient path planning and goal

searching.

The other risk factor is human detection. Our specifications for
human detection require that the robot is able to find at least
90% of all potential victims. This specification follows directly
from the goal of our operation which is to find as many potential
victims as possible. The hardware we use for this functionality
would need to work in conjunction with the exploration to
overlay human positions on the map.

VI. HARDWARE ARCHITECTURE

Hardware and Design Tradeoffs

The following section describes our choices and the tradeoffs
we had to make while choosing the four major hardware
components of our robot i.e the lidar, Raspberry PI, IMU sensor
and thermal camera. We made these decisions considering our
requirements, our budget as well as the ease of use.

Mobile Robotic Platform

The mobile robotic platform is the most important part of our
robot as this would house all the sensors and move around the
test area. Most robotic platforms met our speed requirements as
the robot would move around relatively slowly (~3 km/h). We
essentially had to choose between a 4 wheeled square mobile
robot or a circular robot like the iRobot Create 2. While the
iRobot afforded us some advantages like an extremely easy to
use Python API, inbuilt obstacle avoidance and easy turning
due to its circular shape, it also cost $200 and would leave no
room for slack in our budget in case of any sensor or platform
failure. We also needed to implement our own obstacle
avoidance algorithm as it would have to work with the Path
Planning node in order to plan the path and avoid obstacles at
the same time. Our exact requirements and how closely the
iRobot Create 2 and the 4 wheeled square mobile robot matched
up with them are listed in the table below.

Requirements iRobot
Create 2

4 Wheeled Mobile
Robot

Max Load > 6
kg

9 kg 15 kg

Space for Lidar Mount
needed.

No mount needed.
Can simply screw
on top.

Space for
Thermal
Camera

Mount
needed.

No mount needed.
Can simply screw
on.

18-500 Final Project Report: 05/07/2019

3

Space for
Raspberry Pi

Yes. Space
in cargo bay.

Space for
embedded system
on platform.

Obstacle
Avoidance

Inbuilt Need to use lidar
data and write own
obstacle
avoidance
algorithm.

Ease of Use Very easy to
use Python
API over
USB Serial.

No API. Need to
control motors
individually over
USB serial.

Turning Circular. Can
easily turn in
place.

Need to
individually control
wheels to turn in
place.

Price 200$ 75$

Fig. 1. Tradeoffs between two robot chassis

After going through the tradeoffs for each robot platform, we
decided to choose the 4 wheeled mobile robot platform over the
iRobot Create 2 primarily because of the cost and the mounts
needed for the sensors on the iRobot Create 2. Although it
would be much easier to use the iRobot, we decided that it
would be safer to go with the 4 wheel mobile robot platform
and implement the turning and obstacle avoidance on our own.
Unfortunately, the robot we chose came with multiple parts
missing and got immediately sold out after that. As a result, we
were not able to replace the missing parts and had to return it.
We decided to not waste further time by choosing another robot
and decided to go with the iRobot Create 2 instead as it came
fully assembled and we got a discount code for it which
effectively made the cost $130. The robot chassis we chose is
shown in Fig. 2.

Fig. 2. iRobot Create

Embedded Microcontroller

We essentially had to choose between a Raspberry Pi and
Arduino. Both the Raspberry Pi and Arduino had a GPIO
header to interface with all the sensors and the robot platform,
both were equally easy to use and worked with ROS. In the end,
we went with the Raspberry Pi because all of us had experience
working with the Raspberry Pi in previous courses or research.
We already have a Raspberry Pi 3A+ so we will not need to buy
it. A complete list of all the GPIO ports we would be using
along with the sensors we would be using them for is given
below. A detailed wiring diagram of the connections we will be
making is also given below in Fig 4.

GPIO Pin(Pin
Number) Sensor/Device

Power(1) Lidar, Robot, Thermal
Camera

Ground(6,9) Lidar, Robot, Thermal
Camera

PWM(32) Lidar Motor

RX1(8) Lidar
TX1(10) Lidar

RX2(16) Robot Control
TX2(18) Robot Control

SDA(3) Thermal Camera

SCL(5) Thermal Camera
Fig. 3. GPIO pins

IMU

The decision to include an IMU was made after deciding on the
initial mobile robot platform. Since the platform we chose had
very big wheels, the wheel’s odometry data could not be trusted
as the test environments would have smooth surfaces. We
decided to go with the Adafruit BNO055 9 DOF IMU with an
accelerometer, gyroscope and magnetometer to help with initial
State estimation. But, after switching to the iRobot Create 2, we
realized that the wheels of the robot were small enough for us
to trust the odometry given by the robot. Thus, we decided to
exclude the IMU from our final design and just used the
odometry data provided by the iRobot for state and position
estimation.

18-500 Final Project Report: 05/07/2019

4

Lidar

We decided to go with a Lidar over a camera to capture depth
information for SLAM primarily because of the computational
cost of capturing depth information from a camera. In addition
to this the camera would need to either be a 360-degree camera
or we would have to rotate it to capture 360-degree information.

There are a variety of extremely powerful Lidar sensors all of
which would meet our requirements as we would just need a
scan every 2 seconds and a 1-degree resolution. Essentially, we
would just have to find the cheapest Lidar sensor that would
meet all our requirements. Our exact requirements are listed
below:

- Distance Range: 0.2 m - 8 m since we are

exploring indoor environments only
- Frequency: 1 scan every 2 seconds
- Field of View: 360 degrees since it avoids having

to turn the robot after every movement.
- Resolution: 1 degree, since we require it to be

accurate enough so as to not collide with obstacles.

We decided to go with the RPLidar A1M8 as it fulfilled all of
these requirements and has a mount which can be easily
screwed on top of our mobile robot. Moreover, it only costed
99$ which would mean we could easily buy one more in case
this one got damaged. The specifications of the RPLidar A1M8
are given below.

Thermal Camera

To detect humans, we decided to use a Thermal Camera
instead of a normal camera. This was because, it would be
less computationally expensive as we would just get
temperature readings and it would be much easier to filter
them out. Using a normal camera would mean we would
have to use OpenCV for image processing which would
put more load on an already strained Raspberry Pi. We
decided to use the Adafruit AMG8833 thermal camera.
The thermal camera gives us results in 8x8 which we
interpolate to 32x32 to detect humans. After testing it
multiple times, we figured out the temperature range for
humans and only detected humans when they were in that
particular threshold. This would filter out a lot of false
positives that we were initially concerned about as we are
testing a range.

3D Mount

We created a 3D Mount for our robot that would be placed on
top of the iRobot Create 2. This mount would have
compartments for the Raspberry Pi as well as the thermal
camera. The Lidar would be placed on top of the mount so that
it is free to rotate and get information from the environment. A
3D diagram of the mount is given below.

Distance
Range

Field of
View

Angular
Resolution

Scan
Rate

0.15 - 12 m 360° 1° 5.5 Hz

Fig. 4. Wiring Diagram

18-500 Final Project Report: 05/07/2019

5

VII. SOFTWARE ARCHITECTURE AND DESCRIPTION

An overview of all the software components and how they
interact with each other is shown in figure 6. All of the nodes
will be implemented using ROS, which handles communication
between nodes running in parallel. Below, we provide a
description of each of the nodes shown in the diagram.

Simultaneous Localization and Mapping (SLAM):

The SLAM subsystem answers one very important question for
the robot - Where am I? It is responsible for generating a map
of the environment as well as localizing the robot within it. The
choice of our SLAM algorithm was influenced by two key
choices we made - map representation and sensor data.

We decided to use Occupancy Grid Maps to represent our
environment. The figure below shows an instance of such a
map. It consists of uniform cells with each cell containing a
probability of it being occupied (0 for unoccupied and 1 for
occupied). We use this representation because our end-goal was
autonomous navigation and the nature of these maps lends itself
very suitably to plan paths and avoid obstacles. For example,
given such a map we could easily recognize if the robot is
moving to a cell which is occupied and prevent it from doing
so.

Secondly, we decided to use a 2D Lidar sensor for extracting
depth information from our environment. We chose a 2D Lidar
over a 3D Lidar because navigating difficult and uneven
terrains was out of the scope of our project. Moreover, 3D lidars

generate far more points than a 2D Lidar making processing
expensive. Since we want to reduce the time the robot is
stationary, we decided against a 3D Lidar. Similarly, the large
number of features generated by RGB cameras makes map
creation expensive.

Fig. 5. Occupancy Grid Map

Given these 2 constraints of a Grid Map and 2D Lidar sensor
and the fact that we are exploring an unknown environment
without any pre-determined landmarks, we decided to use
gmapping2 to implement this node which uses Iterative Closest
Point for Scan Matching to improve robot localization and uses
a Particle Filter to estimate the probability of every cell being
occupied in the grid map.

Fig. 6. Software Architecture

18-500 Final Project Report: 05/07/2019

6

Navigation

o Frontier Exploration

Since we are exploring a completely unknown environment, we
cannot use algorithms such as wall following to traverse the
area since the environment may not have parallel walls or walls
at right angles. Moreover, using such a heuristic cannot
determine whether we have completed the search or not. As a
result, we used the notion of frontiers to explore the
environment. By definition, frontiers are cells at the boundary
of known and unknown regions. At every iteration, we find
clusters of frontiers on the map. We sort these clusters by size
and use the heuristic to move to the center of the cluster with
the greatest mass (number of frontier cells). Following from the
definition of frontiers, once we find no more frontier cells, we
have explored all unknown regions of the environment.

There are cases in which frontiers exist but are unreachable.
This might be because of noise in LIDAR readings, the LIDAR
seeing through obstacles, or very narrow areas in the
environment. In order to accommodate for these cases, we
check whether the cluster of frontiers is reachable by a path not
going through obstacles.

In figure 7, frontiers are marked by orange cells. Notice how
these cells exist at the boundary between known (white) and
unknown regions (grey) regions.

o Path Planning

Once we have established frontiers on the map, which one
should the robot proceed towards? Here, we decided to use the
heuristic to move to center of the frontier cluster with the
greatest mass.

Once we have this goal and the current position of the robot, we
use a traditional A* Search to find the lowest cost path to the
goal cell. Each cell has a cost associated with it proportional to
whether it is empty or occupied. This search returns a list of
robot poses from current position to the goal position. This list
is passed on to the robot control which executes the trajectory
of the robot until the robot is within the set threshold of the goal
cell.

Upon initial testing, we noticed that due to the nature of A*
search to find the shortest path, the robot would move very close
to obstacles, resulting it in colliding against walls when making
sharp turns. As a result, we made two key changes to our
implementation. First, we added padding to obstacles on the
map so that cells surrounding obstacles are also considered as
obstacles themselves. This resulted in the path shifting away
from obstacles. Second, we added an extra cost to our heuristic.
We add a cost to each cell proportional to its distance to an
obstacle up to a certain distance.

The result of path planning with and without these changes can
be seen in the figures below.

Fig. 7. Planned Path (green) with and without expanded
obstacles and heuristic

o Reactive Obstacle Avoidance

Whenever the robot executes a trajectory, we have a thread that
continuously looks through the lidar scans to determine if the
robot is going to collide against an obstacle if it executes the
most recent control command. If the robot is bound to collide,
this thread stops the robot in place and fetches a new trajectory
from that point to the goal cell.

Human Detection

For human detection, we decided to use thermal images taken
by a camera mounted on our robot. We made this decision
because it poses a smaller computational cost as compared to
RGB cameras. Since the thermal camera is stationary, we
require the robot to make a 360-degree sweeps periodically,
allowing us to scan for humans in the vicinity of the robot.

One disadvantage of the thermal camera is that we cannot
extract depth information from images since it only outputs an
8x8 image. We overcome this by aligning the center of the Lidar
and the Thermal Camera such that the vertical line running
through the middle of our thermal images corresponds to the
0th degree range measurement of the Lidar. As a result, when a
human is detected, we correlate the angle of the thermal camera
to an offset in the Lidar which gives us the distance of the

18-500 Final Project Report: 05/07/2019

7

person from the robot. Given this distance (d), the angle (𝜃)	
and the current position (x, y) of the robot, we find the position
(x’, y’) solving the following equations –

𝑑% = 𝑥 − 𝑥) % + 𝑦 − 𝑦) %

𝜃 = tan/0(
𝑦) − 𝑦
𝑥) − 𝑥

)

Another drawback to using a thermal camera is that it cannot
discern between humans and other heat emitting objects like
radiators or fireplaces. As a result, it is possible to detect
multiple false positives. We plan on minimizing this risk by
experimenting with temperature thresholds which are most
often exhibited by humans. We found that for our thermal
camera, temperature ranges in the range 24-29 OC.

VIII. TESTING AND RESULTS

Test Phase I: SIMULATED TESTING

 Test Environment:

→ A total of two test environment are used in this phase to
ensure the pathing algorithm works as expected.
→ The 2 test environments are shown in the figures below,

with an approximate area of 1300 square feet and 2020 square
feet respectively.

Fig. 8. Simulated Test Environment 1 and 2

Test Metrics:
→ The time taken to navigate the simulated area should be
below 5 minutes for an area of 1300 square feet and below 7
minutes for an area of 2020 square feet.
→ The proportion of time spent on computation should be
below 50% of the entire time taken.
→ The robot should not collide with walls or obstacles at all
time.

Results:
→ The test metrics are evaluated for ten iterations in each
test environment as shown in Table below.
→ From the table below, we see that the average number of
iterations taken for test environment 1 of 1300 square feet is
9 iterations and the average number of iterations taken for test
environment 2 of 2020 square feet is 16 iterations.
→ The average time taken in test environment 1 is 211.76 s,
which satisfy our metrics of below 5 minutes and the average
time taken in test environment 2 is 389.7s, which also satisfy
our metrics of below 7 minutes.
→ The proportion of time spent on computation for test
environment 1 and 2 are 32.5% and 41.0%, respectively, and
they satisfy our metrics to keep the computation time below
50% of the entire travel time.
→ The simulated robot did not run into any collision in the
ten runs in test environment 1 but did collide once in test
environment 2. In order to prevent collisions in real testing,
we have expanded obstacles and walls to reduce chance of
collision.

AVERA
GE

NUMBE
R OF

ITERAT
IONS

AVER
AGE
TIME
TAKE

N

PROPORT
ION OF
TIME

SPENT ON
COMPUT

ATION

RUNS
WITH
OUT

COLLI
SON

TEST
ENVIRON
MENT 1

9 211.67
s 32.5% 100 %

TEST
ENVIRON
MENT 2

16 389.7 s 41.0% 90 %

Test Phase II: REAL WORLD TESTING WITHOUT
HUMAN DETECTION

Test Environment:

→ A total of four test environment are used in this phase
to ensure the robustness of the path planning algorithm
integrated with every component.
→ The first test environment we used is the kitchen and

hallway in an apartment with an approximate area of 150
square feet as determined by The RViz map and shown in
figure below.
→ The second test environment we used is the hallway in

18-500 Final Project Report: 05/07/2019

8

an apartment with an approximate area of 650 square feet as
determined by the RViz map and shown in figure below.
→ The third test environment we used is the right wing on

the first floor of Hamerschlag Hall. It has an area of
approximately 1000 square feet as determined by the RViz
map.
→ The final test environment resembles the area we

constructed for public demo. It is 16 feet by 16 feet area, with
a large room, a passage, and two small rooms and shown in
figure below.

Fig. 9 Test Environments 1, 2, 3, 4

Test Metrics:
→ The time taken to navigate the simulated area should be
below 2 minutes for an area of 150 square feet, below 3
minutes for an area of 256 square feet, below 5 minutes for
an area of 650 square feet, and below 8 minutes for an area
of 1000 square feet.
→ The proportion of time spent on computation should be
below 50% of the entire time taken.
→ The robot should not collide with walls that causes failure
at least 80 percent of the time.

Results:
→ The test metrics are evaluated for ten iterations in each
test environment as shown in Table below.

→ From the table below, we see that the average number of
iterations taken for test environment 1 of 150 square feet is 3
iterations and the average number of iterations taken for test
environment 2 of 650 square feet is 6 iterations.

→ The average time taken in test environment 1 is 93.8s,
which satisfy our metrics of below 2 minutes and the average
time taken in test environment 2 is 247.7s, which also satisfy
our metrics of below 5 minutes.

→ The proportion of time spent on computation for test
environment 1 and 2 are 65.4% and 57.0%, respectively, and
they do no satisfy our metrics to keep the computation time
below 50% of the entire travel time.

→ The rumba ran into collisions twice in the ten runs in test
environment 1 and collided three times in test environment 2.
Although the algorithm expanded the obstacle and walls,
adding cost to path going near obstacles, it still appears that
the localization of the robot can deviate from the actual pose
of the robot that lead to collisions. However, the robot
generally is able to recover from collision and re-plan its path
forward.

AVERAG
E

NUMBER
OF

ITERATI
ONS

AVERA
GE

TIME
TAKEN

PROPORTIO
N OF TIME
SPENT ON

COMPUTAT
ION

RUNS
WITHO

UT
COLLIS

ON

TES
T 1 3 93.8 s 65.4% 80 %

TES
T 2 6 247.7 s 57.0% 70 %

TES
T 3 8 290.0s ~60% 70%

TES
T 4 5 ~190s ~70% 90%

18-500 Final Project Report: 05/07/2019

9

Test Phase III: REAL WORLD TESTING WITH THERMAL
DETECTION INTEGRATED.

Test Environment:

→ A total of two test environment are used in this phase to
ensure that the updated pathing algorithm as well as thermal
camera detection works as expected.
→ The first test environment we used is the kitchen and

hallway in an apartment with an approximate area of 150
square feet as determined by The RViz map and shown in
figure below.
→ The second test environment resembles the maze we

constructed for public demo. It is 16 feet by 16 feet maze,
with a large room, a passage, and two small rooms and shown
in figure below.

Test Metrics:
→ Same as Test Phase 2.
→ The robot should detect at least 90 percent of people in the
unknown environment.
→ The difference between the marked and actual position of
the humans detected should be within 1 ft.

Results:
→ The test metrics are evaluated for ten iterations in each
test environment as shown in Table below.
→ From the table below, we see that the average number of
iterations taken for test environment 1 of 150 square feet is 3
iterations and the average number of iterations taken for test
environment 2 of 256 square feet is 5 iterations.
→ The average time taken in test environment 1 is 127.2s,
which satisfies our metrics of below 3 minutes and the
average time taken in test environment 2 is 242.0 s, which
also satisfies our metrics of below 5 minutes.
→ The proportion of time spent on computation for test
environment 1 and 2 are 48.2% and 43.3%, respectively, and
they both satisfy our metrics to keep the computation time
below 50% of the entire travel time since the extra rotation
times added in our algorithm reduces the percentage of total
time spent on computation.
→ The rumba run into collisions twice in the ten runs in test
environment 1 and collided twice in test environment 2.
Although the algorithm expanded the obstacle and walls,
adding cost to path going near obstacles, it still appears that
the localization of the robot can deviate from the actual pose
of the robot that lead to collisions. However, the robot
generally is able to recover from collision and re-plan its path
forward.
→ The overall percentage of people detected in the first test
environment is approximately 83%. The thermal camera can
only credibly identify humans within around a 1m range. it
was not able to meet the metrics of identifying at least 90%
of humans. The overall percentage of people detected in the
second test environment is approximately 70%. The robot
moves into a room and the lidar is able to map the entire room
with high likelihood due to the relatively small size of the
room, so it sometimes misses humans standing at the side of

the wall due to limited range of thermal camera.
→ The error between marked and actual position of humans
detected is around 0.8 ft and 1 ft for test environment 1 and
test environment 2, respectively. It satisfies the test metrics
that the different between the marked and actual position of
humans detected should be within 1 foot.

AVER
AGE

NUMB
ER OF
ITERA
TIONS

AVE
RAG

E
TIME
TAK
EN

PROPO
RTION

OF
TIME

SPENT
ON

COMPU
TATION

RUN
S

WITH
OUT

COLL
ISON

PERCA
NTAGE

OF
PEOPL

E
DETEC

TED

ERR
OR

BET
WEE

N
MAR
KED
AND
ACT
UAL
POSI
TION

TEST
ENVIRO
NMENT

1

3 127.2
s 48.2% 80 % 83% 0.8 ft

TEST
ENVIRO
NMENT

2

5 242.0
s 43.3% 80 % 70% 1 ft

Another issue we found is that in large test environments, the
time taken by the robot to finish exploration had anomalies in
which some runs would take 60-90s more to finish. This occurs
because residual frontiers are left behind in areas the robot has
already explored causing it to re-explore those areas. We think
this might be happening due to noise in LIDAR data or the
LIDAR not being able to get the rays back from some surfaces.

Moreover, the time taken by the robot is bounded not only by
the size of the environment but also by the structure since that
determines how many computation iterations are needed.

IX. PROJECT MANAGEMENT

Budget

Component Price
iRobot Create 2

 $162.00

Adafruit AMG8833 IR
Thermal Camera

$39.95

Power Bank
 $34.95

RPLidar A1M8 $99.00

18-500 Final Project Report: 05/07/2019

10

The Gannt chart below shows our schedule for the project.

X. SUMMARY

Overall, our results and demo show that the capability of robot
to fully explore unknown environments is very robust to
changes in size and structure. On most occasions, the robot is
able to start at any location and completely map the
environment. On the other hand, due to the limited range of the

thermal camera, there exists a considerable probability that the
robot will not detect some humans in the area.

Going forward, we think we could improve the human detection
subsystem by using a Thermal Camera with a longer range or
by switching to an RGB Camera instead. Moreover, another
improvement that could be made is reducing computation
times. This could be done by making optimizations in how we
search for frontiers. Instead of repeating the search every
iteration, we could store frontiers and mark them as seen using
an additional check.

XI. REFERENCES

1 Brian, Yamauchi, A Frontier-Based Approach for
Autonomous Exploration,
https://pdfs.semanticscholar.org/9afb/8b6ee449e1ddf1268ace8
efb4b69578b94f6.pdf

2 https://openslam-org.github.io/gmapping.html

