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INTRODUCTION

B Background: Many types of analyses make use of 2- dimensional
images ....

— Photographs
— Satellite images

— X-rays and other medical images

B Many concepts from 1-D DSP are directly extensible to two
dimensions, but some are not

Carnegie Mellon Slide 2 ECE Department



INTRODUCTION

B Goals of this lecture:
— To summarize basic 2-D relationships
— To identify which concepts do or do not extend to 2-D

— To discuss briefly 2-D filter design approaches

B For further reading:
— Two-Dimensional Signal and Image Processing by Jae Lim

— Chapter Two-Dimensional Signal Processing by Lim in the edited book
by Lim and Oppenheim on Advanced DSP (pseudo-text for ADSP)

— Many many other texts and resources
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Some examples of original and processed
images

B Peppers ...
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Effects of lowpass filtering

B Original image: B After lowpass filter:
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Effects of highpass filtering

B Original image: B After highpass filter:
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An example of nonlinear processing

B Original: Enhancement via homomorphic
homomorphic filtering:
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Some examples of 2-D signals

B The unit sample function:

5[ ’I’L]_ 1, 77,1:%2:0
2= 0, otherwise

B The unit step function:

u[n n]_ I, ni1 >20,n2 =20
L2171 0, otherwise

B The exponential function:

x[nla 77/2] — OK?BSL
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Some examples of 2-D signals

B Cosine functions:

x|ni,ne| = cos(wini + ¢1) cos(wang + o)

B Note: A sequence is separable if

x|ny,ng| = x1|ni|xe|no]
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2-D LS| systems

x|ny, nol y|ny, nel
—» T >

B A systemis linear if

ari|ni,ne| + bxany.na| = ayi[ni, ne| + bys|ny.no|

B A system is shift invariant if for all k, |

xriny —k,ng — 1] = yln1 — k,ng —

B [f a2-D system is LSI, then
(5[?11, ng] — h[nl, ng]
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The convolution sum

B Asin 1-D, we can represent an input as a linear combination of
shifted and scaled delta functions producing ...

B 1-D convolution:
©. @)

yln] = > x[k]h[n — K]

k=—o0
B 2-D convolution:

@) @)

y[n1, na Z Z x|k1, kalhlng — k1,n2 — ko

kl——OO ]CQ——OO
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Convolving separable functions

¥ If both x[n,,n,] and h[n,4,n,] are separable, then

y[ni, na Z Z k1, ko]h[n1 — k1,m2 — k2]

kl——OO kg——OO
> D milkilwalkalyi[mn — kilya[ne — kol
k‘lz—OO ]{52:—00
or - -
y[ni,ne] = Z z1|k1)y1[n1 — ki Z Ta|k2|y2|ne — k2]
klz—OO kQI—OO

B In other words, if x and h are separable, the 2-D convolution
becomes the product of two 1-D convolutions. For finite sequences
of length N, this reduces the number of multiplys from N4 to 2N?
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Some system properties

B A system is causal if
h[nla nZ]a — h[nla ’rLQ]U/[’nl, nQ]

(This is not usually a big deal in 2-D)

B A systemis stable if

Z Z hini,nal| < oo

Nn1=—00 Noa=—00
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Difference equations for causal systems

® In1 dimension:

Z aryln — k| = Z bixn —

B In 2 dimensions:

N1 N2 N2 N2
> Y ap oyl —ki,me — ko)=Y Y by iy — 1y, ng — o)
k1=0 ko=0 A

Carnegie Mellon Slide 14 ECE Department



The 2-D discrete-time Fourier transform

¥ In 1-D we have ej‘*m H(ejw)ejwn
— T >

B In 2-D we have

63w1n1€]w2n2 }¥(€Jw1,63w2)€jw1n163w2n2

—> T >
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The 2-D discrete-time Fourier transform

S D, IR H(ijl, ejwz)ejwlnl eJw2n2

> T >

B From the convolution sum definition we can obtain

o o
H (67“’1,67‘"2) — E E hinyi, nole 791 g™ I%272

N1I=—3X Nag=—00
and

(27‘_)2 /_ /_ H (ejwl , 63w2) pJW1N1 pjwanz duwr dwo

h[nlv n2] —
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The 2-D discrete-time Fourier transform

B Comments:

_ H(e7*",e7*?) s periodic with period 21T in w4 and w,

—If h[ny,nso]is separable, H(e’“*,e’“2) is as well, and
computing the 2-D DTF becomes just a matter of computing the
product of two 1-D DTFTs

— Convolution in time < multiplication in frequency
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An example of frequency response

Wi

17 ‘w1| < a, ‘w2| < b7
0, otherwise

H(ejwl,ejw2) _ {

M The DTFT is separable and
sin(any ) sin(bnsy)

h[n17n2] B N1 mTno
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A second example of a frequency response

w2
/Q
W1
-

2 2 2
H (%, e?¥2) = L, ey Wy = 8
’ 0, otherwise

B This DTFT is not separable! It can be shown that

e J (wc\/n% + n%)

2m\/n? + n?

B Note: While this DTFT is not separable, it IS rotation invariant
in both time and frequency

h[nl, ng] —
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2-dimensional z-transforms

B In a similar fashion to the 1-D case, we build up z-transforms
by modeling time functions as linear combinations of the
function

ni_no w1 wo \ 102
21t 2n? = (r1e?h) " (ree?9?)

¥ In particular,

H(z1, 22) E E hlny,nolzy "tz

NnN1=—00 No=—00

and

h[nlv n2] —

275 )? / H(z1,29) 20" " 252 dzrdzg
Cy JCs
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An example 2-D z-transform

B Consider the simple space function

2[ny,na] = K™  ny=n9 and ny >0
L fhal = 0, otherwise

B The corresponding z-transform is

X (21, 22) Z Z K" d[ng —nslzy "tzg Pulng, nal

nl——oo NnNo——060
E K™ 2122 M= !
1 — Kz tzy !
’I’Ll—

which converges for |[Kz; 25| <1
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21y <2

— 1 _—1

Carnegie Mellon Slide 22 ECE Department



The fundamental curse of 2D-DSP

1

—1_-—1

X(Zl, ZQ) =

B Comments: no poles and zeros (!), so
— No easy tests for stability
— No parallel or cascade implementations
— No Parks-McClellan algorithm

— etc. etc.
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The 2-dimensional discrete Fourier transform

B The 2D-DFT is derived in a fashion similar to how it had been in
1-D. Specifically:
N;—1 No—1

Hlki, ko) = Y ) hlng,no] W™ Wez"

nl—O NnNo= 0

and Ni—1No—1

h k1, ko] Wy kl”lw—km
n1, M) = N1 N, ;‘O ?‘0 1, k2] N>

B Comments:

— Multiplying coefficients in frequency corresponds to a 2-D circular
(“toroidal”) convolution in space

— Overlap-add, overlap-save algorithms are still valid
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Computing the 2-D DFT

B Again, the 2D-DF |s N
o1
Hlkq, ko] = S‘ Y hlng, no] WM W R

ni1= 0712 0

B This can be rewritten as

N;—1 Ny—1
Hlky kol = ) W™ > hlng,no] Wi
n1=0 no=0
Nay—1
B Let Z h[nl,ng]WﬁéﬂQ = g[nl,kg]
"= N;—1
then — Hiki ko] = ) gl ko] Wit™
n1=0
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Computing the 2-D DFT

B To compute the 2-D DFT:
— Compute the 1-D DFT of each column and replace in the column

— Compute the row-wise DFTs of the resulting coefficients

B Comments:
— This always works... x[n,,n,] need not be separable or anything else

— Huge computational savings
» For example: let Ny=N,=1024=1000
» Direct computation of 2D-DFT = 1072 complex mults!
» Using the row/column shortcut we have = 2 10° complex mults

» Using the shortcut and FFT algorithms leaves only 107 complex mults
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Some summary observations about 2D-DSP

B Many things are obvious extensions of 1-D DSP
— Linearity and shift invariance

— Convolution sum, difference equations
— 2-D DTFTs
— 2-D DFTs

B Some things are fundamentally different:

— 2-D z-transforms

» No poles and zeros as we know them
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Some summary observations about 2D-DSP

B Some other things to keep in mind:
— Tradeoff between separability and rotation invariance
— Physical significance of 2-D complex exponentials
— Efficiencies provide by separability

— Efficient computation of the 2-D DFT

B Next topic of discussion:

— 2-D discrete-space filter design
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The general 2-D filter design problem

% Passband
pa=, -;—’-w{ &\\‘ Stopband
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Designing digital filters in two dimensions

B We will focus on FIR designs for now because of stability
issues with IIR filters (despite computational efficiencies)

B Major FIR techniques:

— Window designs
— Frequency-sampled design

— Parks-McClellan algorithm

B For the most part, 2-D FIR filters are designed by using
successful 1-D techniques and extending to 2-D

B Zero-phase filtering is much more important in 2D than 1D
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2-dimensional FIR design using windows

B Let h[nl, ng] = hd[nla nZ]w[nh n2]

B Separable window approach:
wny, ng] = wlngjwns)

B Rotation-invariant window approach:

s ) = [\/n% +n§]

where w/n] is a successful 1-D window, usually a Kaiser window
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A lowpass example using a separable window

B Separable 9x9 Kaiser window, w. = 0.41r

(—=, ~x)
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LPF example with a rotation-invariant window

B Rotation-invariant 9x9 Kaiser window, w. = 0.41r

(—x, =x)
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The frequency-sampling approach

B 15 x 15-point design using frequency sampling
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Optimum 2-D FIR filters

B General approach:
— Design optimal 1-D filter using Parks-McClellan algorithm

— Transform from 1-D to 2-D using method also developed in McClellan
thesis (!)

w=G(w1,w2)
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The general approach

H(w)

u,..o,"' I u
?f"" O‘o' mo ‘."“
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The McClellan transformation

B As you will recall,

H(w) = Z h[nle 7“™ = h[0] + Z 2h|n|cos(wn)

n=—N n=1
N N
= Z a|n| cos(wn) = Z b[n](cos(wn))"
n=0 n=0
B The 2-D response is obtained by N
H(w,wz) = H(w)\cos(w):T(wlm) — Z bn|T' w1, w2)]"
n=0
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The 2-D to 2-D transform

B From before,

H(wy,wz) = H(W)\Cos(w):T(wl,m) — Z b[n|T w1, ws)]"
n=0

B This can be expressed as

T(w1,w2) Y S‘ tlny, nole /41 g hwan?
— y: y: c[ny,nz] cos(winy) cos(wans)

niy N2
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A particularly common special case

B An example often used in practice:

1 1 1
T(w1,wz) = = cos(wy) + = cos(wz) + = cos(wiwsy) —

1
2 2 2 2

B The corresponding sequences t[n,,n,] and c[n,,n,]

n, n3

t(n,, n,) ciny, )
o(3) $(2) o(3) | 1) *(3)
—— > n, <> 1F1 n,
(3] |(=3) (2) (-3} (3)
"14) 136Gl
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w=10x

J
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An

example frequency response

B 1-D filter: B 2-D filter

(—x, =7)
Hlw)

‘ ; \\\

' "\\'lll

/, RS 'I,O“‘\\-
1.0

\
:::-:::,~§:. |
o,’ 7o
.—. \\ ,c.i
05| ‘s ‘\ 7
0 “\
4
0 e % Y P e, O | w
N gl N TN
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Implementation based on 1-D to 2-D transforms

B The transfer function:

H (w1, w2) Zb T(w1,w2)]"

B Efficient implementation:

x(n;, n,) 7wy, w,) T w,, w,) | o« o e Tlw,, w,y)
5(0) b(1) b(2) biN)
F— = — —

B Comment: overlap-add, FFTs, etc. can be used here as well
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