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INTRODUCTION

Background: Many types of analyses make use of 2-
dimensional images ....

* Photographs
» Satellite images
« X-rays and other medical images

Many concepts from 1-D DSP are directly extensible to
two dimensions, but some are not

Goals of this lecture:

* To summarize basic 2-D relationships

 To identify which concepts do or do not extend
to 2-D

 To briefly discuss 2-D filter design approaches

For further reading:

» Image Processing by Jae Lim (and many other
texts)
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SOME EXAMPLES OF 2-D SIGNALS

The unit sample function:

S[nl,nz] = l,n, =n, =0;0, otherwise

The unit step function:

uln,ny] = 1,n120,n,20

The exponential function:

n n
1,72
x[n,ny] =a b

Cosine function:

x[ny,n,] = cos(wyny+ ¢ )cos(mw,n,+0¢,)

Note: A sequence is separable if

x[ny, ny] = x[ng]x[n,]
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2-D LSI SYSTEMS

x[npny,] —» T — y[nn;/

A system is linear if
ax[ny, ny1+bx[ny, ny] = ay[n,ny]+by[n, n,]
A system is shift invariant if for all £,/,

x[ny =k, ny=I1=y[n, -k, ny—1]

If a 2-D system is LSI, then

o[ny, ny] = hlny, n,]
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THE CONVOLUTION SUM

As in 1-D, we can represent an input as 2-D shifted and
scaled delta functions producing ....

1-D convolution:

or....

ylny, n,] = Z x[ky1n[ny — k] Z x[ky]h[ny — ks ]
ky=—o ky = —0

In other words, if x and /4 are separable, the 2-D convolution degenerates
into the product of two 1-D convolutions.
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SOME SYSTEM PROPERTIES

A system is causal if h[n,n,] = hln;, nyluln, n,]

(although this is not a big deal in 2-D)

A system is stable if " > |h[n1, n2]| < o0
Ny = —00n, =00
Difference equations for causal 1-D systems:

N M

Z ayln—k] = > b x[n-r]
- r=0

Difference equations for causal 2-D systems:

N N

D!
2 2 “kl,kZY[”l_kp”z‘kz] -
ky = 0ky=0
My M,
=X X b eyl
r1=0r2=0
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THE 2-D DTFT

In 1-D we have

In 2-D we have

iw2nl jwln2
Jonl =

H(eja)lnl 6ja)ZnZ)eja)]n]6ja)2nZ

From the convolutior&)sum dgfinition we can obtain
Jop Joy —Jony JO,yn,
H(e , € ) = Z Z hlny, n,le e

n, :—OO]’Z,) = _00
o0 0O

and

1 JO JOy Oy jOyn,
hlny,n,] = 2j IH(e , € )e e dodo,

Comments:
JO JOy o
. H(e , € ) is periodic in ®; and o,
. JOp Oy
* If A[n, n,] is separable, H(e , € ) is as
well, and computing the 2-D DTFT becomes

just a matter of computng the product of two
1-D DTFTs

« Convolutionintime < multiplication in frequency
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SOME EXAMPLES OF FREQUENCY
RESPONSE

1
a
jwl jwz
e e ?) = Lo <ao,<b
This DTFT is separable, and
sin(any)sin(bn,)

hin,, n,] =
1° 72
T, T,
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A SECOND FREQUENCY RESPONSE

Joy Jo, 2 2 2 .
H(e , € ) = Lo to,<R ;0 otherwise

This DTFT is not separable!

In fact, it can be shown that

; _ O J ( 2, 2)
[np>ny] = 71 @1 T
27 /nl +n2

Note: Even though this function is not separable, it is
rotation-invariant in both time and frequency.
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2-D Z-TRANSFORMS

In a similar fashion to the 1-D case, we build up Z-
transforms by modeling time functions as linear
combinations of the function

yfny J O )

In particular,
I )
H(zy,zy) = Z Z hlny,nylzy  z,
I’ll = OOI’l2 = —00
and
—1 Ny — 1
hlny,n,] = ZI jH(zl, 2)2 Z dz dz,
(27)) C,C,

Comments: No poles and zeros (!), so
» No easy tests for stability
* No parallel or cascade implementations
» No Parks-McClellan algorithm
* etceftc

f\:/lagll e,?'e 10 School of Computer Science
and ECE Department
Speech Group



THE 2-D DFT

The 2-D DFT is derived in a fashion similar to how it had
been in 1-D ... the definitions:

N —1N —1
k~n
B 1 L 2 2
—On =0
and N —1IN,-1
~kn, —kqn
B 11 Koty
hlny,nyl = N 2. X Hlk Ry Wy
k —Ok =0

Comments:

» Multiplying DFT coefficients in frequency
corresponds to a 2-D circular (“toroidal”)
convolution

» Overlap-add, overlap-save algorithms still valid
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COMPUTING THE 2-D DFT

Recall that the 2-D DFT is ...

N - 1N,-1
kyny kyny
Hlky, kb =20 30 mlnp Wy Wy,
n1=0n2=0
We can rewrite H[k, k,] as
N, -1 N,—1
1 keyny : kyny
Hlky kb =20 Wy o 20 lmpmy Wy
=0 n2=0
Let
NAy—1
2
h w22 k
Z [”19”2] N2 :g[nla 2]
1’12:
N,y —1
1 kyny
then, Hlk, k,] = > glny, k) 1Wy

So .... to compute the 2-D DFT,

« Take 1-D DFT of each column
« Take the row-wise DFTs of the resulting coefficients
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SOME SUMMARY OBSERVATIONS ABOUT
2-D DSP ....

A few things that are obvious extensions of 1-D DSP:

 Linearity and shift invariance
« Convolution sum

« 2-D DTFTs

« 2-D DFTs

Some things that are different:
» 2-D Z-transforms (no poles or zeros!)

Some other things to keep in mind:

» Tradeoff between separability and rotation
invariance

» Physical significance of 2-D complex
exponentials

 Efficiencies provided by separability
 Efficient computation of 2-D DFT

Next topic of discussion:
» 2-D discrete-time filter design
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