
ADSP
Advanced Digital Signal Processing (18-792)

Spring Semester, 2012
Department of Electrical and Computer Engineering

Fall Semester 2019

NOTES ON SHORT-TIME FOURIER TRANSFORMS

I. Introduction

While frequency-domain representations such as the DTFT and the DFT are useful, they both are
obtained by summing the time function x[n] from −∞ to ∞. This means that the DTFT and DFT
describe frequency components in the signal averaged over all time. Interesting signals like music
and speech are characterized the ways in which frequency components change over time. (These
components could represent objects such as the phonemes that constitute a spoken word or the
notes that constitute a musical composition.) This observation motivated the development of the
short-time Fourier transform (STFT).

The STFT considers only a short-duration segment of a longer signal and computes its Fourier
transform. Typically this is accomplished by multiplying a longer time function x[n] by a win-
dow function w[n] that is brief in duration. Two commonly-used finite-duration windows are the
rectangular window, which essentially extracts only the desired short sequence without further
modification, and the Hamming window, which applies a taper to the ends to improve the repre-
sentation in the frequency domain. If a continuous frequency variable ω is used (as in the DTFT),
the STFT can be described as

X[n, ω) =

∞∑
m=−∞

w[n−m]x[m]e−jωm

In principle, the window could be either finite or infinite in duration, and in the latter case expo-
nential windows are popular.

If discrete frequency variables ωk = 2πk/N and a finite-duration window with nonzero values of n
from 0 to N − 1, the equation becomes

X[n, k] =
n∑

m=n−(N−1)

w[n−m]x[m]e−jωkm =
n∑

m=n−(N−1)

w[n−m]x[m]e−j2πmk/N

Note that X[n, k] is a function of both time and frequency. The variable n denotes the location
of the analysis window along the time axis, and the segment of time delimited by the window is
frequently referred to as the analysis frame. The variable k is a frequency index, and is sometimes

18-491 STFA Notes Page 2 Spring 2020

referred to as a frequency bin. We can think of the STFT as representing the DFT of the finite-
duration time function x[m]w[n −m]. Here the variable m is a “dummy time argument and the
variable n identifies the location of the short segment of the original time function as it is extracted
using the window w[−m], which moves along the m-axis according to the value of n.

A. Impact of window size and shape

We can formalize the interaction between the original time function, the window size and shape,
and the resulting STFT as follows. Using the continuous-frequency version of the STFT, we obtain

w[n−m]⇔
∑

m = −∞∞w[n−m]e−jωm

Letting l = n−m and m = n− l we obtain

w[n−m]⇔
∞∑

m=−∞
w[l]e−jω(n−l) = e−jωmW (e−jω)

Hence,

w[n−m]x[m]⇔ 1

2π
(W (e−jω)e−jωn) ∗©W (ejω)

In other words, the STFT can also be thought of as the circular convolution in frequency of the
Fourier transform of the original input signal with the Fourier transform of the window function.
Consequently, a brief analysis window w[n] will give us good temporal resolution at the expense of a
lot of blurring in frequency, while a broader temporal window will provide sharp spectral resolution
at the expense of temporal resolution. This applies as well to the discrete-frequency implementation
of the STFT as well.

B. Inversion of the STFT

As we have stated, we can think of the STFT as the Fourier transform of the windowed time
function:

x[m]w[n−m]⇔ X[n, ω) so

w[n−m]x[m] =
1

2π

∫ ∞
−∞

X[n, ω)ejωndω

For n = m we can write

x[n]w[0] =
1

2π

∫ ∞
−∞

X[n, ω)ejωn)dω

Hence the only absolute constraint for being able to recover x[n] from X[n, ω) is that w[0] 6= 0.

Copyright 2020, Richard M. Stern

18-491 STFA Notes Page 3 Spring 2020

II. Alternate interpretations of the STFT operation

A. Fourier transform implementation

COMPUTE
DFT

x[m]

w[n � m]

X[n, k]

As discussed in the section above, the most straightforward way of thinking about the calculation
of the STFT is as a multiplication of the time function x[m] by a finite-duration window function
w[m] and computation of the Fourier transform of their product:

X[n, k] =
n∑

m=n−(n−1)

(x[m]w[n−m])e−j2πmk/N =
n∑

m=n−(n−1)

(x[m]w[n−m])e−jωkm

This is referred to as the Fourier transform implementation of the STFT.

As stated above, the time function is multiplied by a window that shifts along the m-axis, and that
the variable n indicates the position of the window, which designates the location of the “analysis
frame. We can think of this as multiplying the time function x[m] by a short-time window w[n−m]
that is located at the sample n.

B. Lowpass filter interpretation of the STFT

x[n]

e�j!kn

X[n, k]

Copyright 2020, Richard M. Stern

18-491 STFA Notes Page 4 Spring 2020

We can rearrange the terms of the STFT equation slightly to produce

X[n, k] =
n∑

m=n−(N−1)

w[n−m](x[m]e−jωkm)

This corresponds to multiplying the signal x[n] by the complex exponential function e−j2πnk/N and
passing the product through a filter with unit sample response w[n]. This implementation of the
STFT, which is referred to as the lowpass filter implementation, is depicted in the figure above.

The unit sample responses of all typical windows are lowpass in nature, as discussed in class. Note
that multiplying x[n] by e−jωkn shifts the spectrum to the left by ωk, so that the components that
were originally at frequency ωk now lie at frequency 0. Hence, if we consider a particular value of k,
the STFT X[n, k] reflects the smoothed frequency content of the original function x[n] at ωk as it
evolves over time (represented by the variable n). As noted above, the lowpass filter implementation
is mathematically equivalent to the Fourier transform implementation of the STFT X[n, k].

C. Bandpass filter interpretation of the STFT

x[n]
X[n, k]

e�j!kn

w[n]ej!kn

A third mathematically-equivalent interpretation can be obtained by a simple algebraic change of
variables which yields another form of the STFT equation:

X[n, k] = e−jωkm
n∑

m=n−(N−1)

(
w[n−m]e−jωk(n−m)

)
x[m]

This implies that the input signal is passed through a bandpass filter consisting of the original
lowpass window filter, frequency shifted so that it now passes frequency components centered
around ωk . The spectrum of the output is then translated to the left so that the components of
X[n, k] that were originally at frequency ωk are ultimately centered around frequency zero. This
interpretation is shown in the figure above and is referred to as the bandpass filter implementation.

Keep in mind that all three interpretations of the STFT are mathematically equivalent and that
they all characterize X[n, k] as representing the smoothed frequency content of the original function
x[n] at ωk, evolving over time.

Copyright 2020, Richard M. Stern

18-491 STFA Notes Page 5 Spring 2020

III. Implementations of the STFT using real time functions and
impulse responses

The original lowpass and bandpass filter implementations assume multiplication by complex expo-
nentials, and (in the bandpass filter implementation) filters with complex unit sample responses.
For example, the lowpass filter implementation described in Sec. II. B above can be illustrated as

w[n]

w[n]

w[n]

w[n]

x[n]

e-j0n

e-j2πn/N

e-jωkn

e-j(N-1)πn/N

X[n,0]

X[n,k]

X[n,N-1]

X[n,1]

.

.

.

Each channel in the above diagram can be written as

X[n, k] = w[n] ∗
(
x[n]e−jωkn

)
= w[n] ∗ (x[n] cos(ωkn))− jw[n] ∗ (x[n] sin(ωkn))

which we can rewrite as

X[n, k] = Xr[n, k] + jXi[n, k]

Note that the functions Xr[n, k] and Xi[n, k] are both real. This can be illustrated as

w[n]

w[n]

x[n]

cos(ωkn)

Xr[n,k]

–sin(ωkn)

Xi[n,k]

Copyright 2020, Richard M. Stern

18-491 STFA Notes Page 6 Spring 2020

The corresponding bandpass filter implementation is a bit more algebraically involved, but can be
obtained using similar principles. It can be illustrated as in the diagram below. (Note that Figs.
6.15 and 6.16 in Lim and Oppenheim use different sign conventions.)

w[n]cos(ωkn)

w[n]sin(ωkn)

x[n]

cos(ωkn)

–sin(ωkn)

cos(ωkn)

X̂r[n, k]

X̂i[n, k]

Xr[n, k]

Xi[n, k]

Note that the functions X̂r[n, k] and X̂i[n, k] (immediately after the cosine multiplys) have magni-
tudes that are equal to the final outputs Xr[n, k] and Xi[n, k]. If we are only interested in computing
the short-time magnitude spectrum (which is frequently the case), the bandpass implementation is
more computationally efficient than the lowpass implementation because the multiplys are folded
into the filtering.

IV. Short-time Fourier synthesis

We will consider two methods of recovering the time function x[n] from the STFT X[n, k], one based
on the filtering implementation and the other based on the Fourier transform implementation. We
will first consider the filterbank implementation.

Copyright 2020, Richard M. Stern

18-491 STFA Notes Page 7 Spring 2020

A. The Filter Bank Summation (FBS) method

ej0n

ej2πn/N

ejωkn

ej2π(N-1)n/N
.
.
.

X[n,0]

X[n,1]

X[n,k]

X[n,N-1]

K y[n]

Let us assume that w[n] is of finite duration, and that w[n] 6= 0 for0 ≤ n ≤ N − 1.

Because
n∑

m=n−(n−1)

(x[m]w[n−m])e−jωkm where as usual ωk = 2πk/N

we can write

w[n−m]x[m] =
1

N

N−1∑
k=0

X[n, k]ejωkm

Hence, for w[0] 6= 0 we can write

x[n] =
1

Nw[0]

N−1∑
k=0

X[n, k]ejωkn

This implies that in principle we can obtain the time function by multiplying the various short-time
Fourier transform coefficients X[n, k] by the function ejωkn, adding all the products together, and
dividing by Nw[0].

Are there any constraints on the window size and shape that are required for this to work? Let us
designate the output of a complete analysis-synthesis system as y[n]. Then we can write

y[n] =
1

Nw[0]

N−1∑
k=0

X[n, k]ejωkn =
1

Nw[0]

N−1∑
k=0

(∞∑
m=−∞

x[m]w[n−m]e−jωkm

)
ejωkn

Copyright 2020, Richard M. Stern

18-491 STFA Notes Page 8 Spring 2020

Since the argument of the inner sum can be written as x[m]w[n − m]ejωk(n−m)m, the expression
can be rewritten as

y[n] =
1

Nw[0]

N−1∑
k=0

x[n] ∗
(
w[n]ejωkm

)
=

1

Nw[0]
x[n] ∗

(
w[n]

N−1∑
k=0

ejωkm

)

In order for y[n] to be at least proportional to x[n], we would need for the expression inside the
parentheses to be proportional to δ[n. As you know, the sum can be written as

N−1∑
k=0

ej2πnk/N =
1− ej2πN

1− ej2πn/N

which is equal to 1 for n = rN for integer r and zero otherwise. Hence we must require that
w[n] = 0 for n = rN in order for the filter-bank summation (FBS) method of synthesis to be used.
This condition is sometimes called the “FBS constraint. The FBS constraint is satisfied trivially
for finite-duration windows of length N , but it is also satisfied by another class of windows known
as Nyquist windows such as the familiar sin(x)/x and sin(Nx) sin(x) functions.

Another way of expressing the FBS constraint is that we require that w[n] satisfy the constraint

w[n]pN [n] = δ[n]

where N is the number of equally-spaced frequency channels and pN [n] is a pulse train with period
N :

pN [n] =

{
1, n = rN
0, otherwise

This, of course is simply a compact way of stating that w[n] = 0 for n = rN and n = 0 otherwise.
Taking the DTFT of the constraint equation above produces

1

2π
W (ejω) ∗© PN (ejω) = 1

where PN (ejω) is the DTFT of pN [n] and the symbol ∗© indicates circular convolution as before.

As you will recall, the DTFT PN (ejω) is an infinite train of delta functions in frequency, each with
area 2π/N , separated by 2π/N along the frequency axis. This means that an alternate form of the
FBS constraint is

N−1∑
l=0

W (ej(ω−2πl/N)) = 1

In other words, the FBS constraint is satisfied if the DTFTs of the window translated every 2π/N
radians along the ω-axis and added together sum to 1.

Copyright 2020, Richard M. Stern

18-491 STFA Notes Page 9 Spring 2020

B. The Overlap-Add (OLA) method

The overlap-add (OLA) is easier to describe and analyze than the FBS method. In brief, it is as
follows:

1. Sample X[n, k] at intervals n = rR, with r and R integers

2. Compute the inverse DTFTs of X[rR, ω) ≡ Yr(ejω)

3. Add these IDTFTs together, staggering them at intervals of R to produce the final output
y[n]

In other words, we write

y[m] =

∞∑
r=−∞

1

M

N−1∑
k=0

Yr(e
jωk)ejωkn =

∞∑
r=−∞

x[m]w[rR−m] = x[m]

∞∑
r=−∞

w[rR−m]

For y[n] to be proportional to x[n] we must ensure that the sum of all the window functions

∞∑
r=−∞

w[rR−m]

is a constant. This is satisfied, for example, by rectangular windows that are abutted and Hamming
windows that are overlapped by 50 percent.

V. Sampling in time and frequency

As in many other engineering applications, we are interested in being as efficient in computation and
stor- age as possible. We briefly discuss in this section the number of numbers that are (nominally)
needed to obtain a complete characterization of a time function using short-time Fourier analysis.
In this section we briefly discuss the issues involved with sampling in time and frequency, specifically
reviewing how many frequency channels we need and how many sparse we can sample in time for a
given window w[n]. As will see, the answer to these questions can depend on whether OLA or FBS
synthesis is used. We will consider only FIR windows at this time, although the same principles
hold for IIR windows as well.

A. The Fourier-transform implementation with overlap-add synthesis

Let us consider first the Fourier-transform implementation with overlap-add synthesis. As has been
discussed above, time sampling using OLA is determined by the length and shape of the window.
Specifically, the spacing must be such that the sum of the windows (in the locations that they occur
at) must add to a constant. This means, for example, that if we have a rectangular window with
length Nw, successive windows can be abutted, causing the window spacing to be Nw. If Hamming
windows are used, on the other hand, a 50% overlap will be needed, causing the windows to be
spaced apart by Nw/2 samples. Since we are computing DFTs for each window, we need a DFT

Copyright 2020, Richard M. Stern

18-491 STFA Notes Page 10 Spring 2020

size that is at least as large as the duration of the window, or at least Nw channels. Hence, for a
sampling rate of Fs and a Hamming window of length Nw the total number of samples per second
would be the sampling rate times the number of channels divided by the spacing of the windows.
For Hamming windows this would be

Ns =
FsNw

Nw/2
= 2Fs

For either filterbank implementation with FBS resynthesis, the number of channels is determined
by the FBS constraint that for a given window length Nw the window shape w[n] must be such
that

w[n] = 0 for n = rNw with r 6= 0

This constraint is automatically satisfied for an FIR window if the number of channels N is greater
than or equal to Nw. The time sampling is determined by the effective bandwidth of the window.
This is determined by looking for the first frequency ω at which the Fourier transform of the
window, W (ejω) is zero. For a rectangular window this frequency is 2π/Nw and for the Hamming
window this frequency is 4π/(Nw − 1). Recall from our discussion of multi-rate DSP that if a
discrete-time signal is limited to frequencies of π/Md, we can downsample it by a factor of Md.
Hence, for a sampling rate of Fs and a downsampling rate of Md, the total number of samples per
second would be the sampling rate times the number of channels divided by the decimation rate,
which for Hamming windows would be

Ns =
FsNw

(Nw − 1)/4
≈ 4Fs

As can be seen, the number of numbers per second using FBS resynthesis is twice as many as with
OLA resynthesis, which in turn is twice as many as the original sampled waveform in the time
domain. Nevertheless, the STFA representation is widely used because of the insight it can provide
in analyzing signals as well as the signal-manipulation operations that it enables.

Copyright 2020, Richard M. Stern

