2.)
$\tilde{x}[n]$ has $N=4$, wher

$$
\begin{aligned}
& \tilde{x}[0]=3, \\
& \tilde{x}[1]=2 \\
& \tilde{x}(2)=1 \\
& \tilde{x}(3)=2
\end{aligned}
$$

DTFT in terns of DFT:

$$
\tilde{x}\left(e^{j \omega}\right)=\sum_{r=-\infty}^{\infty} \sum_{k=0}^{N-1} \frac{2 \pi}{N} \tilde{x}[k] \partial\left(\omega-\frac{2 \pi k}{N}-2 \pi r\right)
$$

a.) in thes $\mathrm{cx}, \mathrm{N}=4$
$=\left(e^{-y}\right)$

2.)
b.) $x[n]=\left\{\begin{array}{cc}\tilde{x}[n] & 0 \leq n \leq 3 \\ 0 & \text { j45k }\end{array}\right.$

$$
\begin{aligned}
& R[k]=x[k] e^{j \frac{4 \pi}{6} k} \\
& R(k)=x[k] W_{6}^{2 k} \\
& \text { in thas cax, } \\
& =x[k+2] \\
& \frac{\tilde{x}[n-m] \Leftrightarrow e^{-\frac{2 \pi}{n} \mathrm{~km}} \tilde{x}[k]}{\text { DES, DFT nutes on wedsite }}
\end{aligned}
$$

$R[k]$ is $x[k]$ shisd left b 2 samples
$x[n)$

1.) $r(n)$

2.)

$$
S[k]=x[k] \cdot x[(k+2) \Longrightarrow S[n]
$$

IT

$$
\begin{aligned}
s[n] & =x[n) \circledast x[n+2] \\
& =(x[n] \circledast x[n]) \Leftarrow \delta[n+2]
\end{aligned}
$$

* flip \& dray (conucution)
1.) do lineer conv

2.) Shift by 2 samples!

$$
y(n)=\sum_{k=\infty}^{\infty} x(n) x[k-n)
$$

n	$x[n) * x(n)$	$x[n)(x) x(n)$
0	9	13
1	$3(2)+2(3)=12$	12
2	$3(1)+2(2)+1(1)=3+4+3=10$	10
3	$3(2)+1(2)+2(1)+)(2)=16$	16
4	$2(2)+(1)(1)+2(2)=9$	9
5	$1(2)+2(1)=4$	4
6	$2(2)=4$	

(see next pge)

		6	SHIFT BY 2
n	$x[n) * x[n)$	$x(n) \circledast x(n)$	$x[n) \circledast x[n] \circledast \delta[n+2]$
0	9	6	
1	12	13	10
2	10	12	16
3	16	10	9
4	9	16	4
5	4	9	13
6	4	4	12

$$
s(n)=(x(n) \stackrel{6}{\oplus} x[n)) * \delta(n-2)
$$

$$
\begin{aligned}
& X[k]=\sum_{l=0}^{p-1} w_{N}^{l k} \sum_{r=0}^{q-1} x(p r+l] w_{q}^{r k} \\
& X(k)=\sum_{l=0}^{3} w_{8}^{l k} \sum_{r=0}^{1} x \frac{(4 r+l)}{T} w_{2}^{r k}
\end{aligned}
$$

$$
\begin{aligned}
& N=p q=8 \\
& p=4 \\
& q=2 \text { pris } \\
& D F \tau \text { blads }
\end{aligned}
$$

$$
\bar{X}[k]=\sum_{l=0}^{p-1} w_{N}^{l k} \sum_{r=0}^{q-1} x[p r+l] w_{q}^{r k}
$$

Nate that: $W_{8}{ }^{3}=W_{8}{ }^{2} \cdot W_{8}^{1}=-j \cdot W_{8}{ }^{1}$

$$
\begin{aligned}
& W_{8}^{5}=W_{8}^{4} \cdot W_{8}^{1}=-1 \cdot W_{8}^{1} \quad \text { (simplify } \\
& W_{8}^{7}=W_{8}^{6} \cdot W_{8}^{1}=j \cdot W_{8}^{1} \quad \text { further! }
\end{aligned}
$$

2ad\&4th tennis of sum

4.)

$$
\begin{aligned}
H(z) & =\frac{1+1.42 z^{-1}-0.125 z^{-2}-0.792 z^{-3}-0.25 z^{-4}}{1-1.25 z^{-1}+0.5 z^{-2}-0.0625 z^{-3}} \\
& =\frac{80.3}{1-\frac{1}{2} z^{-6}}+\frac{-0.17}{\left(1-\frac{1}{2} z^{-1}\right)^{2}}+\frac{-110}{\left(-\frac{1}{3} z^{-1}\right.}+44.7+4 z^{-1}
\end{aligned}
$$

av) Direaf Furm II

$$
\begin{aligned}
& \frac{80.3}{1-\frac{1}{2} z^{-1}}+\frac{-110}{1-\frac{1}{2} z^{-1}} \\
= & \frac{80.3\left(1-\frac{1}{3} z^{-1}\right)-110\left(1-\frac{1}{2} z^{-1}\right)}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-\frac{1}{3} z^{-1}\right)} \\
= & \frac{80.3-\frac{80.3}{3} z^{-1}-110+55 z^{-1}}{1-\frac{1}{3} z^{-1}-\frac{1}{2} z^{-1}+\frac{1}{6} z^{-2}} \\
= & \frac{-22.7-28.2 z^{-1}}{1-\frac{5}{6} z^{-1}+\frac{1}{6} z^{-2}}
\end{aligned}
$$

hence,

$$
H(z)=\frac{-22,7-28.2 z^{-1}}{1-\frac{5}{6} z^{-1}+\frac{1}{6} z^{-2}}+\frac{-0.7}{1-z^{-1}+\frac{1}{4} z^{-2}}+44,7+4 z^{-1}
$$

 each form a branch! (see next pye)

cheasheeat item!

* Residues, parall Fracs
* IIR $\begin{aligned} & \text { direat fon I, II } \\ & \text { Rmilbl, poos feod }\end{aligned}$
* compla coul formula
*FIR (liner phos)
\# DFT, DTFS equaics \& tive shife pups
* Ovalup Ady, Save, \# of multplis (FFT BigO)
\& FFT radix 2 , hon radio (p, q_{s})
(buttrifly diym)

Overlpe ADD

OVarlp SAUE

From
https://www.youtube.com/watch?v=v50IM \rightarrow Natraj Wadhai's videos
rrWG4E\&t=174s on Overlap Add. Save

