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INTRODUCTION

Background: Many types of analyses make use of 2-
dimensional images ....

• Photographs

• Satellite images

• X-rays and other medical images

Many concepts from 1-D DSP are directly extensible to 
two dimensions, but some are not

Goals of this lecture:

• To summarize basic 2-D relationships

• To identify which concepts do or do not extend 
to 2-D

• To briefly discuss 2-D filter design approaches

For further reading:

• Image Processing by Jae Lim (and many other 
texts)
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SOME EXAMPLES OF 2-D SIGNALS

The unit sample function:

The unit step function:

The exponential function:

Cosine function:

Note: A sequence is separable if

 n1 n2  1 n1 n2 0 0, otherwise;= = =

u n1 n2  1 n1 0 n2 0=

x n1 n2  a
n1
b
n2

=

x n1 n2  1n1 1+  2n2 2+ coscos=

x n1 n2  x n1 x n2 =
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2-D LSI SYSTEMS

A system is linear if 

A system is shift invariant if for all k,l, 

If a 2-D system is LSI, then

x[n1,n2] y[n1,n2]T

ax n1 n2  bx n1 n2  ay n1 n2  by n1 n2 ++

x n1 k– n2 l–  y n1 k– n2 l– 

 n1 n2  h n1 n2 
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

THE CONVOLUTION SUM

As in 1-D, we can represent an input as 2-D shifted and 
scaled delta functions producing ....

1-D convolution:

2-D convolution:

 

Note that if both x and h are separable, then

or ....

In other words, if x and h are separable, the 2-D convolution degenerates 
into the product of two 1-D convolutions.

y n  x k h n k– 

k –=



=

y n1 n2  x

k2 –=



 k1 k2 h n1 k1 n2 k2–– 

k1 –=



=

y n1 n2  x

k2 –=



 k1 x k2 h n1 k1– h n2 k2–

k1 –=



=

y n1 n2  x k1 h n1 k1–  x k2 h n2 k2– 

k2 –=




k1 –=



=
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SOME SYSTEM PROPERTIES

A system is causal if 

(although this is not a big deal in 2-D)

A system is stable if 

Difference equations for causal 1-D systems:

Difference equations for causal 2-D systems:

h n1 n2  h n1 n2 u n1 n2 =

h n1 n2  

n2 –=




n1 –=





aky n k– 

k 0=

N

 brx n r– 

r 0=

M

=

ak1 k2 y n1 k1– n2 k2– 

k2 0=

N2


k1 0=

N1

 =

br1 r2 x n1 r1– n2 r2– 

r2 0=

M2


r1 0=

M1

=
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THE 2-D DTFT

In 1-D we have

In 2-D we have 

From the convolution sum definition we can obtain 

and

Comments:

•  is periodic in  and 

• If  is separable, is as 

well, and computing the 2-D DTFT becomes 
just a matter of computng the product of two 
1-D DTFTs

• Convolution in time  multiplication in frequency

ejn H(ejn)ejnT

ejn1ejn2 T
H(ej1n1,ejn2)ej1n1ejn2

H e
j1

e
j2 

  h n1 n2 e
j1n1–

e
j2n2–

n2 –=




n1 –=



=

h n1 n2  1

2 2
-------------- H e

j1
e
j2 

  e
j1n1

e
j2n2

d1d2
–




–



=

H e
j1

e
j2 

  1 2

h n1 n2  H e
j1

e
j2 

 


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SOME EXAMPLES OF FREQUENCY 
RESPONSE

This DTFT is separable, and 

1

2

a-a

b

-b

H e
j1

e
j2 

  1 1 a 2 b=

h n1 n2 
an1 sin

n1
----------------------

bn2 sin

n2
----------------------=
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A SECOND FREQUENCY RESPONSE

This DTFT is not separable!

In fact, it can be shown that 

Note: Even though this function is not separable, it is 
rotation-invariant in both time and frequency.

1

2

H e
j1

e
j2 

  1 1
2 2

2
+ R

2
0 otherwise;=

h n1 n2 
c

2 n1
2
n2

2
+

-----------------------------J1 c n1
2
n2

2
+ 

 =
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2-D Z-TRANSFORMS

In a similar fashion to the 1-D case, we build up Z-
transforms by modeling time functions as linear 
combinations of the function 

In particular, 

and

Comments: No poles and zeros (!), so

• No easy tests for stability

• No parallel or cascade implementations

• No Parks-McClellan algorithm

• etc etc

z1

n1
z2

n2
r1e

j1
 
 

n1
r2e

j2
 
 

n2
=

H z1 z2  h n1 n2 z1
n1–
z2

n2–

n2 –=




n1 =



=

h n1 n2  1

2j 2
---------------- H z1 z2 z1

n1 1–
z2

n2 1–
dz1dz2

C2


C1

=
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THE 2-D DFT

The 2-D DFT is derived in a fashion similar to how it had 
been in 1-D ... the definitions:

and 

Comments:

• Multiplying DFT coefficients in frequency 
corresponds to a 2-D circular (“toroidal”) 
convolution

• Overlap-add, overlap-save algorithms still valid

H k1 k2  h n1 n2 WN1

k1n1
WN2

k2n2

n2 0=

N2 1–


n1 0=

N1 1–

=

h n1 n2  1
N1N2
-------------- H k1 k2 WN1

k– 1n1
WN2

k– 2n2

k2 0=

N2 1–


k1 0=

N1 1–

=
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COMPUTING THE 2-D DFT

Recall that the 2-D DFT is ...

We can rewrite  as 

Let 

then, 

So .... to compute the 2-D DFT,

• Take 1-D DFT of each column

• Take the row-wise DFTs of the resulting coefficients

H k1 k2  h n1 n2 WN1

k1n1
WN2

k2n2

n2 0=

N2 1–


n1 0=

N1 1–

=

H k1 k2 

H k1 k2  WN1

k1n1
h n1 n2 WN2

k2n2

n2 0=

N2 1–


n1 0=

N1 1–

=

h n1 n2 WN2

k2n2

n2 0=

N2 1–

 g n1 k2 

H k1 k2  g n1 k2 WN1

k1n1

n1 0=

N1 1–

=
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SOME SUMMARY OBSERVATIONS ABOUT 
2-D DSP ....

A few things that are obvious extensions of 1-D DSP:

• Linearity and shift invariance

• Convolution sum

• 2-D DTFTs

• 2-D DFTs

Some things that are different:

• 2-D Z-transforms (no poles or zeros!)

Some other things to keep in mind:

• Tradeoff between separability and rotation 
invariance

• Physical significance of 2-D complex 
exponentials

• Efficiencies provided by separability

• Efficient computation of 2-D DFT

Next topic of discussion:

• 2-D discrete-time filter design
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