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7.0 INTRODUCTION

At a conceptual level, there is a great deal of similarity between two-dimensional
(2-D) signal processing and one-dimensional (1-D) signal processing. In 1-D signal
processing, the concepts discussed are filtering, Fourier transforms, discrete Fourier
transforms, fast Fourier transforms, etc. In 2-D signal processing, we again are
concerned with concepts such as filtering, Fourier transforms, discrete Fourier trans-
forms, and fast Fourier transforms. As a consequence, the general concepts that we
develop in 2-D signal processing can be viewed, in many cases, as straightforward
extensions of the results in 1-D signal processing. '

At a more detailed level, however, considerable differences exist between 1-D
and 2-D signal processing. One major difference is the amount of data involved in
typical applications. In speech processing, an important 1-D signal processing appli-
cation, speech is typically sampled at a 10-kHz rate and we have 10,000 data points
to process in a second. However, in video processing, where processing an image
frame is an important 2-D signal processing application, we may have 30 frames/s,
with each frame consisting of 500 X 500 pixels (picture elements). In this case, we
would have 7.5 million data points to process per second, which is orders of mag-
nitude greater than the case of speech processing. Due to this difference in data rate
requirements, the computational efficiency of a signal processing algorithm plays a
much more important role in 2-D signal processing, and advances in hardware tech-
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nology will have a much greater impact on 2-D signal processing applications in the
future. : : : -

Another major difference comes from the fact that there is less complete math-
ematics for 2-D signal processing than for 1-D signal processing. For example, many
1-D systems are described by differential equations, while many 2-D systems can be
described by partial differential equations. We know a great deal more about differ-
ential equations than about partial differential equations. Another example is the
absence of the fundamental theorem of algebra for 2-D polynomials. For 1-D poly-
nomials, the fundamental theorem of algebra states that any 1-D polynomial can be
factored as a product of first-order polynomials. A 2-D polynomial, however, gener-
ally cannot be factored as a product of lower-order polynomials. This difference has
a major impact on many results in signal processing. For example, an important
structure for realizing a 1-D digital filter is the cascade structure. In the cascade
structure, the z-transform of the digital filter unit sample response is factored as a
product of lower-order polynomials and the realizations of these lower-order factors
are cascaded. The z-transform of a 2-D digital filter unit sample response cannot, in
general, be factored as a product of lower-order polynomials and the cascade structure
therefore is not a general structure for a 2-D digital filter realization. Another con-
sequence of the nonfactorability of a 2-D polynomial is the difficulty associated with
_ issues related to the system stability. In a 1-D system, the pole locations can be easily
determined, and an unstable system can be stabilized without affecting the magnitude
response by simple manipulation of pole locations. In a 2-D system, because poles are
surfaces rather than points and because of the absence of the fundamental theorem of
algebra, it is extremely difficult to determine the pole locations. As a result, checking
the stability of a 2-D system and stabilizing an unstable 2-D.system without affecting
the magnitude response is extremely difficult.

- Another difference between 1-D and 2-D signal processing is the ‘notion of
causality. In a typical 1-D application such as speech processing, a system is generally
required to be causal to avoid delay since there is a well-defined notion of past,
present, and future. In a typical 2-D application such as image processing, it may not
be necessary to impose the causality constraint. An image frame, for example, can be
processed from top to bottom, from left to right, in diagonal directions, etc. As a
result, there is generally more flexibility in designing a 2-D system than in designing
a 1-D system. ;

As we have seen, there is considerable similarity and at the same time consid-
erable difference between 1-D and 2-D signal processing. In this chapter, we will
study the results in- 1-D signal processing that can be extended to 2-D signal pro-
cessing. Our discussion will rely heavily on the reader’s knowledge of 1-D signal
processing theory (a brief summary of which is in the Appendix to this book). We will
also study, with much greater emphasis, the results in 2-D signal processing that are
significantly different from those in 1-D signal processing. We will study what the
differences are, where they come from, and what impacts they have on 2-D signal
processing applications. Since we will study the similarities and differences between
1-D and 2-D signal processing and since 1-D signal processing is a special case of 2-D
signal processing, this chapter will help us understand not only 2-D signal processing
theories but also 1-D signal processing theories at a much deeper level.
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7.1 SIGNALS AND SYSTEMS
7.1.1 Slgnals

The mgnals that we deal with in developmg 2-D SIgnai processing ﬁlconcs are discrete
space signals, which are discrete in space’ and continuous in amplltude Dlscretc space
signals are also referred to as sequences.

A two-dimensional (2-D) discrete space signal (sequence) will be denoted by
functions: whose two arguments are integers. For example, x(n,, n;) represents a
sequence that is c_leﬁned for all integer values of n; and n,: Note.that x(n;, ny) for a
noninteger n; or ny is not zero but is undefined. The notation x(ny, ny) refers to the
discrete space function x or to the value of the function x at a spemﬁc (nl, n,). The
distinction between these two will be obvious from the context. - *

One reasonable way to sketch a sequence x(n;, ;) is to use a three-dimensional
(3-D) perspective plot, where the height at (n,, n;) represents the amplitude at (n,, ry).
Sketching a 3-D perspective plot, however, is often very tedious. An alternative way
to sketch a 2-D sequence, which we’ll use in this chapter, is with a 2-D plot where
open circles represent the amplitude of O and the solid circles represent nonzero
amplitudes, with the value in parentheses representing the amplitude. An example of
a 2-D sequence sketched in this way is shown in Fig. 7.1. In this figure, x(3,1) is 0
and x(1, 1) is 2. Many sequences that we use will have amplitudes 0 or 1 for large
regions of (n,, n,). In such instances, for convenience, the open circles and parenthe-
ses will be eliminated. If there is neither an open circle nor a filled circle at a particular
(my, ny), the sequence has zero a.mphtude at that pomt [f there is 2 ﬁlle:d circle with

'Even though we refer to “space,” the independent variable can represent other qumutm such as

time.

Figure 7.1 An example of a 2-D
sequence. Open circles represent the
amplitude of 0, and solid circles
represent nonzero amplitudes, with the
values in parentheses representing the
amplitude.
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no ampllrudc specification at a particular (n,, n,) then the sequence has amplitude 1 at
that point. Fig. 7.2 shows the result when this additional simplification is made to the
sequence in Fig. 7.1.

Some sequences and classes of sequences that play a partlcularly important role
in 2-D digital signal processing are discussed next.

L]

® @(2) _0{2] e(2) e

_ 2 3 @2 %
® e(2) ¢(2) e(2) e
@ o © e e

Figure 7.2 The sequence in Fig. 7.1
sketched with some simplifications. The
open circles have been eliminated, and
solid circles with amplitude of 1 have no
amphmde spcc:ﬁcanons

Impulses. The unpulsc or unit sample sequence, denotcd by 8(ny, ny), is

defined as
&(m, ny) = {(l), :;hen:izse i 7.1

The sequence &(ny, n,), sketched in Fig. 7.3, plays a role similar to the impulse 8(n)
in 1-D signal processing.

n,

L

Figure 7.3 Unit sample sequence
8(ﬂ| ¥ fl;[).
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Any sequence x(n, n;) can be represented as a linear combination of delayed
impulses as follows: '

x(n,m) =+ +x(~=1,=1):8(m + 1,n, + 1) + x(0,—1)- 8(ny,ny + 1)
+ x(1,—-1)-8(my — L,np+ 1) + -+ + x(—=1,0):8(n, + 1,n)
+ x(0,0) - 8(ny, np) + x(1,0)-8(ny — 1,np) + - - -
+ x(~1,1)-8(m; + 1,n; — 1) + x(0,1)- 8(n;, n, — 1)
+x(1,1)-8(my = lL,my— 1)+ - -

= 2 z x(ki, ko) - 8(ny — ky,my — ko) _ #:2)
kj=—= fy=—= ]
The representation of x(n;, n;) by Eq. (7.2) is very useful in system analysis.
One class of impulses that do not have any counterparts in 1-D processing are
line impulses. An example of a line impulse is the 2-D sequence 8r(n;), which is
sketched in Fig. 7.4 and is defined as

x(m,n)) = 8r(ny) = {1, m =0

a, otherwise (7.3)

Other examples of line impulses include 8r(n;) and 8(n; —.m,), which are defined
similarly to 8r(n,;). The subscript T in 8r(n,) indicates that 8(n,) is a 2-D sequence.
When the 2-D sequence is a function of only one variable, it may be confused with
a 1-D sequence. For example, &r(n,) without the subscript T may be confused with
the 1-D unit sample sequence &(n;). To avoid this confusion, whenever a 2-D se-
quence is a function of one variable, the subscript T will be used to note that it is a
2-D sequence. The sequence xr(n,;), for example, is a 2-D sequence, while x(n,) is a
1-D sequence.

iy

4

Figure 7.4 Line impuise 87(n,).
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Step Sequences. The unit step sequence, denoted by u(n,, n,), is defined as

H(ﬂl,nz) — {1, ﬂ[,ﬂz:_’o

0, otherwise (7.4)

The sequence u(n,, ny), sketched in Fig. 7.5, is related to 8(n,, n,) as

ﬂ[,nz e E 2 a(kl,kz) (75)

ky=—= kz‘—w

or
8(ni,m) = ulny,ng) — ulny = 1,m) — uln,m — 1) + ulm — L,mp— 1) (7.6)

Some step sequences do not have any counterparts in 1-D processmg, such as
the 2-D sequence ur(n;), which is defined as

1, mny =0

x(nl,nz) = ur(m) = {0, otherwise (7.7)

Other examples include ur(n,) and u(n; — n,), which are defined similarly to ur(n,).

ny.

o ® o ® @
@ ] ] L] [ ]
[ ] ® a ® @
L] ® ® ® ]

Figure 7.5 Unit step sequence
u(ny, ny).

Exponential Sequences. Exponential sequences of the type A - a™ - 8™ are
an important class of sequences for system analysis. As we will see later, these
sequences are eigenfunctions of linear shift-invariant systems.

Separable Sequences. A 2-D sequence x(ny, n,) is called a separable se-
quence if it can be expressed in the form

x(ny, m) = f(ny) - g(ny) (7.8)
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where f(n,) is a function of only n,, and g(n,) is a function of only n,. Even though
it is possible to view f(m,) and g(n,) as 2-D sequences, it is more convenient to
consider them as 1-D sequences. For that reason, we use the notations f(r;) and g (n,)
rather than fr(n,) and gr(n,).

The unit sample sequence 8(n;, ny) is a separable sequence since 8(n,, n;) can
be expressed as

8(ny,ny) = 8(n1) - 8(no) (7.9)

where 8(n,) and 8(n,) are 1-D unit sample sequences. Other examples of separable
sequences include u(nm,n) and a™-b™ + b™™™, which can be written as
(a'l -+ b"l) b,

Sepa.rablc sequences form a very special class of 2- D sequences; a typical 2-D
sequence is not, in general, a separable sequence. To illustrate this, we consider a
sequence x(n, n,) that is zerooutside 0 < ny = N — land0=n, =N, — L. A
_ general sequence x(ny, n;) of this type has N, - N; degrees of freedom. If x(ny, np) is
a separable sequence, x(n,,n;) is completely specified by some f(n,) that is zero
outside 0 < n, = N; — | and some g(n;) that is zero outside 0 = m =N, — [
consequently, it has only N, + N, degrees of freedom.

Even though separable sequences form a very special class of 2 D sequences,
they play an important role in 2-D signal processing. In those cases when the results
that apply to 1-D sequences do not extend to general 2-D sequences in a straight-
forward manner, they often extend to separable 2-D sequences. In addition, the
separability of a sequence can be exploited in reducing computations in various
contexts such as digital filtering and discrete Fourier transform computation. This will
be discussed in later sections. '

Periodic Sequences. A sequence x(n;,n;) is called periodic with a period
N, X N, if x(n,, n,) satisfies the following condition:

x(ny,ng) = x(m + Ni,ny) = x(ny,m + No) for all (n,, ny) (7.10)

where N, and N, are integers. For example, cos[7n, + (m/2)n;] is a periodic se-
quence with period 2 X 4 since cos[wn, + (mw/2)n,] = cos[w(n, + 2) + (7/2)n,]
= cos[mn, + (mw/2)(n, + 4)] for all (n,, n,). A periodic sequence is often denoted by
adding a - (tilde) on the sequence, e.g., %(n;, n;), to distinguish it from an aperiodic
sequence.

7.1.2 Systems

If there is a unique output for any given input, the input-output mapping is called a
system. A system T that maps an input x(n;, n,) to an output y(n,, ) is represented
by :

y(u,n) = Tlx(m,m)] (7.11)

This definition of a system is very broad. Without some restrictions, the charac-
terization of a system requires a complete input-output relationship—knowing the
output of a system to a certain set of inputs does not allow us to determine the output
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of the system to other sets of inputs. Two types of restrictions that greatly simplify the
characterization and analysis of a system are linearity and shift invariance. Fortu-
nately, many systems in practice can often be approxlmated by a linear and shift-
invariant system.

The linearity of a system T is defined as

Linearity «— Tla-x(ny,n) + b-xy(ny, ny)]

(7.12)
= a-y(n,n) + b+ yin,, ny)

where T(xi(n;, n))] = yi(ni, na), Tlxa(ny, ny)] = yo(m, ny), a and b are any scalar
constants, and A <> B means that A implies B and B implies A. 'I'hc condition in Eq.
(7.12) is called the principle of superposmon i

The shift invariance of a system is defined as

Shift invériance_ — T[i(nl — my,m = my)] = y(ny — my,n; ~ my)
(7.13)

where y(n,,n;) = Tx(n, nﬂ] and m; and m; are any integers.
For a linear and shift-invariant system, we can derive the followmg input-output

~ relation using Egs. (7 2}, (7.12), and (7.13):

y(ny, ny) = Tlx(m,n)] = E 2 I(knkz h("l ki, ny — ky) (7.14)
- b= k=

where h(n,, n;) = T[8(n,, n,)], the response of the system when the input is 8(n;, ny).
Equation (7.14) states that the unit sample response of a linear shift-invariant system
is completely characterized by the unit sample response h(n,, n,). Specifically, for a
linear shift-invariant system, knowledge of i (n,, n,) alone allows us to determine the
output of the system to any input from Eq. (7.14). Equation (7.14) is referred to as
convolution and is denoted by the convolution operator *. For a linear shift-invariant
system,

y(ny, n) = x(ny, ) * h(ny, ny)

= i i x(ki, ko) - h(ny — ky,my — k)

kl-—@ tzn—a

(7.15)

Note that the unit sample response & (n;, n,), whlch plays such an important role for
a linear shift-invariant system, loses its significance for a nonlinear or shift-variant
system. All the results in this section are straightforward extensions of 1-D results.

7.1.3 Convolution

The convolution operator in Eq. (7.15) has a number of properties that are straight-
forward extensions of 1-D results. Some of the more important ones are listed below.

Commutativity:
x(ny, 7)) * y(ny, ny) = y(ny, ny) * x(ny, ny) (7.16)



346 Two-Dimensional Signal Processing Chap. 7

Associativity:
[x(ny, n2) * y(m, m2)] * z(ny, m) = x(ny, ) * [y(ny, ma) * z(ny, ma)] (7.17)
Distributivity:

x(ny, 1) * [y(n, my) + z(ny, ny)]

. (7.18)
= [x(n, n) * y(m, )] + [x(my, no) * z(ny, m)]
Convolution with Delayed Unit Sample Sequence: '
x(ny, ng) * 8(ny — my,n; — my) = x(ny — my,ny — my) (7.19)

The convolution of two sequences x(n;, n;) and h(n;, ny) can be obtained by
explicitly evaluating Eq. (7.15). It is often simpler and more instructive, however, to
evaluate Eq. (7.15) graphically. Specifically, the convolution sum in Eq. (7.15) can
be interpreted as multiplying two sequences x (ki, k;) and h(n, — k;, n; — k) that are
functions of the variables (k;, k;) and summing the product over all integer values of
(ky, k;). The result, which is a function of (n,, ny), is the result of convolving x(n;, n7)
and k(n,, n;). As an example, consider the two sequences x(ny,n;) and h(ny, ny),
shown in Figs. 7.6(a) and (b). From x(n,, n;) and h (n1, ny), we can obtain x(k;, k) and
h(n, — k,,n, — k) as functions of k; and k,, as shown in Figs. 7.6(c) and (d). Note
- that we can obtain h(n, — ki, n; — k;) as a function of k; and k, from k(n,, n,) by first
changing the variables n, and n, to k, and k;, flipping the sequence with respect to the
origin, and then shifting the result in the positive k; and k, directions by n; and n,
points, respectively. Once we have obtained x(ky, k) and i (k; — ny, k; — ny), we can
multiply and sum them for each different set of m and n,. The result is shown in Fig.
7.6(e).

A linear shift-invariant system is called separable, if its unit sample response
h(n;,ny) is a separable sequence. For a separable system, it is possible to reduce the
number of arithmetic operations in computmg the convolution sum. For this reason,
separable systems are sometimes used in processing images. To illustrate this, we
consider an input sequence x (n,, ny) of size N X N points and a unit sample response
h(ny, ny) of size M X M points, as follows:

x(n,n) =0outside 0 =n =N-1,0=<n, <N -1,
h(n,n) =Ooutside0=nm=M~—-1,0<m=M-1

where N >> M in typical cases. The size of nonzero values of x(ny, ;) and h(ny, ny)
is shown in Figs. 7.7(a) and (b). Denoting the output of the system with y(ny, nip),
y(ny, n;) can be expressed as

(7.20)

y(n, ) = x(ny;mp) * h(ny, ny)

2 2 x(ky, kg) - h(ny — ki,na — ky)
ky=—= fy=—= ;
The size of nonzero values of y(n;, n;) is shown in Fig. 7.7(c).
If Eq. (7.21) is used directly to compute y(n,n;), approximately
(N + M — 1)*- M? arithmetic operations (defined as one multiplication and one

(7.21)
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Figure 7.6 An example of linear convolution of two 2-D sequences.
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ny y

-1 xin,, ny)
' Kla,, ny)
{M-=1) a .

N
0 (N=1) 0 (M=)
(a} o (b)
na

(N +M-2) yln,, ny) = xlny, ny) *hiay, ny)

lc} ;
Figure 7.7 Regions for which the signal values have nonzero amplitude.

. a&ditioﬁj are required since the number of nonzero output points is (N + M — 1)? and
computing each output point requires approximately M? arithmetic operations. If
h(n,, ny) is a separable sequence, it can be expressed as

h(ny, n2) = hy(ny) - hy(ny), (7.22)
where
hi(n;) = O outside 0 < ny =N — 1
hy(n;) =Ooutside 0 <mp =M — 1
_ From Egs. (7.21) and (7.22), '

Yanm) = S S xl k) hum — k)~ ho(my — k)

kl:’ Nl a ' (7.23)
= > hlm — k) E x(ky, k) - ho(ny — ky)
L i P

For a fixed ki, Z§,=-= x(ki, k3) * ha(n; — ko) in Eq. (7.23) corresponds to a 1-D
convolution of x(k;, n;) and hy(n,). For example, using the notation

flk,m) = E x(kl:kz)'hz(ﬂz"‘ kl)s (7.24)

kza—u
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£(0, n,) is the 1-D convolution of x(0, n,) with hy(n,). Since there are N different values
of k, for which x(ky, k;) is nonzero, computing f(k,, n,) requires N 1-D convolutions
and therefore requires approximately N-(N + M — 1)-M arithmetic operations.
Once f(k;, n;) is computed, y (n;, ny) can be computed from Egs. (7.23) and (7.24) as

y(n,ny) = 2 h(n = ki) - flky, no) (7.25)
4 E: 2l s k|=—°° . I .
For a fixed n,, Eq. (7.25) is a 1-D convolution of 4,(n,) and f(n,, n,). For example,
y(ny, 1) is a 1-D convolution of f(n;, 1) and hy(r;). Since there are (N + M — 1)
different values of n; for which f(k,,n;) is nonzero, computing y(n,,n,) requires
(N + M — 1) 1-D convolutions and therefore requires approximately (N + M — 1)-
M arithmetic operations. Assuming M <<'N, the total number of arithmetic oper-
ations required is approximately (W + M — 1)*- 2M, which compares favorably with
(N + M — 1)*-M* When M = 10, exploiting the separability of & (n,, n,) reduces
the number of arithmetic operations by approximately a factor of 5.

7.1.4 Stable Systems and Speﬁal Support Systems

For practical considerations, it is often appropriate to impose additional constraints on
the class of systems we consider. Systems with those constraints are stable systems
and special support systems.

A system is considered stable in the bounded input-bounded output (BIBO)
sense if and only if a bounded input always leads to a bounded output. Stability is often
a desirable constraint to impose since an unstable system can generate an unbounded
output, which can cause system overload or other difficulties. From this definition and
Eq. (7.15), it can be shown that a necessary and sufficient condition for a linear
shift-invariant system to be stable is that its unit sample response h(n,, n,) be abso-
lutely summable. For a linear shift-invariant system,

Stability <— 2 Z | R(ny,ny) | < oo (7.26)
OO py :
Even though Eq. (7.26) is a straightforward extension of 1-D results, issues related
to stability, such as testing the stability of a system, are quite different between 1-D
and 2-D results, as we will explore further in Section 7.5. Because of Eq. (7.26), an
absolutely summable sequence is defined to be a stable sequence.

- Special support systems can be viewed as extensions of 1-D causal systems.
Specifically, a 1-D system is causal if and only if the current output y(n) does not
depend on any future values of input, e.g., x(n + 1), x(n + 2), x(n + 3),.... With
this definition, it can be shown that a necessary and sufficient condition for a 1-D linear
shift-invariant system to be causal is that its unit sample response h(n) be zero for
n < 0. Causality is often a desirable constraint to impose in designing 1-D systems.
In typical 1-D signal processing applications such as speech processing, there is a
well-defined time reference, and a noncausal system requires delay, which is un-
desirable in many real-time applications. In typical 2-D signal processing applications
such as image processing, the causality may not be necessary. At a given time, a
whole image may be available for processing, and it may be processed from left to
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right, from top to bottom, or in any direction. Even though the notion of causality may
not be as important a constraint in 2-D signal processing, it is useful to extend the
notion that a 1-D causal linear shift-invariant system has its unit sample response k (r)
whose nonzero values lie in a particular region. A 2-D linear shift-invariant system
whose unit sample response h(n;, n,) has all its nonzero values in a particular region
is called a special support system.

A 2-D linear shift-invariant system with its unit sample response k(n,, np) is
called a quadrant support system when h(n,, np) is a quadrant support sequence. A
sequence is called a quadrant support sequence, or quadrant sequence, when all its
nonzero values lie in one quadrant Anexample of a ﬁrst—quadrant sequence is the unit
step sequence u(n;, ny).

A 2-D linear shift- mvanant system vnth its umt sample resp(mse h(ny, ny) is
called a wedge support system when h(n,, ny) is a wedge support sequence. Consider
two lines emanating from the origin. If all the nonzero values in a sequence lie in the
region bounded by the two lines with an angle less than 180° between the two lines,
the sequence is called a wedge support sequence, or wedge sequence. An example of
a wedge sequence is shown in Fig. 7.8.

ny
$(5). o6) o1 o@ el
$14) o(5) o) (1) e(@)

" $(3) el e(5) e(6 e(n

$(2) o3 e(4) _e(5) e

m @ @ @ s

{1}l o{2) e(3) e(4
e(1} e(2) e(3)
e(1) e(2)

e(1) Figure 7.8 An exmnﬁlc of a2 wedge
sequence.

Quadrant sequences and wedge sequences are closely related. ‘A quadrant se-
quence is always a wedge sequence. In addition, it can be shown that any wedge
sequence can always be transformed into a first-quadrant sequence by a linear change
of variables. To illustrate this, we consider the wedge sequence x(n;, n;) shown in Fig.
7.8. Suppose we obtain a new scquence y{ny, ny) from x(n,, n,) by the following linear
change of variables:

Y(ﬂl: nZ) = x(mls m}.) |'m1=ll|.m1"ll1—n| (7'2?)
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The sequence y(n;,n;) we obtained is shown in Fig. 7.9, and it is clearly a
first-quadrant sequence. For this example, the stability of x(n;, n,) is equivalent to the
stability of y(n,, ny), since Z,, 2, [x(ny, m)| = Z,, 2., |y(ny, my)|. It is possible to
show that a proper choice of linear change of variables maps any wedge sequence to
a first-quadrant sequence without affecting the stability.

The notions that a wedge sequence can always be transformed to a first-quadrant
sequence by a simple linear mapping of variables and that the stability of these two
sequences is equivalent with a proper choice of linear mapping are very useful in
discussing the stability of a 2-D system. As we discuss later, our primary concern in
checking the stability of a 2-D system will be limited to a class of systems known as
“recursively computable” systems. For a recursively computable system, the stability

. depends on the stability of a wedge sequence k(n;, n,). Our approach to checking the
stability of a wedge sequence /(n,, n;) will be to transform 4 (n;, 1) to a first-quadrant
sequence h’(n;, n;) by a linear transformation of variables and then to check the
stability of '(n;, n;). It is much easier to develop stability theorems that apply to
first-quadrant sequences than to wedge sequences. This is discussed further in Sec-
tion 7.5.

L

9(5) o(s) ;(5) e(5) e(s)
$4) o4 o(4) o) e(4)
@(3) clai ®(3) e(3) e(3) ---

@(2) o(2) @2) e(2) e@(2)

1) (1) 1) (1 (1)

Figure 7.9 First-quadrant sequence
obtained by linear mapping of variables
of the wedge sequence in Fig. 7.3.

7.2 FOURIER TRANSFORM
7.2.1 Fourier Transform Pair
It is remarkable that any stable sequence x(m, n;) can be obtained by appropriately

combining complex exponentials of the form X (w,, w,) - €/ - ¢/, The function
X(w,, w,) that represents the amplitude associated with the complex exponential
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e . giom cap be obtained from x(n,, n;) The relatlonshlps between x(ny, n,) and
X(w,, w,) are given by

- Discrete Space Fourier Transform Pair

.. X(cul,w;) = 2 E x(nl‘nz g Jum -e‘f“’.l';l (728)
= m=—= g !
:i(m,nz) = WL}&] __'_WX(@.I;f-ﬂz)'fjw'“]..'_ejwz (7.29)

Equation (7.28) shows how the amplitude X (w;, ,) associated with the exponential
e . gj® can be determined from x(n;, ny). The function X (w;, @;) is called the
discrete space Fourier transform, or Fourier transform, of x(ny, ;). The sequence
x(ny, ny) is called the inverse discrete space Fourier transform, or inverse Fourier
transform, of X (@, ;). The consistency of Egs. (7.28) and. (7. 29) can be easily
shown by combining them.

From Eq. (7.28), we can see that X (;, @,) is in general complex, even though
x(n;, ny) may be real, and that X (w,, @,) is a function of continuous variables w; and
w,, even though x(n;, n,) is a function of discrete variables n; and n,. In addition,
X (wy, w,) is always periodic with period 2 7r with respect to each of the two variables
w; and w,; i.e., X(w;, w)) = X(w; + 27, @) = X(wy, w2 + 27) for all w, and w,.
We can also show that X (w,, w,) uniformly converges for stable sequences.

The 2-D complex exponential /1"t - ¢/“? js an eigenfunction of a 2-D linear
shift-invariant system. Specifically, when e/*1" - /2 js used as an input x(n,, n,), the
output of the system y(n,, n) is given by

y(ny, ny) = H(wy, @y) - e - e/

where

H(w,w) = Y Y hlk, k) et egem (7.30)
kyj=—= ky=—w=
From Eq. (7.30), the output is a scaled version of the input, and the scalar H (w;, @,)
is called the frequency response of the linear shift-invariant system.

7.2.2 Properties

We can derive a number of useful properties from the Fourier transform pair in Egs.
(7.28) and (7.29). Some of the more important properties, often useful in practice, are
listed in Table 7.1. Most of these properties are essentially straightforward extensions
of 1-D Fourier transform properties. The only exception is property 4, which applies
to separable sequences. If a 2-D sequence x(n,, ny) can be written as x;(ny) - x2(n,),

- then its Fourier transform X (@, w,) is given by X (w;) - Xo(w,), where X\(w,) and

Xx(w,) represent the 1-D Fourier transforms of xi(n;) and x;(n,) respectively. This
property follows directly from the Fourier transform pair of equations (7.28) and
(7.29).
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TABLE 7.1 PROPERTIES OF THE FOURIER TRANSFORM

x(_n.,nz) > X(w, w2) y{ni, ny) «— Y(w;, w3)

Property 1: Linearity
a-x(n,m) + b-y(n,n) «— a-X(w, wz) + b-Y(wy, w2)

Property 2: Convolution
x(ny, ng) = y(ny, m) «— X(wi, wy) - Y(_-‘-ﬂ:, w3)

Property 3: Modulation
x(ny, n)y(ny, n2) «— X(wp, 03) @Y (@, w3) -

1 L - 2
= ‘-T‘.I.'ITi ’ 8|'~w4Lzﬂ—wX(81- Bz)l’(wl - 8‘*("'2 I &)dﬁ,dﬂ;

Property 4: Separable sequence
x1(m)xa(ng) < Xi(w1)X2(w2)

Property 5: Shift of a sequence or Fourier transform L
@ x(n — mi,m — my) > X(wy, ;) - g™ - g7o2m
(b} e"""“ » e’_"""’-x(m,:_:z} > X((IJ]: -, G — Pz)

Property 6: Differentiation

' X (wy, @2)
6@1

X (w1, w2)
6:-:2

@ —jn-x(mng) <>
(b) —jny-x(ny, n) «—

Property 7: Parseval’s theorem
2 2 [1‘("1,’12) IZ = # $ .[:-u-.- J""-_ IX(&J:, w3) iz' dw, - dw,

A|=—® g=—wx

Property 8: Symmetry properties ]
(@ x(n,n): real «— X(wy, @) = X*(— w1, —@2)
Xg (1, @2), | X (@1, @3) |: even (symmetric with respect to the origin)
X, (@1, w3), 6. (e, w2): 0dd (antisymmetric. with respect to the origin)
(b) x(n:, my): real and even «— X(w,, w): real and even
(©) x(m,ny): real and odd «— X (w:, w-): pure imaginary and odd

7.2.3 Examples

Example 1 .
We wish to determine H (w1, w:) for the sequence 4 (n,, #;) shown in Fig. 7.10. From Eq.
(7.28), -

H(CIJ], w?) = Z Z h{ﬂ[, ﬂ;) b -4 whena, € e

DRl o B
1
6
1

1 1

_ , |
+ -e‘a“"'+g-e‘f"'2+g-e""'+g-e""2

D e T

1
+3CDSM;+§C05(|J:
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o

(3)

o o ny

Figure 7.10 A 2-D sequence h{ny, ny).

The function H (e, w) for this example is real, and | H (w1, w,) | is shown in Fig. 7.11.
If H (w1, w2) were the frequency response of a linear shift-invariant system, the system
would correspond to a lowpass filter. The function H(w;, w;) has smaller values in
frequency regions away from the origin. A lowpass filter when applied to an image blurs
the image. Figure 7.12(a) shows an image of 512 X 512 pixels. Figure 7.12(b) shows
the image obtained by processing the image in Fig. 7.12(a) with a lowpass filter whose
unit sample response k(ny, 7,) is shown in Fig. 7.10.

{H{w,,w,][-[-;.+«}casu,+%cosw;{

RS
“}}\\\'&‘\: =

Figure 7.11 The magnitude of the Fourier transform of (ny, n,) shown in Fig.
7.10.
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{a)

Figure 7.12 (a) An original image of
256 x 256 pixels; (b) the image in part
(a) filtered by the lowpass filter shown

in Fig. 7.11.

(b)

Exampie 2

We wish to determine i (n,, n;) for the Fourier transform H (e, Cr.lz) shown in Fig. 7.13.
The function H(w:, w,) is given by

. )= {5 o] <aand|w:| =b (shaded region)
(@0 =10, &< |an| < worb < |w;] =@ (unshaded region)

Since H(w, wy} is always periodic with period 27 along each of the variables «; and
®2, H(w, w,) is shown only for |w,| = wand |w.| = 7. The function H(w,, ;) can
be expressed as H(w:) - Ha{w2), where one possible choice of Hi(w;) and Hz(w,) is also
shown in Fig. 7.13. Computing the 1-D inverse Fourier transforms of A () and H(w2)
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~b

-

1} Hylwy) !
; _| | Figure 7.13 Frequency response of a

= =3 5 7“1 scparable ideal lowpass filter.
and using property 4 in Table 7.1, we have

sin an; sin bny

.If.l(m.ﬂz) = hy(n1) - ha(na) = wn, Ty

Example 3

We wish to determine h(n,, n;) for the Fourier transform H (@1, w2) shown in Fig. 7.14.
The function H(w,, w,) is given by

Hon, ) {1, Vol + o2 < w. (shaded region)
@, =
0, V“'Il+‘”25>"’=and|m.},|¢q~;i < 7 (unshaded region)

If H(w, @;) above is the frequency response of a 2-D linear shift-invariant system, the
system is called a circularly symmetric ideal lowpass filter. The inverse Fourier trans-
form of H(w;, w,) in this example requires a fair amount of algebra, and the result is

@&,
() = —— e Ji(we - VAT + 13 7.31
(m1, nz) Yy (e n} + n3) (7.31)

where Ji(x) represents the Bessel function of the first kind and the first order. This
example shows that 2-D Fourier transform or inverse Fourier transform operations can

Figure 7.14 Frequency response of a
circularly symmetric ideal lowpass filter,
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become quite complex algebraically relative to 1-D Fourier transform or inverse Fourier
transform operations, even though the 2-D Fourier transform pair and many 2-D Fourier
transform properties are straightforward extensions of 1-D results. From Egq. (7.31), we
see that the unit sample response of a 2-D circularly symmetric ideal lowpass filter is also
circularly symmetric, e.g., it is a function of n + n3. This is a special case of the result
that circular symmetry of H (w1, w2) implies circular symmetry of A (n;, n,). We note,
however, that circular symmetry of A(n,n;) does not imply circular symmetry of
H(w1, ;). The function J,(x)/x is sketched in Fig. 7.15. The sequence /(n;, n;) in Eq.
(7.31) is sketched in Fig. 7.16 for the case w. = 0.4.

4y 1x)

X

‘o8t

06

% 20 26
Figure 7.15 Sketch of J,(x)/x, where
Ji(x) is the Bessel function of the first

-0.2% : kind and the first order.

7.3 z-TRANSFORM

7.3.1 z-Transform

The Fourier transform discussed in Section 7.2 uniformly converges for stable se-
quences, and many interesting classes of unstable sequences, such as the unit step
sequence u(ny, n,), cannot be represented by their Fourier transforms. In this section,
we discuss the z-transform representation of a sequence, which converges for a much
wider class of signals.

The z-transform of a sequence x(ny, n,) is denoted by X (z,, z,) and is defined by

X(z1,2) = i i x(m, mg) - 27™ - 23™ (7.32)

A=~ pp=-—x

where z, and 7, are complex variables. Since each of the variables z, and z, represents
_Z'D space, the space represented by (21, z) is four-dimensional (4-D). As a result, it
1s extremely difficult to visualize points or segments of X(z,, z,).
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Figure 7.16 The unit sample response of a circularly symmetric ideal lowpass ﬁl;'.er with
@ = 0.4 in Eq. (7.31). The value at the origin, (0, 0), is 0.126.

From Egs. (7.28) and (7.32), we see that X(z,, z,) is related to X(@y, w;) by

X212 |symeimtzpmeir = 5 S x(my, my) - e - gmiom = X(w,, w))

n=—o p=—wx
(7.33)

Equation (7.33) states that X (@, w,) is X (z;, 2,) evaluated at z, = ¢/ and z, = ¢/*2,
This is one reason why the z-transform is considered a generalization of the Fourier
transform. The 2-D space represented by (z; = e/*1,z, = /1) is called the unit
surface.

Suppose X (21, 7,) in Eq. (7.32) is evaluated along (z; = ry- e, z, = r,- i),
where r| and w, are the radius and argument in the z,-plane and r; and w, are the radius
and argument in the z,-plane. The function X (z;, z;) can be expressed as

X(Z[, 22) ] T1=r| '!j'l.zzﬂrz-ej“'z = E 2 x(nll nZ) 2 'r-l-ﬂ! N r2_”2 ) e—j“‘n] * e“jﬂm

A|=—= gy=-—m

= Flx(n,n) - ri™-r;™) (7.34)
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where F[x(n;, n;) - 7™ - r;™] represents the Fourier transform of x(n,, ny) - r7™ - r5™.
Since X (w;, w,) uniformly converges for an absolutely summable sequence, from Eq.
(7.34) X(z),2;) uniformly converges when ri™-r;"-x(n,, ny) is absolutely sum-
mable: :
> D rimeriex(r,n)| <o,  wherer, = |z|, r, = |z| (7.35)

A =—® gy=-=

From Eq. (7.35), the convergence of X (z,, z,) will generally depend on the value
of r, = |z| and r, = |z|. For example, for the unit step sequence u(m,ny),
ri*-ry"-u(ny, ny) is absolutely summable only for (|z,| > 1, |z;| > 1), and its
z-transform converges only for (|z;| > 1, |z;| > 1). The region in the (z;, z;)-plane
where X (zy, z,) uniformly converges is called the region of convergence (ROC).

For 1-D signals, the ROC is typically bounded by two concentric circles whose
originis at|z| = 0, as shown in Fig. 7.17(a). For 2-D signals, (z;, z,) represents a 4-D
space and therefore the ROC cannot be sketched in a way analogous to that in Fig.
7.17(a). Fortunately, however, the ROC depends only on |z| for 1-D signals and on
|z;| and | z, | for 2-D signals. Therefore, an alternative way to sketch the ROC for 1-D
signals is to use the | z|-axis. The ROC in Fig. 7.17(a) sketched using the | z|-axis is
shown in Fig. 7.17(b). For 2-D signals, we can use the (| z; |, | z; |)-axes to sketch the
ROC. An example of the ROC sketched in the (|z,],|z[)-plane is shown in Fig.
7.17(c). In this sketch, each point in the (|z|,|z|)-plane corresponds to a 2-D
subspace in the 4-D (z;, z;) space. The ROC plays an important role in the z-transform
representation of a sequence, as we will see shortly.

> 1zl

(b}

{a)

lz51
ROC

Figure 7.17 - The representation of
ROCs for 1-D and 2-D z-transforms.
(a) A typical ROC for a 1-D
z-transform; (b) the ROC in part (a)

| 2,1 sketched using the | z|-axis; (c) a typical
ROC for a 2-D z-transform using the

(c) |z:]- and | 23 |-axes.
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7.3.2 z-Transform Examples
. Example 1
We wish to determine the z-transform and its ROC for the following sequence:
x(my,n) = a™-b™-u(ny,na)

The sequence is sketched in Fig. 7.18(a). Using the z-l:ransfcnn definition in Eq.
(7 32), we have

X(z1,22) = i i a °b"’-.u(m,nz)-zl"f‘ -2

Ay=—o nz-—cﬂ

= z (@-z7")™- Z ®- z;"')"‘
: m=0 : ng-ﬂ

1 . 1
=iy’ L—Bas?

The ROC is sketched in Fxg. 7.18(b).

|z1] > |a| and |z;| > | b]

ny : | 22'

b2 ' . ab? a2b?
® o -]

b “ab a%p
[ <] e

(R
I
1 a a? I .
or T n
1 0 lal | Z||
(a) bk

Figure 7.18 (a) A sequence x(n, ma) = a™+b™ - ulny,n) and (b) the ROC of its
z-transform.

For 1-D signals, poles of X(z) are points in the z-plane. For 2-D signals, poles
of X(z,, z,) are 2-D surfaces in the 4-D (z,, z;) space. In Example 1, for instance, the
poles of X(z,, z;) can be represented as follows: (z, = a, any z;), (any z;,z; = b).
Each of the two pole representations corresponds to a 2-D surface in the 4-D (z,, z,)
space.

For the 1-D case, the ROC is bounded by poles. For the 2- D case, the ROC is
bounded by pole surfaces. To illustrate this, we consider the pole surfaces in Example
1. Taking the magnitudes of z, and z, that correspond to the pole surfaces, we have
|z:| = |a| and |z;| = |b|. These are the solid lines that bound the ROC, as shown
in Fig. 7.18(b). It should be noted that each of the two solid lines in Fig. 7.18(b)
represents a 3-D. space since each point in the (| z |, | z;|)- plane corresponds to a 2-D
space. The pole surfaces, therefore, lie in the 2-D subspace within the 3-D spaces
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corresponding to the two solid lines in Fig. 7.18(b). To see this point more clearly,
consider the 3-D space corresponding to |z, | = |a|. This space can be represented as
(2, = | a|- €™, any z,), which is shown in Fig. 7.19. The pole surface corresponding
to (z1 = a, any z,) is sketched in the shaded region in Fig. 7.19.

W,y

Plane w,; =% a

—— e [2;]

Figure 7.19 Pole surface within the
3-D space of (|z,| = |a|, z,) for the
9Im [2,) sequence in Fig. 7.18.

Exampie 2 )
We wish to determine the z-transform and its ROC for the following sequence:
x(m,nz) = —a™-b™-u(—nm — 1,ny)

The sequence is sketched in Fig. 7.20(a). Using the z-transform definition in Eq.
(7.32) and after a little algebra, we have
1 ) 1
1—a-zi' 1—=b-z3!
ROC:  |z| <|al, |2|>|b]
Pole Surfaces: (z1 = a, any z)), (any z,, z, = b)

The ROC is sketched in Fig. 7.20(b).

X(Zl,zz) =

my |lzi

(=a73p%) (-2~ (-a~'b?)

L] @ L ]
(~a3b)  (-a~2B) (—a"'b)

@ L ] @

-1

{—~a73) (—a~2) {—a~") |

® e ° n . I

! fal il
(a) {b)

Figure 7.20 (a) A sequence x(ny,n;) = —a™-b™-u(~n, — 1,n;) and (b) the
ROC of its z-transform.
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Examples 1 and 2 show the importance of the ROC in the z-transform
representation of a sequence. Specifically, even though the two sequences in the
examples are very different, their z-transforms are exactly the same. Given only the
z-transform, therefore, it is not possible to uniquely determine the sequence. The
unique determination of the sequence requires not only the z-transform but its ROC,

Example 3 5 ]
We wish to determine the z-transform and its ROC for the following sequence:
x(m, ng) = a™ - 8(ny — ny)- u(ny, n2)

The sequence is sketched in Fig. 7.21(a). Using the z-transform definition in Eq. (7.32)
and after a little algebra, we obtain

1
Xeuwn) = Tt
ROC:  |zi|*|z2| > |a]
Pole Surfaces: (any z; # 0, 22 = a/z)

The ROC is sketched in Fig. 7.21(b). The pole surface is again a 2-D plane in the 4-D
(Zl, Zz) space. ; .

g |Zzt

12‘_{ ']Zgi?tai
(a%)
(%)

{a?)

(al
(1

fy 12||

(a (b)

Figure 7.21 (a) The sequence x(m, ny) = a™ - 8(n; — ny)-u(ny, ny) and (b) the
ROC of it; z-transform.

7.3.3 Properties of the ROC -

Many useful properties of the ROC can be obtained from the z-transform definition of
Eq. (7.32). Some important properties are listed in Table 7.2.

Property 2 provides a necessary and sufficient condition for a sequence to be a
first-quadrant sequence. The condition is that for any (z{, z;) in the ROC, all (z1, z2),
including |z, | = and |z,| = =, in the shaded region in Fig 7.22 are also in the
region of convergence.

The sketch in Fig. 7.22 is called a constraint map since it shows the constraints
that the ROC of any first-quadrant sequence has to satisfy. Two examples of ROCs
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TABLE 7.2 PROPERTIES OF THE ROC

Property 1: A ROC is bounded by pole surfaces and is a connected region with no pole
surfaces inside the ROC. .

Property 2:  First-quadrant support sequence «—> For any (|z}],|z3|) in the ROC, all
(2| = |zi],|z2| = | z3]) are in the ROC.

Property 3: Finite extent sequence «—> ROC is everywhere except possibly
(z| =0or=, [22] = 0 or =). .

Property 4: Stable sequence «— ROC includes the unit surface,
Gzll = ]-!z:el == l)- )

12,1

Figure 7.22 Constraint map for the
(FANEA ROC of first-quadrant sequences. For

: any (z1, z3) in the ROC, all (z,,2,) in
1211 the shaded region is also in the ROC.

that satisfy the constraint map in Fig. 7.22 are those shown in Figs. 7.18 and 7.21.
They are the ROCs of x(n,n) = a™-b™-u(n,n) and x(ny,n) = a™-
8(ny — ny) - u(ny, ny), both of which are first-quadrant sequences. Constraint maps can
also be obtained for other quadrant sequences. ' ‘

7.3.4 Properties of the z-Transform

Many properties of the z-transform can be obtained from the z-transform definition of
Eq. (7.32). Some important properties are listed in Table 7.3. All the properties,
except properties 3 and 7, can be viewed as straightforward extensions of the 1-D case.
Property 3 applies to separable sequences, and property 7 can be used in determining
the z-transform of a first-quadrant sequence obtained by linearly mapping the variables
of a wedge sequence.

7.3.5 Inverse z-Transform
The z-transform definition in Eq. (7.32) can be used to determine the z-transform and
ROC of a 2-D sequence. As in the 1-D case, using Eq. (7.32) and Cauchy’s integral

‘theorem, we can determine the inverse z-transform relation that expresses x(n;, n) as
a function of X(z;, z;) and its ROC. The inverse z-transform relation is given by

1 ” <
x(ny,ny) = W£I CzX(zl,zz)-z'f' L.zl gy, - dzy (7.36)
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TABLE 7.3 PROPERTIES OF THE z-TRANSFORM

x(ni,n) <« X(z1,23), ROC: R, y(m,n) <= Y(z,z), ROC: R,

Property 1: Linearity
a- -‘:(ﬂhﬂz) + b- }’("hﬂz] L X(zhzl) +b- Y(thz)
ROC: at least R N R,

Property 2: Convolution

x(ny, o) * y(ny, no) < X(21,22) - Y(z21,22)

ROC: at least R; N R,
Property 3: Separable sequence

xi(ny) * x2(mz) <> Xi(z1) - Xa(z2)

ROC: |z:| € ROC of X\(z,) and | z.| € ROC of X»(z>)
Property 4: Shift of a sequence

x(ny — my,ng — my) «— X(z,22) - 2y™ - 22™

ROC: R, with possible excepuon of|zl| = 0 Jz2| = 0,0

Property 5: Differentiation oy
ax (Z 15 Zz)

@ —ni-x(n,n) «———— P ROC R,
®) —na-x(m,n) H%@n, _gbc: R.
_ _ -

Property 6: Symmetry properties
(a) I‘(ﬂl, "2) H X*(Zf)z;)s E Rm: RS = B
() x(—m,—n) <> X(z7',27"), . ROC:|z7'|,|z7}|in R,

Property 7: Linear mapping of variables _ .
x(nlt n'Z) = )’(ml, mZ) l(ml-f nl|+J +n3,m1=K-ni+L-n3) e Y(zh 22) = X(21 ' Z§,ZJ|I = Z%)

ROC: (|zi-25|,]|z1- &) in R, -
Note: For those points of y(m,, m;) that do not correspond to any x(nl, ng) y(my, my)
is taken to be zero.

where C, and C; are both in the ROC of X (z;, z;), C, is a closed contour that encircles
in the counterclockwise direction the origin in the z,-plane for any fixed z, on C;, and
C, is a closed contour that encircles in the counterclockwise direction the origin in the
zy-plane for any fixed z; on C,.

The conditions that the contours C, and C; in Eq. (7.36) must satisfy appear to
be quite complex, but there is a simple way to determine the contours C, and C, given
the ROC. Suppose (|z{],|z;|) lies in the ROC. One set of contours C; and C, that
sansﬁes the conditions in Eq. (7.36) is

Ci: z = |z{| e/, @y 0to 2w

_ by (7.37)
Cy 1z, = |z3]| &/, wy 0to2w
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If the sequence is stable, so that the ROC includes the unit surface, one possible set
of contours is

C: z = e, w;: 0to2w
. (7.38)
Cy z; = &2, wy: 0 to 27
If this set of contours is chosen in Eq. (7.36), then Eq. (7.36) reduces to the inverse
Fourier transform relation in Eq. (7.29). This again shows that the Fourier transform
representation is a special case of the z-transform representation.

From Eq. (7.36), the result of the contour integration differs depending on the
contours. Therefore, a sequence x(n,, n,) is not uniquely specified by X(z), z,) alone.
Since the contours C; and C; can be determined from the ROC of X (z,, z,), a sequence
x(ny, np) is uniquely specified by both X(z,, z;) and its ROC:

x(ny,m) «— X(z,z), ROC (7.39)

In theory, Eq. (7.36) can be used directly in determining x (n,, n,) from X (z,, z,)
and .its ROC. In practice, however, it is extremely tedious to perform the contour
integration even for simple problems. F e amen ;

For 1-D signals, the approaches that have been used in performing the inverse
z-transform operation without explicit evaluation of a contour integral are series
expansion, partial fraction expansion, and inverse z-transform using z-transform prop-
erties. Among these approaches, the partial fraction expansion method is the only one
that can always be used in performing the z-transform operation for any rational
z-transform. In this method, the z-transform X (z) is first expressed as a sum of simpler
z-transforms by factoring the denominator polynomial as a product of lower-order
polynomials. The inverse z-transform is then performed for each of the simpler
z-transforms, and the results are added to obtain x(n).

For 2-D signals, unfortunately, the partial fraction expansion method is not a
general procedure that can be used to perform the inverse z-transform operation for a
rational z-transform. In the 1-D case, the factorization of any 1-D polynomial as a
product of lower-order polynomials is guaranteed by the fundamental theorem of
algebra. A 2-D polynomial, however, cannot in general be factored as a product of
lower-order polynomials. Therefore, a procedure analogous to the 1-D case cannot
generally be used. Partly due to the difficulty involved in the partial fraction expansion
method, no known practical method exists that can be used to perform the inverse
z-transform of a general 2-D rational z-transform.

7.4 DIFFERENCE EQUATION
7.4.1 Linear Constant-Coefficient Difference Equation

Difference equations play a more important role for discrete space systems than
differential equations do for analog systems. In addition to representing a wide class
of discrete space systems, difference equations can be used to recursively generate
their solutions. This use can be exploited in realizing digital filters with infinite-extent
unit sample responses.
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In this section we consider the class of linear constant coefficient difference
equation (LCCDE) of the following form:

zz alky, k) - y(m — ki,my — k) = 22 b(ki, ko) - x(ny = ky,ny — k)
(k1. k)ER, (k. k2)ERg . 40)

where a(k,, k;) and b (k,, k) are known sequences, R represents the region in (&, k2)
such that a(k;, k,) is nonzero, and Ry is similarly defined.

The LCCDE alone does not specify a system since there are many solutions
of y(n;, ny) in Eq. (7.40) for a given x(n,, n;). For example, if y;(n;, n) is a solution
to y(ny,n) =3y, — L,ng + 1)+ 1y(n + Lnp — 1) + x(ny,ny), then so is
yilny; ng) + f(ny + ny) for any function f. To uniquely specify a solution, we need a
set of boundary conditions. Since the boundary conditions have to determine specific
functional forms as well as the constants associated with the functions, they are
typically an infinite number of points in the output y(n;,n;). This aspect differs
fundamentally from the 1-D case. In the 1-D case, the LCCDE specifies a solution
within arbitrary constants. For example, an Nth-order 1-D LCCDE specifies a solution
within N constants, and therefore N initial conditions (N points in the output y(r)) are
generally sufficient to uniquely specify a solution. In the 2-D case, we need a set of
boundary conditions that are typically an mﬁmte number of points in the output
y(a, -'32)

7.4. 2 leference Equatlon with Boundary Conditions

The pmblem of solving an LCCDE with boundary conditions can be stated as follows:
‘Given x(n, n), and y(ny, ny) for (ny, ny) € Rgc, find the solution to

> alk,k)- y(n: ki,ny — k)
(k1. k2)ERY

(7.41)
22 b(ki, ko) - x(m — ki, my — k)

{ky, k;}Eﬂa

One approach that can be used in solving a 1-D LCCDE with initial conditions is to
obtain a homogeneous solution and a particular solution, determine the total solution
as a sum of these, and then impose initial conditions. For the 2-D case, unfortunately,
this approach cannot be used. First, there is no general procedure to obtain the
homogeneous solution. The homogeneous solution consists of unknown functions,
and the specific functional form of k - a”, used in the 1-D case, cannot be used for the
2-D case. Second, the particular solution cannot generally be obtained by inspection
or by the z-transform method since there is no practical procedure for performing the
inverse z-transform operation for the 2-D case. Furthermore, determining the un-
known functions in the homogeneous solution by imposing the boundary conditions
(an infinite number of known values of y{(#n,, #;)) is not a simple linear problem.

* Another approach in solving Eq. (7.41) is to compute y(n;, n,) recursively,
which is how it is typically done on a computer. To illustrate this approach, consider
the following 2-D LCCDE with boundary conditions (BC):
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y(n,n) =yl — Lng) + yln,np = 1) + y(ny — 1,n, — 1) + x(ny, m)
x(ny,n) = 8(my, m) (7.42)
BC: y(n,n) =1, forny<Qorm<0
The output y(n;, ny) caﬂ be obtained recursively as follows:
(0,00 = y(=1,0) + y(0,~1) + y(~1,~1) + x(0,0) = 4

y(1,0) = y(0,0) + y(1,—1) + y(0, —1) + x(1,0) = 6 (7.43)
y(0,1) = y(=1,1) + y(0,0) + y(=1,0) + x(0,1) = 6
y(2,0)=---

Even though the approach to computing the output recursively appears to be
quite simple, the proper choice of the boundary conditions so that the LCCDE with
boundary conditions has a unique solution is not straightforward. In the 1-D case, N
initial conditions are typically both necessary and sufficient for an Nth-order difference
equation. In the 2-D case, the choice of the boundary conditions so that the LCCDE
will have a unique solution is not too obvious.

-Suppose we have chosen the boundary conditions such that the LCCDE has a
unique solution and therefore we can consider the LCCDE with boundary conditions
as a system. In both the 1-D and 2-D cases, the system is in general neither linear nor
shift-invariant. The difference equation is of interest to us primarily because it is the
only practical way to realize an infinite impulse response (IIR) digital filter. Since a
digital filter is a linear shift-invariant system, we need to force the difference equation
to become a linear shift-invariant system.We can do this by choosing a proper set of
boundary conditions. In the 1-D case, one way to force a difference equation to be a
linear shift-invariant system is to impose an initial condition known as an initial rest
condition. An initial rest condition is defined to be an initial condition obtained by
requiring the output y(n) to be zero for n < ny, whenever the input x(n) is zero for
n < ny, and it also forces the resulting system to be causal. Even though the extension
is not quite straightforward, it is possible to extend the general idea behind the initial
rest condition to the 2-D case. This is discussed in the following section.

7.4.3 Difference Equation as a Linear Shift-Invariant System

One way to force an LCCDE with boundary conditions to be a linear shift-invariant
system so that it can be used in realizing an IIR filter is to choose the boundary
conditions using the following three steps.

1. Interpret the LCCDE as a specific computational procedure.

2. Determine Rgc, the region (ny, n,) for which the boundary conditions are applied,
as follows:
(a) Determine R;, the region of support of the unit sample response h(n;, ;).
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(b) Determine R,, the region of support for the output y(n,, n,), from R, and R,
where R, is similarly defined.
(¢) Rse: all (ny, ny) € R,.
3. Boundary conditions: Set y(n,, n;) = 0 for (n,, n;) € Rgc.

Step 1. In this step, we interpret a difference equation as a specific com-
putational procedure. The best way to explain this step is by looking at a specific
example. Consider the following LCCDE:

y(n,m) + 2-y(ny — 1,ng) + 3y(ny,np — 1) + 4(my — 1,np — 1) = x(ny, np)
(7.44)

Since there are four terms of the form y(n, — k;, n, — k;), we obtain four equations
by leaving only one of the four terms on the left-hand side of the equation, as follows:

y(n,ng) = =2y(m — 1,ng) - 3y(ny, m =1 = 4-y(m - Liny = 1) + x(ny,n))
' oy (7.452)

oy = 1Lm) = —1y(n,n) — %_J’_(ﬂa_.ﬂz =1 = 2y(m — Lnz = 1) + 3x(n, ny)
_ . (7.45b)
y(n,ny — 1) = —3y(n,n) — Iy — 1,m) = 3y(m — 1,_’12 = 1) + §x(ny, ny)
| o | (7.45¢)
ym = Lng = 1) = —iy(n,n) — tyln — 1,n) — 3y(ni,ma — 1) + 3(ny, my)
- | b (7.45d)
By a simple change of variables, Eqgs. (7.45) can be rewritten so that the left-hand side

of each equation has the form y(n;, ny): ' '

y(ry, ng) = —2y(n, — Lﬂz) = 3(n,n — 1) — 4y(ny — 1L,m — 1) + x(ny, mp)

g oy ; (7.46a)
Cy(nn) = —3y(m + L,ny) —3y(m + Lmp — 1) — 2y(ny,ny — 1) _—_
+3x(m + 1,m) : (7.46b)

y(,n) = =3y, + 1) = 3y(m = Ly + 1) = 5y(ny — 1,m) 7 i

: +%(nhn2 + l) ( ' )
Yim,m) = —iy(m + Lm + 1) = 2y(m,m + 1) = 3y(m + 1, n) M

+3x(n + 1,ny + 1)

Even though all four equations in Eq. (7.46) are the same LCCDEs, they correspond
to four different specific computational procedures by proper interpretation. The
interpretation we use is that the left-hand side y(n, n,) is always computed from the
right-hand side expression for all (r,, n,). When this interpretation is strictly followed,
then each of the four equations in Eq. (7.46) corresponds to a different computational
procedure. This will become clearer when we discuss step 2.
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It is often convenient to represent a specific computational procedure pictorially.
Specifically, to pictorially represent the specific computational procedure correspond-
ing to Eq. (7.46a), we consider computing y(0, 0). Since y(n;, n,) on the left-hand side
is always computed from the right-hand side, y(0,0) in this case is computed as

y0,0) «— =2(=1,00 = 3y(0,~1) ~ 4y(=1,~1) + x(0,0)  (7.47)

We have used < to emphasize that y(0, 0) is always computed from the right-hand
side. Equation (7.47) is represented in Fig. 7.23. The value y(0, 0) that is computed
is denoted by X in Fig. 7.23(a). The values y(—1,0), y(0, —1), and y(—1, —1) that
are used in obtaining y(0, 0) are marked as solid dots (°) in the figure, with the proper
coefficient attached to the corresponding point. The value x(0, 0) used in obtaining

' ¥(0, 0) is marked as a solid dot in Fig. 7.23(b). To compute y (0, 0), therefore, we look
aty(n,, n) and x(n,, n,) at the points marked by solid dots, multiply each value by the
corresponding scaling factor indicated, and sum all the terms. Figure 7.23(a) is called
an output mask and Fig. 7.23(b) is called an input mask since they are “masks” that
are applied to the output and input to compute y(0, 0). We note that the output mask
always has X at the origin, but the input mask does not have X anywhere.

iy ny

o ny i

Figure 7.23 (a) Output mask and (b)
=4l e (-3) input mask corresponding to Eq. (7.47).
Note that the output mask always has an
X at the origin, but the input mask does
{a) {b) not have an X anywhere.

Even though the output and input masks are sketched for.the case when y(0, 0)
is computed, they are also very useful in visualizing what happens when other points
of y(ny,n;) are computed. Suppose we wish to compute y(5,3) using the same
computational procedure as in Fig. 7.23. The points that are used in determining
¥(5, 3) are indicated in Fig. 7.24, with the proper scaling factors attached. Figure 7.24
is simply a shifted version of Fig. 7.23.

ny N2
(—=2)
< f L] X 3 ™y
(-4) (-3
2t ] L] 2+
yin,, nzl’ x{n,, .ﬂz:l
1} 1L
1 | I I i s ! L 1 1 I n,
1] 1 2 3 4 5 0 1 2 3 4 5
(a) (b}

Figure 7.24 (a) Output mask and-(b) input mask in Fig. 7.23 shifted to illustrate
the computation of y(5, 3).
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From the above discussion, an LCCDE can lead to many different specific
computational procedures. Which procedure is chosen from these many po'ssibilities
is determined from the specific application context. We d1scuss this point in the
specific examplc following steps 2 and 3. '

Step 2. In this step, we determine K,, the regxon of support of the output
y(ny, ny). To determine R,, we first determine R,, the region of support of the unit
sample response. To illustrate how R, is determined, consider the following com-
putational procedure: ' o

yoing —— =l —1, nz) = 3y(ny,mp = 1) :

| ) C= 4y(n{— 1,m = 1) + x(n, n))
The output and input masks for this computanonal procedure were shown in Fig ‘? 23.
'The region of support R, is the region of (n;, n,) for which y (m,, ) is influenced by
the pulse 8(n;,n,) when we set x(n;, n;) = 8(n;,ny). Consider y(0,0). From Eq.
(7.48) or Fig. 7.23, we see that y(0,0) is influenced by y(—1,0), y(0,—1),

y(—1,~1), and 8(0,0). Clearly y(0,0) is influenced by the pulse 8(n;,n;). Now
consider y(1,0), y(0, 1), and y(1, 1). From Eq. (7_.48) or Fig. 7.23, we have

y(1,0) «— -2-y(0,0) —3-y(1,-1) — 4-y(0,—1) + 8(1,0)
y(0,1) «— =2-y(-1,1) —3-y(0,0) — 4-y(—-1,0) + 8(0,1) ~ (7.49)
y(1,1) «— —=2-y(0,1) —3-y(1,0) — 4-y(0,0) + 8(1,1)

Since &8(n,n,) has already influenced y(0,0), and y(0,0) in turn influences

y(1,0),y(0, 1), and y(1, 1), the above three output values in Eq. (7.49) are influenced
by the pulse 8(n;, n,). Now consider y(—1,0). From Eq. (7.48) or Fig. ? 23 we see
that y(—1, 0) is obtained from

P{=1,0) = =292, 0) = JP—1, 1) = 4-}'(—2.—1)' + 8(-1,0)
(7.50)
This is shown in Fig. 7.25. The terms that influence y(—1,0) in Eq. (7.50) are
obtained from
y(=2,0) «— —-2-y(—3,0) — 3-y(—2,—1) — 4-y(-3,-1) + 8(-2,0)
cy(-1,-1) «— =2-y(-2,—-1) = 3-y(—-1,-2) — 4-y(-2,-2) + 3(-1,-1)
=L, ~1) =— =3, p~3gl-1,=2 = d-9{~3, Y+ 82 ~1)
(7.51)
These are also shown in Fig. 7.25. From Fig. 7.25, the points that influence y(—1, 0)
are shown as y(m,n;) in the shaded region in Fig. 7.26. Since the pulse
x(ny, ny) = 8(ny, ny) has its first impact on y(0,0), and y(0, 0) does not in any way
affect y(—1,0), y(=1,0) is not influenced by the pulse 8(n,, n,). If we consider all
other points of y(n,, n,) analogously, we can easily argue that the region of (n,, n;) for

which y(n;, np) is influenced by x(n,, n;) = 8(ny, ny) is only the first-quadrant region.
This is the region R,. In essence, the pulse 8(;, n;) has a direct effect only on y(0, 0).

- (.48)
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Figure 7.25 Computation of y(—1,0) and its neighborhood

(c)
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yin,y, ny)
{—2)}
@ ¥ ny
(-4) (-3)
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(b)
3
yiny, ny)
L2
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] X
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@

e

() y(=2,0); () (=1, =1); (d) y(-2, ~1).

13

Because of the specific computational procedure in Eq. (7.48) and Fig. 7.23, y(0, 0)
influences only the first-quadrant region.

Once R, is determined, R, can be obtained from R, and R,. Suppose x(n,, n,) is
the sequence shown in Fig. 7.27(a). By convolving x(n;, n;) and h(ny, n,), R, can be
easily determined. For Ry considered above, R, is given by the shaded region in Fig.
7.27(b). Rgc, the region (n;, ny) for which the boundary conditions are applied, is
determined to be all (n,,n,) outside R,. In the current example, Ry is given by the
shaded region in Fig. 7.27(c).

Y(-ﬂ,, ﬂ:i

ny

{d)

values: (a) y(—1,0);

37

Figure 7.26 The region that influences
y(=1,0).
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ngy Ny
[o N o]
R: o o RBC
e ¢ o o
—_— T & ny
o ¢ O @ (o]
o Q @ O O
{a) {b) {c)

Figure 7.27 Region of support for (a) x(nmy, n2), (b) y(m,m) and (c) boundary
conditions for the computational procedure in Eq. (7.48).

Step 3. In this step, we choose the boundary conditions such that
y(ny, ny) = 0 for all (n;, n,) € Rpe. In the example considered in Step 2, we choose
the boundary conditions as follows: '

y(a,n) =0 forny < -1 or mp<0 or (m,nm) =(—1,0)

To illustrate the three steps further, we consider one specific example in the next
section.

7.4.4 Example

Suppose we have des'ignéc‘llan IR dlgltal filter whose system function H (z,, z,) is given
by
1

Alws) = T

(7.52)
The IR filter was designed by making the unit sample response of the designed system
as close as possible in some sense to an ideal unit sample response that is a
first-quadrant sequence. Therefore, we know that the filter is a first-quadrant support
system. We wish to determine the output of the filter when the input x(n,, n,) is given
by .

x(n,m) =1, ~“l=mp =<land-1=n=1

0, otherwise (7.53)

as shown in Fig. 7.28.
a3

x(ny, ny)

Figure 7.28 An input sequence
x(my, ny) to the system of Eq. (7.52).
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Since the only practical way to implement a general IR filter is by using a
difference equation, we first convert Eq. (7.52) to a difference equation as follows:

o Y(zl922) i l
Hoes) = X  TH I s
Y(z1,2) + §-Y(z1,2) - 27" - 23" = X (21, 2) (7.54)

y(r,m) + 3 y(m—1,m—1) = x(n;, ny)

Since the IIR filter is a linear shift-invariant system, we choose the proper set of
boundary conditions so that the LCCDE becomes a linear shift-invariant system. Two
specific computational procedures correspond to the LCCDE in Eq. (7.54):

J’(ﬂl,ﬂz) b T “‘%)’(ﬂl i l,ﬂz E l) * I(ﬂ;,ﬂz) (755)
yl,n) — —=2:y(m+1L,m+1)+2-x(n + 1,n, + 1) (7.56)

The output and input masks corresponding to each of the two computational pro-
cedures in Egs. (7.55) and (7.56) are shown in Fig. 7.29. The region of support of
h(ny, ny) for each of the two computational procedures is shown in Fig. 7.30. Since
we know that the filter is a first-quadrant support system, we choose the computational
procedure given by Eq. (7.55). To determine the boundary conditions for the com-
putational procedure chosen, we determine R,, the region of support for the output
sequence y(n, ny), from R, in Fig. 7.28 and R; in Fig. 7.30(a). The region R, is shown
in Fig. 7.31(a). The boundary conditions that we use are shown in Fig. 7.31(b). With
the boundary conditions shown in Fig. 7.31(b), the output y(n,, n,) can be recursively
computed from Egs. (7.53) and (7.55). The result is shown in Fig. 7.32. If we double
the input, the output will also double. If we shift the input, then the output will be
shifted by a corresponding amount. This is consistent with the fact that the com-
putational procedure is a linear shift-invariant system.

ny 3
Output mask Output mask
®(-2)
y n,
®
, fa
Input mask Input mask
2
(2)
{1
n, ny
Figure 7.29 Output and input masks

for the computational procedure given
(al (b) by (a) Eq. (7.55) and (b) Eq. (7.56).
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n,.
Figure 7.30 The regions of support
for h(n, ny) corresponding to the two
computational ures given by
() Eq. (7.55) and (b) Eq. (7.56).
.nz
o o0 o ¢
o0 o ‘% ylny, ny) =0 for (n,, ny) € Rge
) %I o o
o ofe ¢ @ @ e ,0
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Figure 7.31 The regions of support for (a) y(m, ﬁ;) and (b) boundary conditions,
for the computational procedure given by Eq. (7.55) and the input x(n,, n,) in Fig.

7.28.
na
%%) yiny, ny)
> ™ °
SR
® L IR -1)e'*
R (I IR
- = (_EJ 4
m Hi} ()
@ oo Figure 7.32 The output y(nm, ny) for
the computational procedure given by
Eq. (7.55) and input x(n,, n,) in Fig.
7.28.
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- 7.4.5 Recursive Computability

- The LCCDE with boundary conditions plays a particularly important role in digital
signal processing since it is the only practical way to realize an IIR filter. As we
discussed in the previous sections, the LCCDE can be used as a recursive procedure
in computing the output. We define a system to be recursively computable when there
exists a path we can follow in computing every output point recursively, one at a time.
The example in Section 7.4.4 corresponds to a recursively computable system.

From the definition of a recursively computable system, we can easily show that
not all computational procedures resulting from LCCDEs are recursively computable.

For example, consider a computational procedure whose output mask is shown in Fig.
7.33. From the output mask, it is clear that computing y (0, 0) requires y(1,0) and
computing y(1, 0) requires y (0, 0). Therefore, we cannot compute y(0, 0) and y(1, 0)
one at a time recursively, and the computational procedure in Fig. 7.33 is not a
recursively computable system. For a finite-extent input x(n;, n,), we can show that
a system is recursively computable if the output mask has a wedge support. Examples
of wedge support output masks are shown in Fig. 7.34. The types of output masks
shown in Figs. 7.34(b) and (c) are called “nonsymmetric half-plane” output masks.
Examples of output masks that do not have wedge support are shown in Fig. 7.35.

For a recursively computable system, we can follow many different paths in

‘computing all the output values we need. Even though y(n;, n;) can be computed in

many different orders, the result does not depend on the specific order that is used.

2
B e S S —
(1) (1
- Figure 7.33 An example of an output
mask of a system that is not recursively
computable.
1y g ny
e(-1) ¢(—-1)
(i (-1 (=2 (1 '
—@ mny < o— M, @ ny
(1 (1 (2) (3 (4 (8
@ [ @ ® @ ® ®(2)
(al (b) (c)

Figure 7.34 Examplés of output masks of recursively computable systems.
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ny ny : n,
(1 (n (1 (1
L ] L] L] L]
(1 (1} (1 (n (1)
o= < ny @ my 2~ . 4 ny
(1) M ome L (1) m (1 (-
@ @ ® ) @ o ) ) ) °
(a) ' {b) @

Figure 7.35 Examples of output masks of systerns that are not recu.rsxvely com-
putable :

7.5 STABILITY
7.5.1 Stability Problem

When a discrete space system such as a digital filter is designed, an important
consideration is the stability of the system. In this sectmn we cousu.ler the problem
of testing the stabﬂny of a discrete space system

"~ As discussed in Section 7.1.4, a system is considered stable in the bounded
input-bounded output (BIBO) sense if and only if a bounded input always leads to a
bounded output. For a linear shift-invariant system, a necessary and sufficient condi-
tion for the system to be stable is that its unit sample response h(n,, n,) be absolutely
summable:

> > k)| <=
np=—x gy=—o
Even though this condition is a straightforward extension of 1-D results, issues related
to stability are quite different for 1-D and 2-D results.

Often we are given the system function H (z,, z;) and information about its ROC,
and we wish to determine the system stability. If the ROC is explicitly given, deter-
mining the system stability is straightforward because a system is stable if and only
if the ROC includes the unit surface (|z,| = |z,| = 1). Unfortunately, however, the
ROC is seldom explicitly given; typically, only implicit information about the ROC
is available. When the system function corresponds to a digital filter, for example, the
region of support of its unit sample response h(n;, ny) is usually known from the filter
design step. Since our main interest is testing the stability of digital filters, the stability
problem we consider in this section is to determine the system stablhty given H(z,, z,)
and the region of support of & (ny, ny).

When the system function H (z,, z,) corresponds to a digital filter, restrictions are
imposed on H (z;, z;) and the region of support of h(n;,n;). One restriction is that
H(zy, z;) is a rational z-transform, which can be expressed as

B(zy,23)
Az, 29)

where A(z(,2,) and B(z;,z,) are finite-order polynomials in z; and z;. Another re-

H(Zl, Zz) = (757)
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striction is that the system is recursively computable. With these two restrictions, the
system can be realized by an LCCDE with boundary conditions, and the output can
be computed recursively one at a time.

In the 1-D case, when the system function H (z) is expressed as B (z) /A (z) where
there are no common factors between A(z) and B(z), B(z) does not affect the system
stability. In the 2-D case, however, the presence of B(zy, z,) in Eq. (7.57) can stabilize
an otherwise unstable system, even when there are no common factors between
A(z1,2,) and B(z,, z,). This case occurs very rarely, there is no known procedure that
can be used when such a case does occur, and an unstable system stabilized by
B(z1, zy) is unstable for all practical purposes. We will therefore assume that the
numerator polynomial B(z,,z,) does not affect the system stability. To make this
explicit, we’ll assume that B(z;,z;) = 1. =~ = - -

-~ When the input x(n, n;) is a finite-extent sequence, which is the case of our
primary interest, the recursive computability requires that the output mask has wedge
shape support. This in turn requires the unit sample response k(n,, ;) to have wedge
shape support when B(zy, z;) = 1. As discussed in Section 7.1.4, it is always possible
to find a linear mapping of variables that transforms a wedge sequence to a
first-quadrant sequence without affecting the stability of the sequence. Therefore,
stability results that apply to first-quadrant sequences can be used for all recursively
computable systems. In our approach, we will first transform a recursively computable
system to a first-quadrant support system by ‘a linear mapping of variables. This
transformation changes the system function H(z;,2,) to a new system function
H'(z1,2;). We will then apply to H'(z,, z,) stability results that apply to first-quadrant
support systems. As we have discussed, the reason for first transforming a wedge
support system to a first-quadrant support system is that developing stability results
that apply to first-quadrant support systems is much easier notationally and concep-
tually than developing stability results that apply to wedge support systems.

- Given the preceding discussion, the stability problem we will consider can be
stated as follows. '

Problem: Given H(z\,z;) = 1/[A(z1,2;)] and assuming that 'h(n,,nz) is a
first-quadrant sequence, determine the system stability.

In the following sections, we discuss several stability theorems and use them to solve
the problem of determining the system stability.

7.5.2 Stability Theorems

In the 1-D case, the problem of testing the stability of a causal system whose system
function is given by H(z) = 1/[A(2)] is quite straightforward. Since a 1-D polynomial
A(z) can always be factored as a product of first-order polynomials, we can always
determine the poles of H(z). The stability of the causal system is equivalent to the
condition that all the poles are inside the unit circle.

A similar approach cannot be used in testing the stability of a 2-D first-quadrant
support system. The approach just described requires the specific locations of all
poles. Since a 2-D polynomial A (z,, z,) in general cannot be factored as a product of
lower-order polynomials, it is extremely difficult to determine all the pole surfaces of
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H(zy,2,) = 1/[A(z,, z,)], and the approach based on explicit determination of all pole
surfaces has not led to successful practical procedures of testing the system stability.
In this section, we will discuss theorems that can be used in developing practical
procedures for testing the stability of a 2-D first-quadrant support system without
explicit determination of all pole surfaces.

Shanks’ Theorem. Shanks’ theorem does not directly lead to practical sta-
bility testing procedures, but it is one of the earliest such theorems, is conceptually
very simple, and has led to other stability theorems, which we will discuss later. In
addition, this theorem shows that a result that is not useful for 1-D signals can be very
useful when it is extended to the 2-D case.

In the 1-D case, the stability of a causal system wlth system function
H(z) = 1/[A(z)] is equivalent to requiring all the poles of H(z) to be within the unit
circle:

Stability «— All poles (soluuons to A(z) = () are msn'lc | | (7.58)
An cquwalent statement to Eq. (7. 58) is given by :

Stability “«—- Aiz) #0 - for|z] =1 : (7.59)

If all the poles are inside |z| = 1, then A(z) cannot be zero for any lz] = 1. If

A(z) # Oforany |z| = 1, then all the poles must be inside | z| = 1. Therefore, Egs.

(7.58) and (7.59) are equivalent conditions. .

'Even though Egs. (7.58) and (7.59) are equivalent statcmeuts, thel.r unphcanons
for testing system stability are quite different. The condition in Eq. (7.58) suggests a
procedure where we cxphcltly determine all pole locations and see if they all are inside
|z] = 1. The condition in Eq. (7.59), however, suggests a procedure where we
evaluate A (z) for each z such that | z| = 1 and see if A (2) is zero for any | z| = 1. This
requu'es a search in the 2-D plane. In the 1-D case, the procedure suggested by Eq.
(7.58) is extremely sunplc Therefore, the procedure suggested by Eq. (7.59), which
requires a 2-D search, is not useful. In the 2-D case, however, the procedure suggested
by Eq. (7.58) is extremely difficult. The extension of Eq. (7.59) to the 2-D case is
Shanks’ theorem.

Shanks’ theorem can be stated as follows:

Stability «—> A(z,z) #0  forany |z, |z| =1 (7.60)

| 251

| 241

The result in Eq. (7.60) is simple. to demonstrate. To show that stability implies the
condition in Eq. (7.60), we first note that stability implies that the unit surface
(Jz:] = 1, | zz]| = 1) is in the inside of the ROC of H(z,, z,). Because h(m, n,) is a
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first-quadrant sequence, the ROC of H (z,, z,) has to satisfy the conditions given by the
constraint map in Fig. 7.22. Therefore all (z;,2,) such that |z,| = 1, | z,| = 1 has to
be in the ROC. Since the ROC cannot have any pole surfaces (A(z;,2,) = 0),
A(z,,2)) # 0 forany |z, |z,| = 1. To show that the condition in Eq. (7.60) implies
the system stability, we note that this condition implies that there are no pole surfaces
for any |z;|, |z;| = 1. Because h(n,, n,) is a first-quadrant sequence, the ROC of
H (zy,z;) has to satisfy the constraint map in Fig. 7.22. This requirement combined

~with the property that the ROC is bounded by pole surfaces implies that the ROC
includes the unit surface, which in turn implies the system stability.

The condition in Eq. (7.60) suggests a procedure where we evaluate A (z;, z) in
the 4-D space (|z,| = 1, |z,| = 1) shown in the shaded region in Eq. (7.60). The
search in 4-D space is, of course, a tremendous amount of work, and this procedure
itself cannot be used in practice. Other theorems, however, state that the space where
we search is considerably smaller than the 4-D space in Shanks’ theorem. Since the
proofs of these theorems are quite involved and the proofs themselves do not provide
much insight into the theorems, we state the theorems with our interpretations but

without proof.
Huang’s Theorem. Huang's theorem can be stated as follows:

Stability «— (a) A(z,z) #0 for|z|=1,|z|=1

(b) A(z,z) #0 for|z| =1,z =1 (7.61)

1251

To satisfy condition (a), we need to ensure that A (z,, z;) is not zero for any (z;, z,)
such that |z | = 1 and |z,| = 1. This requires a 3-D search, where the space to be
searched is shown by a solid dark line in the figure in Eq. (7.61). To satisfy condition
. (b), we need to ensure that A (z,, z,) is not zero for any (z;, z,) such that |z,| = 1 and
z; = 1. This requires a 2-D search, where the space to be searched is shown by the
dotted line in the figure. The dotted line is used to emphasize that this is a 2-D search
problem, where the search is required in the 2-D subspace of the 3-D space corre-
sponding to (|z,| = 1, |z| = 1). '

The 3-D search problem corresponding to condition (a) can be substituted for by
many 1-D stability tests. To satisfy condition (a), we need to make sure that
A(zy,2) # 0in the 3-D space corresponding to (|z,| = 1, |z, = 1). One approach
to satisfy this condition consists of two steps:

1. Solve all (z;, z;) such that A(|z,| = 1, z;) = 0. This is equivalent to solving all
(wy, z7) such that A (e/1,z;) = Q.
2. Check if all | z;| obtained in step 1 are less than 1.
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Instep I, we determine all (|z,| = 1, z;) such that A(|z,| = 1, z) = 0. The solutions
obtained in this step will contain all solutions to.A(z;,2z) = 0 in the 3-D space of
(lzi]| = 1,2z,). If none of these solutions has |z,| greater than or equal to 1, then
A(z1,2y) # O for any (|z| = 1,|z2| = 1), which satisfies condition (a). Step 2 is
clearly a trivial operation. In step 1, we have to solve the following equation:

CA(e*, ) =0

Suppose we consider a fixed value of w,,.say w;. Then A (e, z;) isa 1-D polynomial
in the variable z,, and solving for all z, such that A (e’i, z;) = 0 is equivalentto a 1-D
stability test.. If we vary o, continuously from 0 to 27 and we perform the 1-D stability
test for each w,, we will find all possible values of (e/“, z,) such that A (e’1, z;) = 0.
In practice, we cannot change w, continuously, and we have to: consider discrete
values of w,. By performing many 1-D stability tests, we can obtain a table such as
Table 7.4. By choosing A sufficiently small, it is possible to essentially determine all
possible values of (w, z;) such that A (e’*!,z;) = 0. By checking if all the values of
| 22| in Table 7.4 are smaller than 1, we can satisfy condition (a) without a 3-D search.

TABLE 7.4 SOLUTION TO A(e™,z,) =0

wy Z2

0 [ bOt Co, dO! e
A ahbl!cltdla I
2A az, by, c2,da, . ..
211- do, bO! Co, d0| s e

The 2-D search problem corresponding to condition (b) can be substituted for by
one 1-D stability test. To satisfy condition (b), we need to make sure that A (z;,z,) # 0
in the 2-D space corresponding to (|z;| = 1,2, = 1). One approach to satisfy this
condition consists of the following two steps.

1. Solve all (zy, z;) such that A(z,,z; = 1) = 0.
2. Check if all |z, | obtained in step 1 are less than 1.

Step 1 determines all (z(,z; = 1) such that A(z;, 1) = 0. If all | z, | are less than 1, then
A(z, 1) cannot be zero for |z, | = 1, which satisfies condition (b). Step 2 is a trivial
operation. Step 1 is equivalent to a 1-D stability test since A(z;, 1) is a 1-D polynomial
in the variable z,.
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From the preceding discussion, it is clear that a 2-D stability test can be per-
formed by many 1-D stability tests and one 1-D stability test. This fact can help us
develop a procedure to be used in practice to test the stability of a 2-D system.

Among the many variations to Huang’s theorem is the following;

Stability <— (a) A(z,z) #0  for|z| =1, |z| =1

(7.62)
(b) A(z1,z) #0 forzy =1, |z|=1

| 241

| 2,1

This variation is the same as Huang’s theorem except that the roles of z; and z, have
been interchanged. :

DeCarlo-Strintzis Theorem. The DeCarlo-Strintzis theorem can be stated as
follows: '

Stability < (2) A(z,z) #0, |z]=|z|=1
b) Az, 1) #0, |z =1 (7.63)
(C) A(I,Zz) #* 0, |Z;| =1

12,1

I 2,1

Each of the three conditions in this theorem corresponds to a 2-D search problem.
Condition (a) requires A (z,, z,) to be nonzero on the 2-D unit surface. Conditions (b)
and (c) require A (zy, z;) to be nonzero in the 2-D spaces shown by the dotted lines in
the figure in Eq. (7.63). From the search point of view, therefore, the conditions
imposed by the DeCarlo-Strintzis theorem are considerably simpler than those in
Huang’s theorem, which requires a 3-D search.

In practice, however, this theorem is not much simpler than Huang’s theorem.
Specifically, condition (b) in the DeCarlo-Strintzis theorem is the same as condition
(b) in Huang’s theorem, which can be checked by a 1-D stability test. Condition (c)
in the DeCarlo-Strintzis theorem is the same as condition (b) with the roles of zy and
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7, interchanged. Condition (c) can therefore be checked by one 1-D stability test. In
the case of condition (a), however, the 2-D search. problem cannot be simplified by
one 1-D stability test, and a full 2-D search on the unit surface is generally necessary.
Computations involved in this 2-D search are often comparable to those of many 1-D
stability tests that can be used in testing condition (a) of Huang’s theorem.

753 Methods for Stability Test

From the two theorems discussed in Section 7.5.2, we can develop many different
methods to check the stability of a 2-D system. One such method is shown in Fig.
7.36. Test 1 in the figure checks condition (b) of Huang’s theorem and the DeCarlo-
Strintzis theorem. Test 2 checks condition (c) of the DeCarlo-Strintzis theorem. Test
3 checks condition (a) of the DeCarlo-Strintzis theorem. If a system passes all three
tests, the system is stable. Otherwise, it is unstable.

Alz,, 25)

Alz,, 1) =0 No
for | 2,1 =1

© Test 1

Yes
i

A(1, z5) #0 Na

T2 for | 2121

Yes
A

fwy juwg N
Test3 | A€ “N =0 .
for any w,, w,

Yes
l / Figure 7.36 One approach to test the
Stable Unstable  stability of H(z,,22) = 1/[A(z1, 2)].

To illustrate how the procedure in Fig. 7.36 can be used in testing the stability
. of a 2-D system, we consider two examples:
Example 1

1 1
{1(21.21) T 1- 0.62}_’ - 0.6z3"
where h(ni, n,) is a first-quadrant sequence.
Test 1

H(Zl'zz) —

The system fails test 1 and therefore is unstable.
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Exémplez
1
Ai,z2) 1 =327 =gzt -22"

H(z\,z3) =

where h(n;, n;) is a first-quadrant sequence.

Test 1 -
A, 1) =1 - 327" = §z7°
=3i<1
Test 1 passed.
Test 2
A(l,z) =1 —3—§-z7!
=3<1
Test 2 passed.
Test 3
A(w1, 03) = A(21,22) |z = i 2pmeion
=1—4e — e . £ 0 for any (@;, @2)
Test 3 passed.

The system passes all three tests and is therefore stable. In this example, test 3
could be performed by inspection. In typical cases, however, test 3 requires a consid-
erable amount of computation. : .

From the preceding discussion, it is clear that test'mg the stability of a 2-D system
is considerably more complex than testing the stability of a 1-D system. A 2-D
stability test problem typically corresponds to many 1-D stability tests. In addition, the
stability of a 2-D system cannot in general be absolutely guaranteed by a finite number
of 1-D stability tests since A (e/*, z;) = 0 has to be solved for every possible w,. The
complexity of testing the stability of a 2-D system and the lack of simple procedures
to design a stable filter and to stabilize an unstable filter explain, in part, why 2-D finite
impulse response (FIR) digital filters, which are always stable, are much preferred in
practice over 2-D infinite impulse response (IIR) digital filters.

7.6 DISCRETE FOURIER TRANSFORM
AND FAST FOURIER TRANSFORM

7.6.1 Discrete Fourier Transform (DFT)

In many signal processing applications, such as image processing, we deal with
sequences of finite extent. For such sequences, the Fourier transform and z-transform
uniformly converge and are- well defined. The Fourier transform and z-transform
representations X (w,, ;) and X (z,, z,) are functions of continuous variables (w,, @,)
and (zy, z;). For finite-extent sequences, which can be represented by a finite number
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of values, then the Fourier transform and z-transform are not computationally con-
venient frequency-domain representations. The discrete Fourier transform (DFT) is a
frequency-domain representation of finite-extent sequences, where a finite-extent se-
quence is represented in the frequency domain by a finite number of values.

The 2-D DFT representation can be derived by a straightforward extension of the
1-D result. Specifically, the 2-D DFT pair is given by

Discrete Fourier Transform Pair
[ Mi=1 Np—1
> E x(ny, ny) - e~ 3Nk -y =2 Nly - "1
Xk, k) = e for 0=k =N —1, (7.64)
O0=sk=N-1
0, ' otherwise
(_1 sy X (ky, k) - ef@mNk -y g HOm/Noer m
Nl ‘N, k20 k2o
x(ny, ny) =3 for 0=n =N, —1, (7.65)
0=n=N,-1
L0 otherwise

From Eqgs. (7.64) and (7.65), an N, X N,-point sequence x(n;, n;) is represented by
an N, X Ny-point sequence X (k;, k) in the frequency domain. The sequence X (k;, k,)
is called the DFT of x(n;, n;), and x(n,, n,) is called the inverse DFT of X (k;, k). The
DFT pair given in the box is defined only for a finite-extent first-quadrant sequence.
- This is not a serious. restriction in practice since a finite-extent sequence can always
- be shifted, and the shift can easily be accounted for in typical applications.

; For a finite-extent first-quadrant sequence x(n;,n;) that is zero outside
. 0=pn =N, —1land 0 <n, =N, — 1, the DFT X(k, k) is related in a straight-

forward way to the discrete-space Fourier transform X (w;, @,). From Eqs (7 28) and
(7.64), it is clear that : ,

: X(kl H] kl) = X(wh wl} Iﬂﬂ'a'ﬂ'ﬂ\'])k 1s w;*(lﬂ'fﬂf;}i;

(7.66)
fOfOEH]ENl—l OiﬂziNz_l

- Equation (7.66) states that the DFT coefficients of x(n;, n,) are samples of X (@;, w,)
at equally spaced points on the Cartesian grid, beginning at @, = w, = 0. Since
X (ky, k) completely specifies x(n,, n,), which in turn completely specifies X (w,, ),
X(wy, w;) has considerable redundant information; e.g., Ny X N, samples of
X(wy, w;) completely specify X (w, w).

We can derive a number of useful properties from the- DFT pair of equations
(7.64) and (7.65). Some of the important properties, often useful in practice, are listed
in Table 7.5. Most of these properties are straightforward extensions of 1-D results.

Analogous to the -1-D case, property 2 and property 4 present alternative ways
to perform linear convolution of two finite-extent sequences. To linearly convolve

f(ny; ny) and g(ny,ny), we could assume the proper periodicity Ny X N,, determine
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TABLE 7.5 PROPERTIES OF THE DISCRETE FOURIER TRANSFORM
x(ny,nz),y(m,n) =0 outside0 =n, =N, — 1,0=m=N; -1

x(nh ﬂz) «— X(kls kz) y(nlynz) «> Y(kl:kz)

1 0sm=N,-1,0=m=N; -1
Rmxﬂz(ﬂl,ﬂz) = [0: otherr\:ise I nz' 2

N: X Na-point DFT and inverse DFT are assumed.

Property 1: Linearity :
o arx(n,n) Fhey(m,n) «e— a-X(ki k) + b-Y(k, k)
Property 2: Circular convolution
x(n,ng) @ y(m, ng) < X(ky, ko) - Y (ky, k2)

Property. 3: Separable sequence e
x(ni, n2) = xilm) - xz(nz) < X(ki, k2) = Xu(ky) - Xo(kz),
X(k): Ny-point 1-D DFT,  Xj(kz): Nz-point 1-D DFT
- Property 4: Relation between circular and linear convelution
flr,n) =0  outside0=m=Ni—-1,0=m=N;—1
glm,m) =0 outside0 = nm; = N7 —1,0=<n, <N} -1

flan,n) * glay,m) = fln,n) @ gln,n)
with periodicity Ny = N1 + N1 — I, N, = N3 + N5 — 1

F (ky, k;) and G (ky, k;), multiply F (k,, k) and G (ki, k), and then perform the inverse
DFT operation of F (k, k;) - G (ki, k;). Even though this approach appears to be quite
cumbersome, it sometimes reduces the amount of computations involved in per-
forming linear convolution in practical applications. The 1-D methods for performing
convolution such as the overlap-add method and the overlap-save method, which are
based on this notion of performing convolution by computing DFTs, extend to the
problem of performing 2-D convolution in a straightforward manner.

7.6.2 Fast Fourier Transform (FFT)

Row-column decomposition. The DFT discussed in previous sections is
used in a variety of signal processing applications, so it is of considerable interest to
efficiently compute the DFT and inverse DFT. One efficient way to compute the 2-D
DFT is known as the fast Fourier transform by row-column decomposition. This
simple method uses 1-D FFT algorithms and offers considerable computational sav-
ings compared with direct computation. It is also the most popular 2-D FFT algorithm.

To appreciate the computational efficiency of the row-column decomposition
method, we first consider computing the DFT directly (the inverse DFT computation
is essentially the same). Consider an N, X N,-point complex sequence x(n,, n,) that
is zerooutside 0 =< n; = N; — 1,0 < n; = N, — 1. The DFT of x(n;, ny), X (ky, ko),
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is related to x(n,, n;) by

X(kl! kZ) = 2 E x(ﬂl ﬂz) e =F2m[N kg -y e_Ju?/szkg "

complex additions.

Ni=1 Ny—1

ny=0 na=0

Two-Dimensional Signal Processing Chap. 7

(7.67)

0=k=N-1,0=kL=N,~-1

From Egq. (7.67), directly computing X (k,, k) for each (k;, k) requires N, -N, — 1
complex additions and N; - N, complex multiplications. Since there are N, - N, differ-
ent values of (k,, k,), the total number of arithmetic operations required in computing
X (ky, k) from x(ny, ny) is N1 - N} complex multiplications and Ny - N;-(N;-N; — 1)

To develop the row-column decomposition method, we rewrite Eq. (7.67) as

follows:

Ny—1 Np—1

X(kh kz) = E 2 x(nh nz) . e’m";”l)tl'“l . e'ﬂz”/-"ﬁtl'"l,

na=0 n;=0
| S

OEkIEN“— l,
0=k=N,-1

This process is illustrated in Fig. 7.37.

Flky, o)

Consider a fixed n,, say n, = 0. Then x(n;, 1) |,-o represents a row of x(n;, n,), and
f(ki, 13) |,=0 is nothing but the 1-D N;-point DFT of x (n;,.72) |a,=o With respect to the
variable n,. Therefore, we can compute f(k;, 0) from x(n,, n;) by computing one 1-D
Ni-point DFT. Since there are N, different values for n, in f(k;, n) that are of interest
to us, we can compute f(k;, n,) from x(n,, n;) by computmg N; 1-D N,-point DFTs.

(7.68)

1-D

N, -point DFT

iy
x(ny, nj)

- 1M " @ Wil e @ e
L] L] L ] L] °

4 L] ® ° ° L)

) e e ° ] °

L] L] L ] a L]
e 1
|

0 (N,

(a}

Ny
flk,,
Ny — 1) s ® HewHal e e =
e o & o @
-] a e L] -]
s e e s e @
e L] L] e a
| i ko
0 (N, = 1)
(b}

Figure 7.37 Computation of f(k, n,) from x(n, 72} by performing N, 1-D N-point DFTs.

Once we compute f(k;,n;) from Eq. (7.68), we can compute X (k;, k) from

f(ky, ny) as follows:

Na=1

X(ki, ko) = 2 flky, ny) - e~ @m/Niym

na=0

OﬁklﬂNl_ l,oikzﬁNz-l
(7.69)
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To compute X (k;, ky) from f (ki n), consider a fixed ky, say k; = 0. Then f (ky, 1) [y =0
represents one column of f(k;, n,), and X (k;, k;) |¢,=0 in Eq. (7.69) is nothing but the
1-D Ny-point DFT of f(k;, n,) !xﬁu with respect to the variable n,. Therefore, we can

~ compute X (0, k;) from £ (k,, n;) by computing one 1-D N,-point DFT. Since there are
N, different values for ky in X (ky, k,) that are of interest to us, we can compute X (k,, &,)
from x(n,, n,) by computing N, 1-D N,-point DFTs. This process is illustrated in
Fig. 7.38. -

y kq
I flk,, ny) . Xk, ks
s 1n.52 s -8 = {N-z -1) e = e s & @
L] L ] L ] L] o e L] L] .. L]
e L] e a L] 4 o L] L @ L]
1-D
N,-point DFT
L] ] e L] L] L] a L] L] [-]
e e e e L] L L] L] L] L]
Boe ki 3 ks
_ (M, =1} ! 0 (M, = 1)
{a) Eap ) ({b)

Figure 7.38 ' Computation of X (k,, k;) from f (k:, n2) by performing Ny 1-D N>-point DFTs.

‘From the preceding discussion, we can compute X (k, k;) from x(n;, n,) with a
total of N, 1-D N;-point DFTs for the row operations and N, 1-D N;-point DFTs for
the column operations. Suppose we compute the 1-D DFTs directly. Since direct
computation of one 1-D N-point DFT requires N? multiplications and about N2
additions, the total number of arithmetic operations involved in computing X (k,, k,)
is Ny - No(N, + N;) multiplications and Ny - No(N, + N,) additions. This is a signif-
icant computational saving relative to the N - N3 multiplications and N3 - N additions
required for direct computation of X (k;, k).

To further reduce the number of arithmetic operations, we can of course use 1-D
FFT algorithms to compute the 1-D DFTs in the preceding discussion. When N = 2
an N-point 1-D FFT algorithm requires (N/2) - log) multiplications and N - log¥ addi-
tions. To compute N, 1-D N;-point DFTs and N, 1-D N,-point DFTs using 1-D FFT
algorithms when N, = 2"t and N, = 2'2, we need a total of [(N; - N2)/2] logz N; * N,
multiplications and N, - N; log; N, - N, additions. This is a significant computational
saving relative to direct computation of the 1-D DFTs. If we represent the total number
of points N, - N, as N, then the number of computations involved in the preceding case
can be expressed as (N/2)-log} multiplications and N - log¥ additions. These are
exactly the same expressions as those for the 1-D N-point DFT computations, using
an FFT algorithm such as a decimation-in-time algorithm.

To appreciate the computational saving involved, Table 7.6 shows the relative
amount of computations for the three methods. When N; = N, = 512, row-column
decomposition alone reduces the number of multiplications and additions by a factor
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TABLE 7.6 COMPARISON OF THREE METHODS TO COMPUTE A 2-D
Ny X Np-POINT DFT IN THE REQUIRED NUMBER OF MULTIPLICATIONS
AND ADDITIONS

Number of Number of

multiplications additions

(N, = N; = 512) Ny = N, = 512)
Direct computation N}-N3 N%-N2

(100%) - (100%)
Row-column decomposition Ni-Ny-(Ny + No) Ny-N;-(N; + Ny)
with direct 1-D DFT composition (0.4%) (0.4%) -

o N, - ) iV Nz :

Row-column decomposition = -loga Ny - N, N\ -Nz-loga(Ny - N,)
with 1-D FFT algorithm (0.0035%) (0.007%)

of 250 relative to direct 2-D DFT computation. The reduction by an additional factor
of 110 for multiplications and of 55 for additions is obtained by using 1-D FFT
algorithms. The total reduction in computations by row-column decomposition and
1-D FFT algorithms combined is by a factor of 30,000 for multiplications and of
15,000 for additions for Ny = N, = 512 compared with the direct 2-D DFT com-
‘putation.

In the derivation of the row-column decomposition approach, we expressed
X (ky, k) in the form of Eq. (7.68). This led to the procedure where we performed row
operations before colurnn operauons An alternanve way to wnte Eq. (7.68) is as
follows:

-1 Np— ’
ki,kz) Z E ﬂn,ﬂz) . g~ K2/ Naky - my .e—ﬂiwﬂ\‘]m-m’ 0=skh=N-1,
ny=0 ng-O ) 0= kl = Ng = |
g(ni’ kl) (7.70)

If Eq. (7.70) is used in computing X (k;, k;), then the column operations are performed
before row operations. The computations involved in this case remain the same as in
the previous case, where the row operations are performed first:

The computation of a reasonable-size 2-D DFT requires a fair amount of mem-
ory. When we compute the 2-D DFT of size 512 X 512, we need about a quarter of
a million memory locations. As the cost of memory becomes cheaper, this amount of
memory probably will not be a major issue in practical applications. If the memory
size is an important consideration, however, the data may have to be stored on slow
memory such as disk memory, and the number of I/O operations must be reduced. If
rows of the data x(m,,n,) are stored as blocks of data on the disk, one efficient
approach is to perform the row operations first, transpose the result so that columns
become rows, and then perform row operations on the transposed result. The result
can then be transposed to have X (k;, k) stored in the proper order. Procedures for data
transposition that are efficient in the required number of I/O operations can be found
in [1].
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The row-column decomposition approach discussed in this section is very
efficient computationally, is conceptually simple to understand, and can be imple-
mented using existing 1-D FFT algorithms. For these reasons, it is probably the most
popular method used in the 2-D DFT computation.

Vector radix FFT. In the row-column decomposition method, the 2-D DFT

' computation is transformed to many 1-D DFT computations, and 1-D FFT algorithms

are used efficiently to compute the 1-D DFTs. An alternative approach is to extend

the idea behind 1-D FFT algorithm development directly to the 2-D case. This
extension leads to vector radix FFT algorithms.

Although there are many variations, all 1-D FFT algorithms are based on one
simple principle: an N-point DFT can be computed by two (N/2)-point DFTs or three
(N/3)-point DFTs, etc. This simple principle can be extended to the 2-D case in a
straightforward manner. Specifically, an N; X Nyp-point DFT can be computed by

~ four (N,/2) X (N2/2)-point DFTs, or six (¥,/2) X (N,/3)-point DFTs, or nine
(N1/3) X (N,/3)-point DFTs, etc. Using this extension, various 1-D FFT algorithms
such as decimation-in-time and decimation-in-frequency algorithms can be directly
extended to the 2-D case, and all the properties also extend directly from the 1-D case
to the 2-D case. In the 2-D decimation-in-space algorithm, for example, in-place
computation is possible, and bit reversal of input is necessary to have correct output
and in-place computation. Compared with the row-column decomposition method,
vector radix FFT algorithms are roughly the same in various aspects and do not offer
any significant advantages. The amount of computations and memory locations re-
quired, for example, are roughly the same in both cases.

.7.? FINITE IMPULSE RESPONSE DIGITAL FILTERS

Three steps are generally followed in using digital filters. In the first step, we specify
the characteristics required of the filter. The filter specification depends, of course, on
the application for which the filter is used. For example, in a case where we wish to
- restore a signal that has been degraded by background noise, the filter characteristics
. we require depend on the spectral characteristics of the signal and the background
noise. The second step is the filter design step, where we determine k(n,, n,), the unit
sample response of the filter, or its system function H(z,, z;) that meets the design
- specification. The third step is the filter implementation step, in which we realize a
discrete space system with the given h(n,, n,) or H(z,, z3).
The three steps are closely related. For example, it does not make much sense
to specify a filter that cannot be designed. Neither does it make much sense to design
a filter that cannot be implemented. Despite the close relationship among the three
steps, we discuss them separately and point out the interrelationships as appropriate.
We restrict ourselves to a certain class of digital filters for practical reasons. One
restriction is that & (n;, n,) be real. In practice, we often deal with real data. So to
ensure that the processed signal is real when the input signal is real, we require
h(ny,n;) to be real. Another restriction is the stability of h(n, ny), ie.,
S e = |h(n1,n2) | < . In practice, an unbounded output can cause many difficulties
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such as system overload. For these practical reasons, we restrict our discussion to the
class of digital filters whose unit sample response h(n;, ny) is real and stable.
Digital filters can often be classified into two groups. In the first group h(n;, n,)
is a finite-extent sequence, and the filters in this group are called finite impulse
response (FIR) filters. In the second group, k(n;, n,) is of infinite extent, and the filters
in this group are called infinite impulse response (IIR) filters. In this section we
concentrate on FIR filters and in Section 7.8 on IIR filters. As in the 1-D case, the
design and implementation of FIR filters differ 00n51derably from those of IIR filters.

7.7.1 Zero-Phase Filters

A digital filter h(n;, ny) is said to have zero phase whcn its frcquency response
H(w,, cu;) is a real function, so that - .

H(w, @) = H¥, 0) P (1.71)

Strictly spcakmg, the filter whose frequency response is real may not be a zero-phase
filter, since H (w,, w;) can be negative. In practice, the frequency regions for which
H(w, w,) is negative typically correspond to the stopband reglons and a phase of
180° in the stopband regions has little significance.

From the symmetry properties of the Fourier transform, Eq. (7 71) is equivalent
in the spatial domain to the following expressmn

h_(ﬂl_.ﬂz) = h*(—n, —ny) (7.72)
Since we consider only real h(ny, n;), Eq. (7.72) reduces to
h(ny, ny) = h(=ny, —ny) o (71.73)

Equation (7.73) states that the unit sample responsc of a zcro—phasc ﬁltcr is symmctnc
with respect to the origin.

, One characteristic of a zzro—phase ﬁlter is its tendcncy to prescrve t.he shapc of
the signal component in the passband region of the filter. This characteristic is quite
useful in applications such as image processing, where the shape of the signal is very
important. In addition, from Eq. (7.73) it is very easy to require zero phase for FIR
filters, and design and implementation are often simplified if we require zero phase.
For these reasons, we restrict our discussion of FIR filters to zero-phase filters. .

7.7.2 Filter Specification

Like 1-D digital filters, 2-D digital filters are generally specified in the frequency
domain. Since H(w;, w;) = H(w, + 27, w;) = H(wy, w, + 27) for all (w;, w,),
H(wy, wy) for =7 =< @y, @; = m completely specifies H (@, @;). In addition, since
h(ny, np) is assumed real, H(w;, w;) = H*(—w, —w,). Specifying H(w,, w;) for
—~r=w =7 0= w, < therefore completely specifies H(w,w;)} for all
(wh wZ)

Since H(wy, @) is in general a complex function of (w, @,), we need to specify
 both the magnitude and the phase of H (@, @,). For FIR filters, we require zero phase
and therefore need to specify only the magnitude response. Like the 1-D filter
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specification, one scheme that is sometimes used for the magnitude specification is
a “tolerance” scheme. An example of a lowpass filter specified using a tolerance
scheme is shown in Fig. 7.39. The filter has a passband region where we require
1 -8 =< |H(w,w)|=1+8, and a stopband region where we require
|H (@, ;)| =< 6. The variables 8, and §, are “passband tolerance” and “stopband
tolerance™ respectively. Other filters can also be specified analogously.

% Passband
@y &\\\\\\“ Stopband

= Figure 7.39 An example of a 2-D
lowpass filter specification using a

Transition band  tolerance scheme. In the passband
et region, | — §, < H(w,,w2) =1 + §,.
In the stopband region, H(w, 1) = 8,.

7.7.3 FIR Filter Design

The problem of designing a filter is basically that of determining & (r;, n,) or H (z,, z,)
that meets the design specification. The four standard approaches to designing FIR
filters are the window method, frequency sampling method, the optimal filter design,
and the transformation method. The window method and frequency sampling method
are straightforward extensions of 1-D results. The optimal design problem differs
significantly between the 1-D and the 2-D case. In the 1-D case, practical algorithms
exist for the design of optimal filters. In the 2-D case, practical algorithms for
designing optimal filters have not yet been developed. In the transformation method,
a 2-D filter is designed from a 1-D filter. There is no counterpart of this method in the
design of 1-D FIR filters. We discuss each of the four methods, with much greater
emphasis on the methods with significant differences between the 1-D and the 2-D
case.

Window method. The window method is a straightforward extension of the
1-D results. In the window method, the desired frequency response H,(w,, w,) is
assumed to be known. By performing an inverse Fourier transform on H,(w,, w,), we
can determine the desired unit sample response of the filter, hy(n;,n;). In general
hy(ny, ny) is an infinite-extent sequence. In the window method, we obtain an FIR filter
by applying a window w (ny, 1) to hy(ny, ny). If hy(ny, n,) and w(n,, n,) are symmetric
with respect to the origin, then hy(ny, ny) - w(ny, ny) is also symmetric with respect to
the origin, and therefore the resulting filter is zero phase.

A 2-D window used in the filter design is typically obtained from a 1-D window
by using one of the following two methods:

w("h nz) = W, (Il) "Wy (tl) |l|==rr|,£3=nz or (7.74)
w(m, n) = w, () |-v,T2 (7.75)
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where w,(f) and w, (¢) are 1-D analog windows. Equation (7.74) leads to a separable
rectangularly shaped window, and Eq. (7.75) leads to a circularly symmetric window.
The shape and effective size of the 1-D windows used in Egs. (7.74) and (7.75) are
determined by recognizing that the sidelobe behavior and therefore the passband and
stopband tolerances are affected primarily by the window shape only and that the

(-, =)

@y e Wy

N, w)
(a)

Figure 7.40 The frequency response
of a lowpass filter designed by the
window method. The window is a
separable Kaiser window, of 9 X 9

w  points with w. = 0.4 in Eq. (7.78).
{b})- (a) Perspective plot; (b) contour plot.
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mainlobe behavior and therefore the transition width are affected by both the window
shape and the effective window size. In a typical design, therefore, the window shape
is chosen first based on the passband and stopband tolerance requirements and then the
window size is determined based on the transition width requirements. Two examples
of digital filters designed by the window method are shown in Figs. 7.40 and 7.41.

(—m, =)

w, 2

g

(x, 7}
(a)

Figure 7.41 The frequency response
of a lowpass filter designed by the
window method. The window is a
circularly symmetric Kaiser window,

enclosed in a square of 9 X 9 points,
% with w. = 0.47 in Eq. (7.78). (a)
{b) Perspective plot; (b) contour plot.
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In Fig. 7.40, Eq. (7.74) was used, and in Fig. 7.41, Eq. (7.75) was used. In both
cases, the 1-D analog Kaiser window and hy(n;, n;) usgd are

)
10(0.4 1= h?)

-
T (1.76)
0, _ otherwise

-Vni + n3) (7.77)

Wa (I) = Wp (t) =

W, .
ha(ny, ny) = ————ee: - Ji(@,
(1, ma) 2aVni + nzi. ,(w

where Iy(x) is the modified Bessel function of the first kind of zeroth order. The
sequence hy(n;, n;) used corresponds to the circularly symmetric ideal lowpass filter
with cutoff frequency w. = 0.4#. Ia each type, the filter frequency response is
displayed by a perspective plot and contour plot.

The window method is not optimal, in the sense that there exists in general a
filter that meets the given design specification and whose size is smaller than the filter
designed by the window method. For an arbitrary H,(w;, @), determining hy(n,, n,)
from H,;(w,, w,) may require a large inverse DFT computation. In addition, due to a
lack of control over the frequency-domain specification parameters, it is sometimes
necessary to design several filters to meet the given design specification. Despite these
disadvantages, the window method is often used in practice because of its conceptual
and computational simplicity.

Frequency sampling method. The frequency sampling method is also a
straightforward extension of the 1-D results. In the frequency sampling method, the
desired frequency response H,(w, ;) is sampled at equally spaced points on the
Cartesian grid and the inverse DFT of the result is computed. Specifically, let H (k,, k)
be obtained by

H(k), k) = Hy(w,, w) |m|-(2¢XNl)h,u;=(21r/Nz}k1 (7.78)
The unit sample response of the filter, h(n;, ny), is obtained from

where IDFT is the inverse DFT. If H,(w,, @,) is zero phase and N, and N, are odd
integers, then the resulting k(n,, n,) is also zero phase, i.e., i(n, ny) is symmetric
with respect to the origin. When H,(w;, w,) is sampled exactly, it has been observed
that the stopband and passband behavior are rather poor. They can be improved
considerably if some transition samples are taken in the frequency region where
Hy(w,, w,) has a sharp transition.

As with the window method, the filter designed by the frequency sampling
method is not optimal, in the sense that there exists in general a filter that meets the
same design specification and whose size is smaller than the filter designed by the
frequency sampling method. In addition, due to a lack of control over the frequency-
domain specification parameters, we may have to design several filters to meet the
given design specification. Despite these disadvantages, the frequency sampling
method is sometimes used in practice because of its conceptual and computational
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simplicity. Determining specific values and the region of the transition samples is
more cumbersome than with the window method, but an inverse transform of
H,(wy, w,) is not needed in the frequency sampling method. Performance, measured
in terms of the filter size needed to meet a given design specification, appears to be
similar for both the window method and the frequency sampling method.

Optimal filter design. Unlike the 1-D case, no practical procedures have
~been developed to reliably design a 2-D optimal FIR filter. A detailed discussion of
the 2-D optimal FIR filter design problem requires considerable effort, so we only
* contrast some major differences between the 1-D and 2-D cases to suggest the com-
plexity of the 2-D case relative to the 1-D case.
~ We first review briefly the 1-D optimal filter design problem. For simplicity, we
concentrate on the design of a zero-phase lowpass filter with design specification
parameters 8, (passband tolerance), 8, (stopband tolerance), w, (passband frequency),
and , (stopband frequency). The problem of designing an optimal filter can be stated
as follows. ' I A
Problem 1:  Given w,, w, k = §,/5,, and N (filter length), determine h (n)
such that the design specification is satisfied with the smallest &,.

-~ This problem can be shown to be a special case of a weighted Chebyshey
approximation problem, which is a functional approximation problem. The weighted
Chebyshev approximation problem has been studied extensively in mathematics. One

 theorem, the alternation theorem, states that the problem has a unique solution. The
theorem provides a necessary and sufficient condition for the unique solution. The
Remez multiple exchange algorithm exploits this necessary and sufficient condition to
solve the: weighted Chebyshev approximation problem. The Remez exchange algo-
rithm was first used by Parks and McClellan [2] to solve the optimal filter design
problem stated as Problem 1. The optimal filter design algorithm based on the Remez
exchange algorithm is an iterative procedure in which the filter is improved in each
iteration. Each iteration consists of two steps. One step is the determination of
candidate filter coefficients /(n) from candidate “alternation frequencies,” which
involves solving a set of linear equations. The other step is the determination of
candidate alternation frequencies from the candidate filter coefficients. This step
involves evaluating H (w) on a dense grid of and looking for local extrema of H (w).
Once the local extrema are found, candidate alternation frequencies can be determined
straightforwardly from the local extrema and bandedge frequencies (0, , w,, and w,).
The iterative algorithm is guaranteed to converge to the desired solution. Experience
has shown that the algorithm converges very fast, and it is widely used in practice to
design optimal filters.
A 2-D zero-phase optimal lowpass filter corresponding to Problem 1 can be
stated as follows.

Problem 2:  Given R, (passband region), R, (stopband region), k = 8/8., R,
(support region of k(n,, n,)), determine h(ny, ny) such that the design specification is
satisfied with the smallest §,.

To solve this problem, an approach similar to the 1-D case has been considered.
A theorem, analogous to the alternation theorem, applies to Problem 2. Unlike the 1-D
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case, the theorem states that the problem does not have a unique solution. This is not
much of an issue since we can obtain any one of the many possible solutions. The
theorem also provides a necessary and sufficient condition for the solutions to the
problem. An iterative algorithm similar to the Remez multiple exchange algorithm
exploits this necessary and sufficient condition. As in the 1-D case, the iterative
algorithm attempts to improve the filter in each iteration. Each iteration consists of two
steps. One step is the determination of candidate filter coefficients h(n;, n,) from
candidate “critical-point frequencies,” which are analogous to alternation frequencies.
This step involves solving a set of linear equations. The other step is the determination
of candidate critical-point frequencies from the candidate filter coefficients. This step
involves evaluating H(w,, w;) on a dense grid of (w;, ;) and looking for local
~ extrema of H(w,, w,). Compared with the 1-D case, evaluation of H(w;, ;) on a
dense grid requires computations that are typically several orders of magnitude greater
than required by evaluation of H (w). In addition, finding local extrema of H (w,, w,)
_requires searching the function along many directions at many frequencies, while
finding the local extrema of H (w) requires searching the function only in one direc-
tion. Once the local extrema are found, candidate critical-point frequencies are deter-
mined from the local extrema. In the 1-D case, this is straightforward since all local
extrema, with a possible exception of @ = 0, , are alternation frequencies. In the
2-D case, however, choosing a set of frequencies that form a critical set from the local
extrema is quite involved and complex. Partly because of the difficuities already cited,
the iterative algorithm developed so far is very expensive computationally, has not
been demonstrated to converge to a correct solution, and is seldom used in practice.
_ Developmg a computationally efficient algorithm for the 2-D optuna.l FIR filter re-
mains as an area for further research.

Transformation method In the transformation method, a 2-D zero—pﬁase
FIR filter is designed from 1-D zero-phase FIR filter. To illustrate the basic idea,
consider the following transformation:. .

) H(wl ’ ‘92) = H(m) |M=G(ne|,mz) . ) (780)

where H (w) is a 1-D digital filter frequency response and H (@, ,) is the frequency
response of the resulting 2-D digital filter. Suppose H () is a bandpass filter as shown
in Fig. 7.42. Consider one particular frequency, @ = wg. Suppose the function
w¢ = G(w;, w,) represents a contour in the (w;, w,)-plane shown in Fig. 7.42. Then,
according to Eq. (7.80), H{w, ) evaluated on the contour equals H (wq). If we now
consider other frequencies wi, w3, . . . , wy and if their corresponding contours are
as shown in Fig. 7.42, then the resulting 2-D filter will be a bandpass filter.

Several important issues need to be considered in this method. One issue is
whether or not the resulting 2-D filter is a zero-phase FIR filter. The second issue is
whether or not a transformation function G (w;, @,) exists such that there will be a nice
mapping between w and w = G(w,, w,;) such as shown in Fig. 7.42. Both of these
issues are resolved by usmg a 1-D zero-phase filter and the appropriate transformation
function.

Consider a 1-D zero-phase FIR filter k(n) with length 2V + 1. The frequency
response H (w) can be expressed as
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Hlew,, w,)

H(w)

: \ﬁ‘\‘ﬁ"
| /
o

i
i
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Figure 7.42 [llustration of the principle behind the design of a 2-D filter from a 1-D
filter by frequency transformation.

-'H(m)

= i h(n)-e™ ™ = h(0) + > 2-h(n)-cos wn
~;—~ e, } (7.81)
= 2 a(n)-cos wn = Ezb(n)-(cos @)

In Eq. (7.81), the sequence b (n) is not the same as h(n), but it c;a.n be obtained simply
from h(n). The 2-D frequency response H(w, ,) is then obtained by

B, 08 = Hio lsariosin = 3 bl [PlanssdF (1D

=0

where T(wy, w,) is the Fourier transform of a finite-extent sequence symmetric with
respect to the origin, so that T (wy, w,) can be expressed as

T("’h mZ) = ZZ f(ﬂ.h nz) . e_f“'l"i . e“jm:n_;
: (my.r7)ERT (‘?‘83)

22 c(ny, ny) - COS @y - COS. Wany
(n1.n9)ERc

]
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where Ry and R represent the region of support of ¢(n;, 1) and ¢ (ny, ny), respectively.

The sequence c(n;, n,) is simply related to t(n;, n;) and can be easily obtained from
t(ny, ny). An example of T(w,, w,) often used in practice is

T(w;, w;) = L cos @ + cos w, + }cos w,-cos w, — 3 (7.84)

‘The sequences ¢(n;, n;) and c¢(n;, ny) that correspond to T (w;, w,) in Eq. (7.84) are

shown in Fig. 7.43. - :
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Figure 7.43 (a) A tansformation sequence #(n,,n;) and (b) thé corresponding
sequence ¢ (ny, n;) in Eq. (7.83) often used in the transformation method.

From Egs. (7.82) and (7.83), H(w,, w,) is always real, and therefore the re-
sulting 2-D filter is a zero-phase filter. In addition, it is an FIR filter. For example,
when ¢(n,, n,) has a region of support of size (2M; + 1) X (2M, + 1) and the length
of h(n) is 2N + 1, the resulting 2-D filter H (w;, w») is a finite-extent sequence of size
(2NM, + 1) X 2NM, + 1). If N = 10 and M, = M, = 1, the region of support of
t(ny,n) is 3 X 3 and the region of support of k(ny, n;) is 21 X 21. In this example,
the 2-D filter obtained has a large rcgmn of support for a short 1-D ﬁlter and t(n,, ny)
with a small region of support. This is typically the case.

By choosing T (@, w,) in Eq. (7.83) properly, we can obtain many different sets
* of contours that can be used for the 2-D filter design. For the transformation function
T(wy, @,) in Eq. (7.84), the set of contours obtained by cos @ = T (@, @,) forw = 0,
%7 %, . .., mare shown in Fig. 7.44. This can be used to design many different
2-D FIR filters. From a lowpass 1-D filter of size 21 points, whose H (@) is shown in
Fig. 7.45(a), we can obtain a 2-D filter whose frequency response is shown in Fig.
7.45(b). If we begin with a 1-D highpass or bandpass filter, the resulting 2-D filter
based on Eq. (7.84) would be a highpass or bandpass filter. Additional transformations
and examples of filters designed by the transformation method can be found in [3].

Even though the transformation method is somewhat more complex concep-
tually than the window method or the frequency sampling method, its performance
appears to be better than either of the two methods. In a certain restricted set of cases,
the filter designed by the transformation method has been shown to be optimal. Since
practical procedures do- not exist for the design of optimal filters, the transformation
method is one to consider in sophisticated applications that require high performance.
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Wy

-

Figure 7.44 Thecontoursobtained&ycos w=T(w,w;)fore =0,7/10, ..., n
for T(w1, @1) given by Eq. (7.84).

7.7.4 Implementation of FIR Filters

In implementing a filter, the object is to realize a discrete space system with a specified
unit sample response or transfer function. The simplest method of implementing an
FIR filter is to use the convolution sum. Let x(n,, n,) and y (n,, n,) denote the input and
output of the filter. Then y(n;, n,) is related to x(n;, n,) by

y(n, ) = 22 h(ky, k) - x(ny — ki_s ny — k) (7.85)

(ke y, kq)ERy- ) '.
where R, is the region of support of h(n,n;). From Eq. (7.85), the number of
arithmetic operations required for each output point is about N multiplications and N
additions; where N is the number of nonzero amplitudes in 4 (n,, n;). As in the 1-D
case, the realization can be improved by exploiting the symmetry of k(n, n,). Since
h(ny, ny) = h(—n,,—n,), by rewriting Eq. (7.85) and combining the two terms that
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Hlw)

Figure 7.45 The frequency response of a 2-D filter designed by the transformation
method. (a) Frequency response of the 1-D filter used in the design; (b) frequency
response of the 2-D filter designed.

have the same value for h(k;, k;), we can reduce the number of multiplications by
about 50% without affecting the number of additions.

If a filter is designed by using the transformation method discussed in Section
7.7.3, the number of arithmetic’ operations can be reduced significantly. If the 2-D
filter is derived from a 1-D filter of length 2N + 1 and a transformation sequence
‘#(ni; ny) in Eq. (7.83) of size (M, + 1) X’ (2M, + 1), the resulting filter k(n,, n,) is
of size (2M;-N + 1) X (2M,-N + 1). If the filter is implemented by direct con-
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volution, exploiting the property that h(n,, n,) = h(—n,, —n,), then the number of
arithmetic operations per output sample is around [(2M,-N + 1)(2M,-N + 1)]/2
multiplications and (2M, -N + 1) X (2M,-N + 1) additions, which are proportional
to N2. To achieve additional computational savings, we exploit the fact (Eq. 7.82) that
H(wy, w,) designed by the transformation method is of the following form:

& T 1 e
H(ﬂ)[, ':'-'2) = 2 b(ﬂ) g [T(&J], ml)]ﬂ (7'86)
a=0 ;
Equation (7.86) can be realized by the system shown in Fig. 7.46. Since T(w,, w3)
corresponds to a finite-extent sequence of size (2M; + 1) X (2M, + 1), the number
of arithmetic operations per output point is about (2M; + 1) - (2M, + 1) -N multi-
plications and (2M; + 1)-(2M, + 1)-N additions, which are proportional to N. For
large N, this represents considerable computational savings. When N = 20 and
M, = M, = 1, direct convolution with only symmetry exploitation will require about
800 multiplications and 1600 additions per output point, while the realization by Fig.
7.46 will involve 180 multiplications and 180 additions.

x(nj, a,) Tlay, wy) gt Tlew,, wy)

] Tlay, wy)

5(0) b(1) b(2) © biN)

P ! e

'E'igure 7.46 One imp[cmentétion of a 2-D filter desig'ne.d by the transformation
. method. ' ' :

Any FIR filter can also be implemented by using an FFT algorithm. As we
discussed in Section 7.6.1, the overlap-add method can be used to perform the filtering
operation. In typical cases, this method reduces the number of arithmetic operations
by a factor of 5-10 compared with realization by direct convolution.

7.8 INFINITE IMPULSE RESPONSE DIGITAL FILTERS

An infinite impulse response (IIR) filter has a unit sample response that is of infinite
extent. As a result, an IIR filter differs from an FIR filter in some major ways.

An IIR filter with an arbitrary unit sample response k(n;, 7,) cannot be realized
because computing each output sample may require an infinite number of arithmetic
operations. As a result, in addition to requiring k(n;, n,) to be real and stable, we
require h(n, n;) to have a rational z-transform corresponding to a computational
procedure with a wedge support output mask so that it is recursively computable.
Specifically, we require H (zy, 2,), the z-transform of k (n,, n,), to be a rational function
of the following form:

_k -
B (h.zt:;)ztiﬂa bk, k) -z,7%1-2,7%

H,z) = 22 alk,ky)-z,;7he g

(ky, ko)ER,

(7.87)
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In addition, we require h(n,, n,) to be a wedge support sequence. As we discussed in
Section 7.4.5, a wedge support k(n, n,) with a rational z-transform can be realized
by an LCCDE with proper boundary conditions.

One major difference between IIR and FIR filters is stability. An FIR filter is
always stable as along as h(n;, ny) is bounded (finite) for all (n,, n), so stability is not
an issue in design or implementation. With an IIR filter, however, ensuring stability
is a major task. This imposes considerable restrictions on the design and imple-
mentation of IIR filters.

Zero phase is very easy to achieve for an FIR filter, and we discussed only

-zero-phase filters in Section 7.7. With an [IR filter, however, controlling the phase
characteristics is very difficult. As a result, only the magnitude response is typically
specified when an IIR filter is designed. The phase characteristic of the resulting filter
is then regarded as acceptable phase. This lack of control over the phase characteristics
also limits the usefulness of IIR digital filters.

7.8.1 Design of IIR Filters

The problem of designing an IIR filter is determining the coefficients of the system
function. The magnitude specification that can be used is the tolerance scheme dis-
cussed in Section 7.7. In the 1-D case, there are two standard approaches to designing
IIR filters. One is to design the filter from an analog filter system function, and the
other is to design directly. In the 1-D IIR filter design, the first approach is typically
much simpler and much more useful than the second approach. Using an elliptic
analog filter system function and the bilinear transformation method, for example,
optimal TIR lowpass, highpass, bandpass, and bandstop filters can be designed by
following a finite fixed set of steps. Unfortunately, this approach is not useful in the
2-D case. In the 1-D case we exploit the availability of many simple methods to design
1-D analog filters that meet a given design specification. Simple methods do not exist
in the design of 2-D analog filters.

In the second, direct method, an ideal unit sample response hy(n,, ny) or ideal
magnitude response | H,(w;, w,) | is assumed known, and the coefficients of H(z,, z,)
are estimated so that A(ny,n,) is closest to hy(ny, ny) or |H(w;, w,)| is closest to
| Hy(wy, @,) | in some sense. The error criterion typically used is given by

Bror= 5 S [A(m,m) — ha(m,n) P (7.88)
.
Boor = [* 7 Wlen0d(Hon )| = |Haon, w2 ) don - don
(7.89)

where W{(w,, w,) is some weighting function. Minimization of Eq. (7.88) or Eq.
(7.89) with respect to the coefficients of H(z,, z,) is a highly nonlinear problem. To
" linearize the problem, many reasonable but ad hoc procedures have been considered.
To illustrate the style in which these procedures were developed, we discuss one in
particular.
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Suppose hy(ny, ny) is given, and we wish to estimate the coefficients of H(z,z,)
with assumed input and ouput mask shapes so that h(n,, n,) is closest to hy(ny, ny). By
considering the region of support of ky(ny,ny), the output and input mask shapes are
chosen so that the resulting filter will have the same or a similar region of support. If
ha(ny, ny) is a first-quadrant sequence, for instance, the output and input mask shapes
shown in Fig. 7.47 will generate a filter with a first-quadrant support k(n;, n). The
larger the size of the output and input masks, the better the resulting filter will be in
general. The choice of the output and input mask shapes and sizes determines R, and
Rp in Eq. (7.87). - :

a3 o ' A3
, : ”1
L] L] L L [ ] L] L] L
® e o @ e o o o
e o © e & 8w e
Ll L] L L -] ®. 9 L

Figure 7.47 (a) Output mask of size 5 X 5 and (b) input mask of size
5 X 5 that will generate a filter with a first-quadrant k(n,, n;).

The difference equation that corresponds to Eq. (7.87) is given by

2>, alkuk)-y(m — kyny — ky) = 2> bk, k) -x(m = ky,ny — ky)

(k],kz)eﬂd . (k l-kl}ERﬂ (7 90)

In Eq. (7.90), when x(ny,ny) = 8(ny,my), y(ny,ny) = h(ny, ny). Therefore,
from Eq. (7.90),

22 ﬂ(kt,kz)‘h(ﬂl =k, — k) = zz b(khkl)'s(nl = ki,n — k)
(k1. k)ER, (kq, k2)ERg (7 91)

If we replace h(n,, ny) with hy(n;, n,) in Eq. (7.91), we cannot expect the left-hand
-expression to equal the right-hand expression. Since we wish to have A (ny, ny) as close
as possible to hy(n;, o), a reasonable error criterion is

Emor = i i [ 22 a(ky, ky) - hy(n, — ki, ny — ky) ,
(k1. kn)ER, (7.92)

2

A|=—® py=—x

T 22 b (k;, ky) - 8(ny — ki, ny — kz)]
(k1) k)ERp

Since the error in Eq. (7.92) is in the quadratic form of the unknown coefficients

a(ny, ny) and b(n,, n,), minimization of error in Eq. (7.92) with respect to a(n,, n;) and

b(n,, n,) requires solving a set of linear equations. An example of a filter designed by

this method is shown in Fig. 7.48. The ideal unit sample response used is the circularly
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Figure 7.48 The frequency response of a 2-D zero-phase IR filter designed.
symmetric ideal lowpass filter given by '

hy(n,ny) = 21?\/;’-%_—{:;% J(w.- Vi + nd) (7.93)

To design a zero-phase filter H(zy, ), four one-quadrant filters H1(z,, z5), Ha(z, z2),
Hs(zy, z,), and H,(z,, z,) were designed. The first-quadrant filter H,(z;, z,) was obtained
by using the output and input masks shown in Fig. 7.47 and the design method just
discussed. The unit sample response used in the design of Hi(z;, z;) is given by

hd(nl:nz)i my, N = l
%hd(nly nZ), m= 0, ny =
%hd(nla "1); n = 1, ny, = 0

%hd(ﬂi,ﬂz), n=0mn=20

hlli'(nla H'Z) = W!(ﬂl., nl) -hd(nlsnl) =

(7.94)

The window sequence w'(n;, n;) used in Eq. (7.94) is shown in Fig. 7.49. The other
three filters, Hy(z1,22), Hs(zy, 22), and Hy(z,, 2,), were derived from H(z,, z,). Spec-
ifically, the unit sample responses used in the design of H(zi,2z,), Hi(z,2,), and
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3

w'(n,, )
®(3) o e
o(1) et e
b i L .
(:) (3) {%) Figure?49 The wmdow sequence
' " w'(ny, mp) in Eq. (7.94) used to design
the filter in Fig. 7.48.
H(z,, z;) are given by
hi(ny, m) = w'(—ny, ny) - hy(ny, my) : (7.95a)
 BYn,m) = w(—ny, —n) halny,n) (7.95b)
hi(ni, n2) = w'(ny, —ny) - hy(ny, ny) (7.95¢)

Since hji(ny, n) = hi(—m,ny) = h3(—ny, —ny) = hi(n,, —ny), we can obtain
Hz(zl, 2)), Hy(z,,22), and Hy(z1, 2;) from Hy(z,,2,) by

Hz(zl,zz) H1(Z| L) - (7.96a)
Hy(zy, 25) =Ht(_21 37-2 ) (7.96b)
Hy(z),2)) = Hy(z;,27") (7.96¢)

“Since hy(m, ny) = hi(n, ny) + hi(ny, ) + hi(n,, ny) + h§(ny, n;), we can obtain
the resulting filter H (z,, z;) by

H(z\,2) = Hi(z1,2) + Hy(z1,25) + Hi(z1,22) + Ha(zy, 22) (7.97)

The filter can be implemented, therefore, by a parallel combmauou of four recursively
computable computational procedures.

In addition to the IIR filter design method discussed above, there are many
variations that require solving only sets of linear equations. All these methods, of
course, are not optimal procedures, and precise control over frequency-domain param-
eters is not possible.

7.8.2 Impiementation of IIR Filters

In the implementation of 1-D IIR filters, the standard methods are direct forms,
~ cascade forms, and parallel forms. In the implementation of 2-D IIR filters, the only
method that can be used for any recursively computable rational system function is the
direct-form method. In the direct-form method, a difference equation is first obtained
from the system function, and the difference equation is used to recursively compute
the output.
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In the realization of 1-D IIR filters, the cascade form is probably the most often
used because of its relatively small sensitivity to coefficient quantization. In the 1-D
cascade form, the system function H (z) is expressed as

H(z) = A- n H(z) (7.98)
k

Since a 1-D polynomial can always be factored as a product of lower-order poly-
nomials, H (z) can always be expressed in the form of Eq. (7.98). In the case of 2-D
IR filters, the cascade form generally cannot be used. A 2-D polynomial cannot, in
general, be factored as a product of lower-order polynomials, and H (z;, z;) cannot
* generally be written in the form of

H,z) = A-[] He(ai,2) (7.99)

To use a cascade form in the realization of a 2-D IIR filter, therefore, the form in Eqg.
(7.99) should be used explicitly in the design step.
In the 1-D parallel form, the system function H (z) is expressed as

HD) =3 Hi(2) (7.100)
k

The parallel form also requires the factorization of the denominator polynomial and
therefore cannot be used as a general procedure for realizing a 2-D IIR filter. Like the
cascade form, the parallel form can be used when the form in Eq. (7.100) is used
explicitly in the design step. In the IIR filter design example in the previous section
the form of Eq. (7.100) was used explicitly in the filter design and therefore the
parallel form could be used for its implementation. The parallel form is useful when
a zero-phase IIR filter is desired, as in the design example in the previous section.

7.8.3 Comparison of FIR and lIR Filters

FIR filters have many advantages over IIR filters. Stability is not an issue in FIR filter
design or_implementation. For IIR filters, however, testing the filter stability and
stabilizing an unstable filter without significantly affecting the magnitude response is
a very big task. Zero phase is extremely easy to achieve for FIR filters. Designing
* zero-phase IIR filters is possible, but is more involved than designing zero-phase FIR
filters. In addition, design methods are simpler for FIR filters than for IIR filters.

The main advantage of an IIR filter over an FIR filter is the reduction in the
number of arithmetic operations when implemented in direct form. To meet the same
magnitude specification, an FIR filter typically requires more arithmetic operations per
output sample than an IIR filter. If an FIR filter is implemented exploiting the
computational efficiency of FFT algorithms, this advantage of an IIR filter often
disappears. ” . . !

Because of the overwhelming advantage of FIR filters over IIR filters, FIR filters
_ are much more common in practice.
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7.9 APPLICATIONS

The theories discussed in the previous sections in this chapter can be applied to a
number of practical problems, such as images, radar signals, and geophysical data. In
this section, we show a few application examples derived from image processing
problems. Qur objective is not to give a comprehensive treatment of the image
processing field, but just to show a few examples where digital signal processing
techniques have been successfully applied. Since most of the signals that arise in
practice are analog, we first briefly discuss issues related to digital processing of
analog signals.

7.9.1 Digital Processing of Analog Signals

The issues that arise in digital processing of analog signals are essentially the same for
the 1-D and the 2-D case, and therefore we simply summarize the 2-D results.

To differentiate an analog signal from a sequence, we denote the analog signal
by x4(2,, ;). The continuous space Fourier transform of x,(z;, t,), X, ((;, (), is related
to x,(11,1;) by :

Xa(nhﬂzJ = r J‘“ xg(r],f;).‘e_p"l'e_‘mq‘z'dﬁ‘dfz (7]01)
fy=—a . i

tj=—om=

1 . ' Ay 202 . .
Xt 1) = WEM j;__wx,(n.,az)-em M. 40, - d,
' : (7.102)

Suppose we obtain a discrete space signal x (n;, n;) by sampling an analog signal
X421, #;) with sampling period (T;, T;) as follows:

x(ny, ) = x,(t,, 1) I:]-u.:n.:,-nz:a (7.103)

Equation (7.103) represents the input-output relationship of an ideal analog-to-digital
(A/D) converter. The relation between X (v, w,), the discrete space Fourier transform
of x(ny, ny), and X,(Q,, ,), the continuous space Fourier transform of x,(t,, #,), is

I = = wy, — 27, @, — 277,
X (wy, @) “T-n > > X.a( T ) T ) (7.104)

=== ry=-m

Examples of X,(€,,€;) and X(w, w,) are shown in Fig. 7.50 for the case
1/T; > Q./w and 1/, > Q./m, where Q. and (). are the cutoff frequencies of
X,(Q4, (1), as shown. From the figure, when 1/T, > Q./# and 1/5 > Q//,
x4 (21, 1) can be recovered from x(ny, n;). This is the 2-D sampling theorem, which is
a straightforward extension of the 1-D results.

An ideal digital-to-analog (D/A) converter recovers x, (t,, t,) from x (n,, n,) when
the sampling frequencies 1/7; and 1/T, are sufficiently high to satisfy the sampling
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X, 182, £25)

Figure 7.50 An example illustrating
the relationship between X, ({4, ()
and X (w,, w,) given by Eq. (7.104).
(a) X.(Q4, ©); (b) X (w4, wa).

theorem. The output of the ideal D/A converter, y,(#;, ), is given by

- - i sing(n - n-T) Siﬂg(&- ny-T)
ya(tl!tl) = 2 E x(n'lvn'z) 2 ! 2 E
S E(‘l - n+T) 3(‘1 —n; )
T, L
(7.105)

The function y,(t;, 2;) is identical to x,(t;, #,) when the sampling frequencies used in
the ideal A/D converter are sufficiently high. Otherwise, y,(#;, ;) is'an aliased version
of x,(2;, ;). Equation (7.105) is a straightforward extension of the 1-D results.

An analog signal can often be processed by digital signal processing techniques
using the A/D and D/A converters just discussed. Digital processing of analog signals
can, in general, be represented by the system in Fig. 7.51. The analog lowpass filter
limits the bandwidth of the analog filter to reduce the effect of aliasing.
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Figure 7.51 Digital processing of analog signals.
7.8.2 Examples in Image Processing Applications

An important application area of 2-D signal processing theories is image processing,
which in recent years has received considerable attention. This is due in part to
significant advances in hardware technology that allow sophisticated image processing
algorithms to be implemented in real time and in part to a large number of applications
of image processing in such diverse areas as medicine, communications, consumer
electronics, defense, law enforcement, robotics, geophysics, and agriculture. Image
processing can be classified broadly into four areas: image restoration, enhancement,
coding, and understanding. In this section, we illustrate one example in each area.

Image restoration. In image restoration, an image has been degraded in
some manner and the objective is to reduce or eliminate the effect of degradation.
Typical degradations that occur in practice include image blurring, additive random
noise, quantization noise, multiplicative noise, and geometric distortion. Suppose an
image f(n,,7;) is degraded by additive random noise. Then the degraded image
g(n1, ny) can be expressed as

g, ny) = f(n, m) + w(ng,ny) (7.106)

where w(n;, my) is a random background noise. An example of an image degraded by
white noise is shown in Fig. 7.52. Part (a) shows an undegraded original image of
256 X 256 pixels, and part (b) shows the degraded image.

©  An image processed by a signal processing algorithm to reduce additive noise
in the image in Fig. 7.52(b) is shown in Fig. 7.52(c). The degraded image is filtered
by a space-variant FIR filter. A new filter was designed at each pixel based on the
amount of image detail in the neighborhood of the pixel to be processed. If there is
a fair amount of detail, such as near edges, then little lowpass filtering is performed
since details generally correspond to high-frequency components and therefore a high
level of lowpass filtering can reduce the image details. In addition, the same amount
of noise in high-detail image areas is less visible than in low-detail image areas. In
low-detail image areas such as uniform background areas, a large amount of lowpass
filtering is performed. Low details in images generally correspond to low-frequency
components, and therefore the signal is not significantly degraded by a large amount
of lowpass filtering. The background noise, on the other hand, is significantly reduced
by a large amount of lowpass filtering. '

Image enhancement. Image enhancement is the processing of an image to
improve its visual appearance to a human viewer or to enhance the performance of
another image processing system. Methods and objectives vary with the application.
When images are enhanced for human viewers, as in television, the objective may be
to improve perceptual aspects: image quality, intelligibility, or visual appearance. In
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Figore 7.52 (2} An original image of
256 X 256 pixels; (b} the image in part
(a) degraded by additive white noise; (c)
a restored image.



Sec. 7.9 Applications 411

apphcanons such as object identification by machine, an image may be preprocessed
to aid machine performance. Because the objective of image enhancement is heavily
dependent on the application context and the criteria for enhancement are often
subjective or too complex to be easily converted to useful objective measures, image
enhancement algorithms tend to be simple, qualitative, and ad hoc. Image enhance-
ment is closely related to image restoration. When an image is degraded, restoration
of the original image often results in enhancement. There are, however, some im-
portant differences. In image restoration, an ideal image has been degraded and the
objective is to make the processed i image resemble the original as much as possible.
In image enhancement, the objective is to make the processed image better in some
sense than the unprocessed image. To understand this difference, note that the origi-
nal, undegraded image cannot be further restored but can be enhanced by increasing
sharpness.

The visual appearance of an image can often be enhanced 31gn1ﬁcantly by proper
mampulanon of the contrast and the overall dynamic range of the i image. An example
of this is illustrated in Fig. 7.53. Part (a) shows an image that was taken from an
airplane. Because of the varying amounts of cloud cover, the details on the ground are
not very visible. Part (b) shows an image obtained by processing the image in part (a).
In the processmg, different operations were performed for different regions of the
image. By measuring the local average intensity ina partxcular region, we can estimate
the approximate level of cloud cover. The high average intensity region generally
corresponds to a lugher level of cloud cover. In regions where cloud cover appears to
be present, the i image is highpass filtered to increase the contrast. In addition, the local
average intensity is reduced so that the contrast increase will not be clipped because
of dynamic range increase caused by the contrast increase. The amount of highpass
filtering and reduction in the local average intensity is adapted to the estimated level
of cloud cover. In this example, the highpass filter used is FIR.

image coding. The objective in image coding is to. represcnt an image with
_ as few bits as poss:blc preserving a certain level of image quahty and intelligibility
“acceptable for a given application. Image coding can be used in reducing the band-
width of a communication channel when an image is transmitted and in reducing the
amount of required storage when an image needs to be retrieved at some future time.
Image coding is related to image restoration and enhancement. If we can reduce the
degradation such as quantization noise that results from an image coding algorithm or
to enhance the visual appearance of the reconstructed image, for example, we can
reduce the number of bits required to represent the image at a given level of image
quality and intelligibility. )

One approach to image coding is transform coding, in which an image is first
transformed into a different domain and then the transformed image is coded. For
transforms such as the Fourier transform, the energy of typical images is concentrated
in a small region and therefore only the transform coefficients in the small region can
be coded without significant distortion of an image. An example that illustrates the
performance of a transform coding method is shown in Fig. 7.54. Part (a) shows an
image of 256 X 256 pixels where each pixel value is represented by 8 bits of uniform
quantization. Part (b) shows the coded image obtained by coding only a small number
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Figure 7.53 (2) An image of
256 X 256 pixels taken from an
airplane; (b} the image in part (a)
ptmdfmcnhammm.

of discrete cosine transform coefficients. The discrete cosine transform is closely
related to the discrete Fourier transform. 'I‘henumberﬁmtsusedfortlusunagclso 7
bit/pixel. If a straightforward pulse code modulation (PCM) system that codes the
intensity of the image were used, at least 2—4 bits/pixel would be necessary to obtain
an image quality similar to the one in Fig. 7.54(b).

image understanding. The objective in image uudetstandmg is to symbol-
ically represent the contents of an image. Applications of image understanding include
computer vision, robotics, and target identification. Image understanding differs from
the other three arcas in one major aspect. In image understanding, the input is an
image, but the output is typically some symbolic representation of the contents of the
image. Successful development of a system in this area generally requires both signal
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~ Figure 7.54 (a) An original image of
| 256 X 256 pixels; (b} the image in part

{a) coded by a discrete cosine transform
© method at 0.7 bit/pixel.

(B}

processing and artificial intelligence concepts. In a typical image understanding sys-
tem, signal processing is used to perform lower-level processing such as reduction of
degradation and extraction of image features such as edges, and artificial intelligence
is used to perform higher-level processing such as symbol manipulation and
knowledge-base management.

An example of edges detected by a simple signal proce.ssmg algorithm is shown
in Fig. 7.55. Part (a) shows an original image of 256 X 256 pixels. Part (b) shows
the image where the edges or intensity discontinuities are shown. The edges were
obtained by applying a bandpass filter to the original image in part (a) to emphasize
intensity discontinuities and then applying a threshold test. Regions of the bandpass
filtered image are declared to be edges when the pixel values are above a certain
threshold. '
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Figare 7.5 (a) An original image of
256. % 256 pixels; (b) the edge contour
obtained from the image in part (a).

7.10 SUMMARY

In this chapter, we discussed the fundamentals of 2-D signal processing, including the

Fourier transform, the z-transform, difference equations, discrete Fourier transform,

fast Fourier transform, and design and implementation of digital filters. These are the

same topics typicaily discussed in fundamentals of 1-D signal processing, but there are

a number of differences between 1-D signal processing and 2-D signal processing,

. which we have attempted to show. Although our discussion in this chapter concen-

- trated on2-D signal processing, we note that the results can be extended in a straight-

forward manner to higher-dimensional signal processing. Those who wish to study
2-D signal processing in greater detail should refer to [4,5,6,7,8,9].
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in Filter Design

Hans Wilhelm Schissler
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8.0 INTRODUCTION

The term filter most typically denotes a device having selective properties. In the ideal
case, some parts of the spectrum of the incoming signal are passed without any change
while other parts are suppressed completely. This process can be expressed by speci-
fying a desired idealized transfer function H;(w). In the case of a lowpass filter, for
example, :

_J1 in the passband
Hy(«) {0 in the stopband

In reality these properties cannot be achieved exactly. Fortunately, they are not

necessary. A certain constant delay can always be tolerated, and some deviations from

the desired behavior in the passband and stopband as well as in a transition band

between both are permissible [1]. This leads to tolerance schemes for the magnitude

and group delay of the system to be designed. An example of a lowpass filter is shown

in Fig. 8.1. In (b) specifications for the group delay are given in the passband only.
The following remarks can be made about the filter shown in the figure:

1. The parameters w,, @, &;, &, and A as well as 7 depend on the particular
application. In many cases of practical interest a phase distortion of the output
signal is acceptable. Thus only the tolerance scheme for the' magnitude in Fig.
8.1(a) has to be satisfied.
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