AN INTROUCTION TO 2-DIMENSIONAL DSP

Richard M. Stern

18-491 lecture

April 27, 2020

Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

INTRODUCTION

- Background: Many types of analyses make use of 2- dimensional images
 - Photographs
 - Satellite images
 - X-rays and other medical images
- Many concepts from 1-D DSP are directly extensible to two dimensions, but some are not

INTRODUCTION

Goals of this lecture:

- To summarize basic 2-D relationships
- To identify which concepts do or do not extend to 2-D
- To discuss briefly 2-D filter design approaches

For further reading:

- Two-Dimensional Signal and Image Processing by Jae Lim
- Chapter Two-Dimensional Signal Processing by Lim in the edited book by Lim and Oppenheim on Advanced DSP (pseudo-text for ADSP)
- Many many other texts and resources

Some examples of original and processed images

Peppers ...

Effects of lowpass filtering

Original image:

After lowpass filter:

Effects of highpass filtering

Original image:

After highpass filter:

An example of nonlinear processing

Original:

Enhancement via homomorphic homomorphic filtering:

Some examples of 2-D signals

The unit sample function:

$$\delta[n_1, n_2] = \begin{cases} 1, & n_1 = n_2 = 0 \\ 0, & \text{otherwise} \end{cases}$$

The unit step function:

$$u[n_1, n_2] = \begin{cases} 1, & n_1 \ge 0, n_2 \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

The exponential function:

$$x[n_1, n_2] = \alpha_1^n \beta_2^n$$

Some examples of 2-D signals

Cosine functions:

$$x[n_1, n_2] = \cos(\omega_1 n_1 + \phi_1) \cos(\omega_2 n_2 + \phi_2)$$

Note: A sequence is separable if

$$x[n_1, n_2] = x_1[n_1]x_2[n_2]$$

2-D LSI systems

A system is linear if

$$ax_1[n_1, n_2] + bx_2[n_1.n_2] \Rightarrow ay_1[n_1, n_2] + by_2[n_1.n_2]$$

A system is shift invariant if for all k, l

$$x[n_1 - k, n_2 - l] \Rightarrow y[n_1 - k, n_2 - l]$$

If a 2-D system is LSI, then

$$\delta[n_1, n_2] \Rightarrow h[n_1, n_2]$$

The convolution sum

- As in 1-D, we can represent an input as a linear combination of shifted and scaled delta functions producing ...
- 1-D convolution:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

2-D convolution:

$$y[n_1, n_2] = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} x[k_1, k_2]h[n_1 - k_1, n_2 - k_2]$$

Convolving separable functions

If both $x[n_1,n_2]$ and $h[n_1,n_2]$ are separable, then

$$y[n_1, n_2] = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} x[k_1, k_2] h[n_1 - k_1, n_2 - k_2]$$

$$= \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} x_1[k_1] x_2[k_2] y_1[n_1 - k_1] y_2[n_2 - k_2]$$

or

$$y[n_1, n_2] = \sum_{k_1 = -\infty}^{\infty} x_1[k_1]y_1[n_1 - k_1] \sum_{k_2 = -\infty}^{\infty} x_2[k_2]y_2[n_2 - k_2]$$

In other words, if x and h are separable, the 2-D convolution becomes the product of two 1-D convolutions. For finite sequences of length N, this reduces the number of multiplys from N^4 to $2N^2$

Some system properties

A system is causal if

$$h[n_1, n_2], = h[n_1, n_2]u[n_1, n_2]$$

(This is not usually a big deal in 2-D)

A system is stable if

$$\sum_{n_1=-\infty}^{\infty} \sum_{n_2=-\infty}^{\infty} |h[n_1, n_2]| < \infty$$

Difference equations for causal systems

In 1 dimension:

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{l=0}^{M} b_l x[n-l]$$

■ In 2 dimensions:

$$\sum_{k_1=0}^{N_1} \sum_{k_2=0}^{N_2} a_{k_1,k_2} y[n_1 - k_1, n_2 - k_2] = \sum_{l_1=0}^{N_2} \sum_{l_2=0}^{N_2} b_{l_1,l_2} x[n_1 - l_1, n_2 - l_2]$$

The 2-D discrete-time Fourier transform

In 1-D we have $e^{j\omega n}$ T $H(e^{j\omega})e^{j\omega n}$

In 2-D we have

The 2-D discrete-time Fourier transform

From the convolution sum definition we can obtain

$$H\left(e^{j\omega_{1}}, e^{j\omega_{2}}\right) = \sum_{n_{1} = -\infty}^{\infty} \sum_{n_{2} = -\infty}^{\infty} h[n_{1}, n_{2}]e^{-j\omega_{1}n_{1}}e^{-j\omega_{2}n_{2}}$$

and

$$h[n_1, n_2] = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H(e^{j\omega_1}, e^{j\omega_2}) e^{j\omega_1 n_1} e^{j\omega_2 n_2} d\omega_1 d\omega_2$$

The 2-D discrete-time Fourier transform

Comments:

- $_{-}$ $H(e^{j\omega_1},e^{j\omega_2})$ is periodic with period 2π in ω_1 and ω_2
- If $h[n_1,n_2]$ is separable, $H(e^{j\omega_1},e^{j\omega_2})$ is as well, and computing the 2-D DTF becomes just a matter of computing the product of two 1-D DTFTs
- Convolution in time ⇔ multiplication in frequency

An example of frequency response

$$H(e^{j\omega_1}, e^{j\omega_2}) = \begin{cases} 1, & |\omega_1| \le a, |\omega_2| \le b, \\ 0, & \text{otherwise} \end{cases}$$

The DTFT is separable and

$$h[n_1, n_2] = \frac{\sin(an_1)}{\pi n_1} \frac{\sin(bn_2)}{\pi n_2}$$

A second example of a frequency response

This DTFT is not separable! It can be shown that

$$h[n_1, n_2] = \frac{\omega_c}{2\pi\sqrt{n_1^2 + n_2^2}} J_1\left(\omega_c\sqrt{n_1^2 + n_2^2}\right)$$

Note: While this DTFT is not separable, it IS rotation invariant in both time and frequency

2-dimensional z-transforms

In a similar fashion to the 1-D case, we build up z-transforms by modeling time functions as linear combinations of the function

$$z_1^{n_1} z_2^{n_2} = \left(r_1 e^{j\omega_1} \right)^{n_1} \left(r_2 e^{j\omega_2} \right)^{n_2}$$

In particular,

$$H(z_1, z_2) = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} h[n_1, n_2] z_1^{-n_1} z_2^{-n_2}$$

and

$$h[n_1, n_2] = \frac{1}{2\pi j^{2}} \int_{C_1} \int_{C_2} H(z_1, z_2) z_1^{n_1 - 1} z_2^{n_2 - 1} dz_1 dz_2$$

An example 2-D z-transform

Consider the simple space function

$$x[n_1, n_2] = \begin{cases} K^{n_1}, & n_1 = n_2 \text{ and } n_1 \ge 0\\ 0, & \text{otherwise} \end{cases}$$

The corresponding z-transform is

$$X(z_1, z_2) = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} K^{n_1} \delta[n_1 - n_2] z_1^{-n_1} z_2^{-n_2} u[n_1, n_2]$$
$$= \sum_{n_1 = 0}^{\infty} K^{n_1} (z_1 z_2)^{-n_1} = \frac{1}{1 - K z_1^{-1} z_2^{-1}}$$

which converges for $\;|Kz_1^{-1}z_2^{-1}|<1\;$

The fundamental curse of 2D-DSP

$$X(z_1, z_2) = \frac{1}{1 - Kz_1^{-1}z_2^{-1}}$$

The fundamental curse of 2D-DSP

$$X(z_1, z_2) = \frac{1}{1 - Kz_1^{-1}z_2^{-1}}$$

- Comments: no poles and zeros (!), so
 - No easy tests for stability
 - No parallel or cascade implementations
 - No Parks-McClellan algorithm
 - etc. etc.

The 2-dimensional discrete Fourier transform

The 2D-DFT is derived in a fashion similar to how it had been in 1-D. Specifically:

$$H[k_1, k_2] = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} h[n_1, n_2] W_{N_1}^{k_1 n_1} W_{N_2}^{k_2 n_2}$$

and

$$h[n_1, n_2] = \frac{1}{N_1 N_2} \sum_{k_1=0}^{N_1 - 1} \sum_{k_2=0}^{N_2 - 1} H[k_1, k_2] W_{N_1}^{-k_1 n_1} W_{N_2}^{-k_2 n_2}$$

Comments:

- Multiplying coefficients in frequency corresponds to a 2-D circular ("toroidal") convolution in space
- Overlap-add, overlap-save algorithms are still valid

Computing the 2-D DFT

Again, the 2D-DF is N_1-1 N_2-1

$$H[k_1, k_2] = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} h[n_1, n_2] W_{N_1}^{k_1 n_1} W_{N_2}^{k_2 n_2}$$

This can be rewritten as

$$H[k_1, k_2] = \sum_{n_1=0}^{N_1-1} W_{N_1}^{k_1 n_1} \sum_{n_2=0}^{N_2-1} h[n_1, n_2] W_{N_2}^{k_2 n_2}$$

Let
$$\sum_{n_2=0}^{N_2-1} h[n_1,n_2] W_{N_2}^{k_2n_2} \equiv g[n_1,k_2]$$

$$H[k_1, k_2] = \sum_{n_1=0}^{N_1-1} g[n_1, k_2] W_{N_1}^{k_1 n_1}$$

Computing the 2-D DFT

■ To compute the 2-D DFT:

- Compute the 1-D DFT of each column and replace in the column
- Compute the row-wise DFTs of the resulting coefficients

Comments:

- This always works... $x[n_1,n_2]$ need not be separable or anything else
- Huge computational savings
 - » For example: let N₁=N₂=1024≈1000
 - » Direct computation of 2D-DFT ≈ 10¹² complex mults!
 - » Using the row/column shortcut we have ≈ 2 10⁹ complex mults
 - » Using the shortcut and FFT algorithms leaves only 10⁷ complex mults

Some summary observations about 2D-DSP

Many things are obvious extensions of 1-D DSP

- Linearity and shift invariance
- Convolution sum, difference equations
- 2-D DTFTs
- 2-D DFTs

Some things are fundamentally different:

- 2-D z-transforms
 - » No poles and zeros as we know them

Some summary observations about 2D-DSP

Some other things to keep in mind:

- Tradeoff between separability and rotation invariance
- Physical significance of 2-D complex exponentials
- Efficiencies provide by separability
- Efficient computation of the 2-D DFT

Next topic of discussion:

2-D discrete-space filter design

The general 2-D filter design problem

Designing digital filters in two dimensions

We will focus on FIR designs for now because of stability issues with IIR filters (despite computational efficiencies)

Major FIR techniques:

- Window designs
- Frequency-sampled design
- Parks-McClellan algorithm
- For the most part, 2-D FIR filters are designed by using successful 1-D techniques and extending to 2-D
- Zero-phase filtering is much more important in 2D than 1D

2-dimensional FIR design using windows

Let
$$h[n_1, n_2] = h_d[n_1, n_2] w[n_1, n_2]$$

Separable window approach:

$$w[n_1, n_2] = w[n_1]w[n_2]$$

Rotation-invariant window approach:

$$w[n_1, n_2] = w \left[\sqrt{n_1^2 + n_2^2} \right]$$

where w[n] is a successful 1-D window, usually a Kaiser window

A lowpass example using a separable window

Separable 9x9 Kaiser window, $ω_c = 0.4π$

LPF example with a rotation-invariant window

Rotation-invariant 9x9 Kaiser window, $ω_c = 0.4π$

The frequency-sampling approach

15 x 15-point design using frequency sampling

Optimum 2-D FIR filters

General approach:

- Design optimal 1-D filter using Parks-McClellan algorithm
- Transform from 1-D to 2-D using method also developed in McClellan thesis (!)

$$H(\omega_1, \omega_2) = H(\omega) \mid_{\omega = G(\omega_1, \omega_2)}$$

The general approach

The McClellan transformation

As you will recall,

$$H(\omega) = \sum_{n=-N}^{N} h[n]e^{-j\omega n} = h[0] + \sum_{n=1}^{N} 2h[n]\cos(\omega n)$$
$$= \sum_{n=0}^{N} a[n]\cos(\omega n) = \sum_{n=0}^{N} b[n](\cos(\omega n))^{n}$$

The 2-D response is obtained by

$$H(\omega_1, \omega_2) = H(\omega)|_{\cos(\omega) = T(\omega_1, \omega_2)} = \sum_{n=0}^{N} b[n]T[\omega_1, \omega_2)]^n$$

The 2-D to 2-D transform

From before,

$$H(\omega_1, \omega_2) = H(\omega)|_{\cos(\omega) = T(\omega_1, \omega_2)} = \sum_{n=0}^{\infty} b[n]T[\omega_1, \omega_2)]^n$$

This can be expressed as

$$T(\omega_1, \omega_2) = \sum_{n_1} \sum_{n_2} t[n_1, n_2] e^{-j\omega_1 n_1} e^{-k\omega_2 n_2}$$
$$= \sum_{n_1} \sum_{n_2} c[n_1, n_2] \cos(\omega_1 n_1) \cos(\omega_2 n_2)$$

A particularly common special case

An example often used in practice:

$$T(\omega_1, \omega_2) = \frac{1}{2}\cos(\omega_1) + \frac{1}{2}\cos(\omega_2) + \frac{1}{2}\cos(\omega_1\omega_2) - \frac{1}{2}$$

■ The corresponding sequences $t[n_1,n_2]$ and $c[n_1,n_2]$:

Equivalent contours in 1-D and 2-D

Figure 7.44 The contours obtained by $\cos \omega = T(\omega_1, \omega_2)$ for $\omega = 0, \pi/10, \ldots, \pi$ for $T(\omega_1, \omega_2)$ given by Eq. (7.84).

An example frequency response

■ 1-D filter:

■ 2-D filter

Implementation based on 1-D to 2-D transforms

The transfer function:

$$H(\omega_1, \omega_2) = \sum_{n=0}^{N} b[n] \left[T(\omega_1, \omega_2) \right]^n$$

Efficient implementation:

Comment: overlap-add, FFTs, etc. can be used here as well