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Traditional Fourier transforms describe the frequency components in a signal averaged
over all time. The most important and informative aspects of signals like speech and
music, however, is how these frequency components evolve over time. In this chapter we
discuss short-time Fourier transforms, which enable us to characterize signals with time-
varying frequency components.

3.1 Introduction

While frequency-domain representations such as the DTFT and the DFT are useful, they
both are obtained by summing the time function x[n] from —co to co. This means that
the DTFT and DFT describe frequency components in the signal averaged over all time.
Interesting signals like music and speech are characterized the ways in which frequency
components change over time. (These components could represent objects such as the
phonemes that constitute a spoken word or the individual notes that constitute a musical
composition.) These observations motivated the development of the short-time Fourier
transform (STFT).!

3.2 Computing the short-time Fourier transform

The STFT considers only a short-duration segment of a longer signal and computes its
Fourier transform. Typically this is accomplished by multiplying a longer time function
x[n] by a window function w(n] that is brief in duration. Two commonly-used finite-
duration windows are the rectangular window, which essentially extracts only the desired
short sequence without further modification, and the Hamming window, which applies a
taper to the ends to improve the representation in the frequency domain. If the continu-

I'Most of these discussions follow the treatment of the material in the books on speech signal processing
by Rabiner and Schafer (1978, 2010).

35



36 3.2. Computing the short-time Fourier transform

ous frequency variable w is used (as in the DTFT), the STFT can be described as

X[n,w) = i wln —m]x[m]e O™ (3.1)

m=—00

In principle, the window could be either finite or infinite in duration, and in the latter
case exponential windows are popular. The delimiters in X[#, w) are unconventional, of
course, and this usage is intended to highlight the fact that the frame index n is discrete
while the frequency variable w is continuous.

In practice, it is common to evaluate the STFT at only a finite set of equally-spaced points
along the frequency axis, just as the DFT is frequently used instead of the DTFT in con-
ventional applications of digital signal processing. We will use the variable N to spec-
ify the number of discrete frequency channels used in the STFT, and the variable N,
to specify the length of the window function w[n] when it is finite in duration. Using
these notational conventions, the frequencies over which the STFT is evaluated become
wy = 21k/N. With a finite-duration window with nonzero values of n from 0 to N, — 1,
the STFT equation becomes

n n
X[n, k] = Z wln —m]x[m]e ™ = Z w[n — m]x[m]e I 2mk/N (3.2)
m=n—(N,—1) m=n—(N,-1)

Note that X[n, k] is a function of both time and frequency and now both the time and
frequency variables are discrete. The variable n denotes the location of the analysis win-
dow along the time axis, and the segment of time delimited by the window is frequently
referred to as the analysis frame. The variable k is a frequency index, and is sometimes
referred to as a frequency bin. We can think of the STFT as representing the DFT of the
finite-duration time function x[m]w[n — m]. Here the variable m is a “dummy” time ar-
gument and the variable n identifies the location of the short segment of the original
time function as it is extracted using the window w[n —m], which moves along the m-axis
according to the value of n.

3.2.1 Impact of window size and shape

Let us begin by turning our attention to the impact of the window shape and duration
on the nature of the STFT. We can formalize the interaction between the original time
function, the window size and shape, and the resulting STFT as follows. Considering
first the continuous-frequency version of the STFT, recall that X[n, w) is the DTFT of the
input function x[n] multiplied by the window function. The Fourier transform of w(n—m]
is

wln-m] & Z wln —mle O™ (3.3)
m=—00
Letting | = n—m and m = n - we obtain
wln-m] & Z w(l]e 10NN = gmjonyy (giw) (3.4)
I=—c0

Hence,
w[n —mlx[m] < %(W(e‘j“’)e_jw”)@X(ej“’) (3.5)
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Figure 3.1: Impact of window duration on the STFT. A spectrogram of a brief utterance
is shown, using Hamming windows of duration 10 ms (upper panel) and 50 ms (lower
panel).

where the symbol ® indicates circular convolution.

In other words, the STFT can also be thought of as the circular convolution in frequency
of the Fourier transform of the original input signal with the Fourier transform of the
window function time reversed and shifted. Because briefer functions in time produce
broader Fourier transforms in frequency, the use of a brief analysis window w[n] will
give us good temporal resolution at the expense of a lot of blurring in frequency, while
a broader temporal window will provide sharp spectral resolution at the expense of re-
duced temporal resolution. This applies to the discrete-frequency implementation of the
STFT as well.

The tradeoff between temporal and spectral resolution is illustrated in Fig. 3.1. Figure
3.1 shows two examples of a spectrogram of a brief utterance (“Welcome to DSP-1”) spo-
ken by the author. The horizontal axis represents time while the vertical axis represents
frequency. For now it is sufficient to note that the speech waveform can be modeled by
a filtered pulse train called glottal pulses, which are generated by the vocal chords with
time-varying fundamental frequency. The glottal pulses are input to an acoustic filter
with time-varying frequency response that is shaped by the configuration of the throat,
tongue, and lips, etc. (It should also be noted that some phonemes such as /s/ , /f/,
and /th/ are produced by exciting the acoustic filter with broadband noise instead of the
quasi-periodic glottal pulses.) As the colors in the display go from blue to green to yel-
low to orange to red for a particular spectro-temporal element, the power of the signal
becomes greater for that frequency and time. In fact, the desire to analyze, display, in-
terpret, and manipulate the time-varying characteristics of speech and music in a useful
fashion has been the prime motivation toward the development of the mathematics that
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are the basis for the STFT.

In the example of Fig. 3.1, we can observe that the /c/ sound in “welcome” occurs just af-
ter 0.2 seconds and the /s/ in “DSP” occurs at about 0.65 seconds. The window functions
used in the figure are Hamming windows of duration 10 ms (upper panel) and 40 ms
(lower panel). The fundamental frequency of the vocal tract pulses varies, but it is about
100 Hz, and the corresponding period is about 10 ms. The windows are overlapped by
50 percent for reasons to be discussed below. The image in the upper panel appears to
show vertical bars, which occur because the window duration is comparable to the 10-ms
period of the glottal pulses, so some of the so-called analysis frames occur at the time of
the glottal pulses and some of them occur between them. In contrast, horizontal bars are
seen in the lower panel of Fig. 3.1, which is computed using windows of duration 50
ms. In this case, the window duration is long enough so that the window smears over
successive glottal pulses, but the frequency resolution is now sufficiently fine that the
horizontal bars appear at analysis frequencies that are multiples of the fundamental fre-
quency, which is about 100 Hz. It can be seen that the separation of the vertical bars in the
upper panel of Fig. 3.1 is approximately .01 seconds and the separation of the horizontal
bars in the lower panel is approximately 100 Hz.

In practice, the duration of the analysis window is set according to the needs of the ap-
plication. For example, the window duration is typically between 20 and 35 ms for auto-
matic speech recognition, but longer than that (75-120 ms) for speaker identification.

3.2.2 Inversion of the STFT

As we have stated, we can think of the STFT as the Fourier transform of the windowed
time function:

x[m]w[n—m] o X[n,w) so (3.6)
w[n—m]x[m] = %J‘n X[n,w)e!“"dw (3.7)
For n = m we can write -
x[n]w[0] = %j X[n,w)e"dw (3.8)
or, solving for x[n],
1 " jwn
x[n] = W[O]J— X[n,w)e!“"dw (3.9)

Hence the only absolute constraint for being able to recover x[n] from X[n, w) is that
w[0] = 0.

3.3 Alternate interpretations of the STFT operation

Although so far we have talked about the STFT simply as being the DTFT or DFT of
a time function after it is multiplied by a sliding window in time, there are two other
mathematically-equivalent ways of formulating the STFT. We discuss and compare the
three implementations of the STFT in this section. We will use the DFT-based formulation
of the STFT in this section because it is this formulation that is most commonly used in
practice.
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3.3.1 Fourier transform interpretation of the STFT

x[m] COMPUTE
—>®—> prr > X[n k]

wln — m)]

Figure 3.2: The Fourier transform implementation of the STFT.

As discussed above, the most straightforward way of thinking about the calculation of
the STFT is as a multiplication of the time function x[m] by a finite- or infinite-duration
window function w[n —m], followed by the computation of the Fourier transform of their
product:

X[n, k] = Z (x[m]w[n — m])e 2N — Z (x[m]w[n—m])e /<™ (3.10)
m=n—(N,-1) m=n—(N,—1)

In the expression above, which assumes a finite-duration window of length N, the vari-
able n indicates the position of the window, which designates the location of the “analysis
frame.” The variable k refers to the frequency bin in question. This is referred to as the
Fourier transform implementation of the STFT.

3.3.2 Lowpass filter interpretation of the STFT

L@—» o] | X[

—Jjwkn

e

Figure 3.3: The lowpass filter implementation of the STFT.

We can rearrange the terms of the STFT equation slightly to produce

X[n, k] = Z w[n—m]x[m]e M = Z w[n —m](x[m]e~ IOk (3.11)
m=n—(N,—1) m=n—(N,—1)

This corresponds to multiplying the signal x[n] by the complex exponential function
e J2k/IN = p=j@i and passing the product through a filter with unit sample response
w[n]. This implementation of the STFT, which is referred to as the lowpass filter implemen-
tation, is depicted in the Fig 3.3 above.
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Multiplying x[n] by e J“" shifts the spectrum to the left by wy, so that the components
that were originally at frequency wy now lie at frequency 0. Because the unit sample re-
sponses of typical windows are lowpass in nature, the STFT X[n, k] reflects the smoothed
frequency content of the original function x[n] at frequency wy as it evolves over time
(represented by the variable n). As noted above, the lowpass filter implementation is
mathematically equivalent to the Fourier transform implementation of the STFT X{n, k].

3.3.3 Bandpass filter interpretation of the STFT

ﬂb w[n]ejw’“" —>®—> X|n, k]

—Jwgn

e

Figure 3.4: The bandpass filter implementation of the STFT.

A third mathematically-equivalent interpretation can be obtained by a simple manipula-
tion of the STFT expression:

n n
X[n, k] = Z wln —mx[m]e T = Z (w[n - m]ej“’k(”_m))x[m] e orn
m=n—(N,-1) m=n—(N,-1)

(3.12)
This implies that the input signal is passed through a bandpass filter consisting of the
original lowpass window filter, frequency shifted so that it now passes frequency compo-
nents centered around frequency wy. The spectrum of the output is then translated to the
left so that the components of X[n, k] that were originally at frequency wy are ultimately
centered around frequency zero. This interpretation is shown in the Fig. 3.4 above and is
referred to as the bandpass filter implementation.

Keep in mind that all three interpretations of the STFT are mathematically equivalent
and that they all characterize X[n, k| as representing the smoothed frequency content of
the original function x[n] at wy, evolving over time.

3.3.4 Implementations of the STFT using real time functions and impulse
responses

The original lowpass and bandpass filter implementations assume multiplication by com-
plex exponentials, and in the bandpass-filter implementation the filters have complex
unit sample responses. For example, the lowpass filter implementation described in Eq.
(3.11) above can be illustrated as
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Figure 3.5: The lowpass filter STFT implementation on a channel-by-channel basis.

Each channel in Fig. 3.5 can be written as
X[n, k] =w[n]* (x[n]e‘j“’k”) = w[n]*(x[n]cos(wgn)) — jw[n]* (x[n]sin(wgn)) (3.13)

which we can rewrite as
X[n, k] =X,[n,k]—-jX;[n k] (3.14)

Note that the functions X, [n, k] and X;[n, k] are both real. This system is illustrated in Fig.
3.6

cos( wkn)

( : ———— w[n] _>X'[n,k]

sin( wkn)

x[n]

w[n] —»Xi[n’k]

Figure 3.6: Single channel of the lowpass STFT implementation using real sample re-
sponses.

The corresponding bandpass filter implementation is a bit more algebraically involved,
but can be obtained using similar principles, as is seen in Fig. 3.7.
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X, [n, k] ¢ + X, [n, k|

—p| winjcos(cyn) ®—>®—>
x[n] ®{\ .

Ly wn]sin(wn) ®—>®_>
Xi [n, k]

cosl| (okn)

Figure 3.7: Single channel of the bandpass STFT implementation using real sample re-
sponses.

Note that the functions X,[n,k] and X;[n,k] (immediately before the cosine multiplica-
tions) have magnitudes that are equal to the final outputs X,[n k] and X;[n,k]. If we
are only interested in computing the short-time magnitude spectrum (which is frequently
the case), we can eliminate all the computation after the filter outputs, which causes the
bandpass implementation to be more computationally efficient than the lowpass imple-
mentation because the multiplications are folded into the filtering.

3.4 Downsampling the STFT

X[n,1] X[m, 1] Yim, 1] Yin, 1]
X[n,2] X[m,2] Y[m,2] Yin, 2
Xn, 3] X[m,3] Y{m,3] Yin, 3
el » Decimate » Store or » Interpolate > i
— STFT X|n, k]= byR X|[m, k]= Process | Y [m, k]= by R Y(n, k}= ISTFT —»
X[n, N — 1 X [m, N — ] V[, N — I Vin N <]
EG Fs FS/R FS/R Fs Fs

Figure 3.8: Block diagram of a complete STFT analysis/synthesis with downsampling.

In practice, the STFT coefficients are frequently downsampled as depicted in Fig. 3.8,
either for efficiency in computation or for efficiency in manipulation or modification of
the representation in the STFT domain. This is possible because STFT coefficients in
a fixed frequency bin evolve slowly as a function of time. It is easiest to understand
how this happens by reviewing the lowpass filter STFT implementation, as depicted in
Fig. 3.3, which describes the STFT calculation as shifting the spectrum to the left by wy
radians and then lowpass filtering the frequency-shifted signal by a filter having the unit
sample response of w(n]. As an example, let us consider the Hamming window, which
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Figure 3.9: Magnitude in dB of the DTFT of a Hamming window of length 41 samples
(blue curve). The red curve is the response of the corresponding ideal filter.

is frequently (although far from exclusively) used as the window function for STFTs. It
is well known that the main lobe of the DTFT of the Hamming window has a mainlobe
width of 87/(N,, — 1) radians (including both positive and negative frequencies) where
N,, is the length of the window. For example, a Hamming window of length 41 would
have its first zero crossing in positive frequency at 7/10 radians, which suggests that the
output of this filter could be downsampled by a factor of 10.

Figure 3.9 compares the actual magnitude of the transfer function of a Hamming window
of length 41 (blue curve) with the corresponding ideal filter (red curve). It is clear that
the response of the Hamming window itself used as a lowpass filter is far from ideal,
either in terms of the flatness of the response in the “passband” or in the suppression
of sidelobes in the “stopband.” Nevertheless, this approximation is commonly used in
short-time Fourier transforms and normally it works well enough. And, in general, the
location of the first zero-crossing in the frequency response of the window function is
typically used as the nominal cutoff frequency for windows of other shapes as well.

3.5 Short-time Fourier synthesis

We will consider two methods of recovering the time function x[n] from the STFT X[n, k],
one based on the filtering implementations and the other based on the Fourier transform
implementation. We will first consider the filterbank implementation.

3.5.1 The Filter Bank Summation (FBS) method

Let us assume that w[#n] is of finite duration, and that w[n] = 0 for0 < n < N,, — 1. Because

X[n, k] = Z (x[m]w[n —m])e k™ (3.15)
m=n—(N,-1)

where as usual wy = 2wk/N, we can write

w(n—mlx[m] = ZX[n,k]ej“’km (3.16)
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ei0n
X[n,0]
—>
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Figure 3.10: Block diagram of the filterbank summation (FBS) method of STFT synthesis.

Hence, for w[0] # 0 we obtain

N-
Nw[O ZX[n kei@n (3.17)
k=0

This implies that in principle we can obtain the time function by multiplying the vari-
ous short-time Fourier transform coefficients X[#, k] by the function ¢/“¥"*, adding all the
products together, and dividing by Nw[0].

Are there any constraints on the window size and shape that are required for this to work?
Let us designate the output of a complete analysis-synthesis system as y[n]. Then we can
write

N-1 | Nl e . .
y[n] = N ;X n, kel k" = Nw[0] Z[ Z X[m]w[n—m]e‘]“’km]e]“’k" (3.18)

k=0 \m=—o0

Since the argument of the inner sum can be written as x[m]w[n — m]e/“*"="), this expres-
sion can be rewritten as

-1

S ' ) N-1
y[n] = Nw[0] Z,x[n]*(w[n]e]wkn) - W[o]x[”]*(w[”] ejwk"] (3.19)

k=0

In order for y[n] to be at least proportional to x[n], we would need for the expression
inside the parentheses to be proportional to d[n]. As you know, we can write the inner

sum as
N-1

i2
£ T ] — ej2mn/N ’
=0
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which is equal to N for n = rN for integer r and zero otherwise. Hence we must require
that w[n] = 0 for n = rN and n = 0 in order for the filter-bank summation (FBS) method
of synthesis to be used. This condition is sometimes called the “FBS constraint.” The
FBS constraint is satisfied trivially for finite-duration windows of length N, but it is also
satisfied by another class of windows known as Nyquist windows such as the familiar
sin(x)/x and sin(Nx)sin(x) functions, which have an infinite number of equally-spaced
repeating zeros in the time function.

Another way of expressing the FBS constraint is that we require that w[n]| satisfy the
constraint
wlnlpn([n] = o[n] (3.21)

where N is the number of equally-spaced frequency channels and py[n] is a pulse train
with period N:

1, n=rN
pnln]= (3.22)
0, otherwise

This, of course is simply a compact way of stating that w[n] =0 for n =N and n =0
otherwise, as before. Taking the DTFT of Eq. (3.21) above produces

%W(ejw)@)PN(ejw) =1 (3.23)

where Py(e/®) is the DTFT of py[n] and the symbol ® indicates circular convolution as
before.

As you will recall, the DTFT Py(e/¢) is an infinite train of delta functions in frequency,
each with area 27t/N, separated by 2rt/N along the frequency axis. This means that an
alternate form of the FBS constraint is

N-1

1 .

N > W (e/(@=27/N)y = some constant (3.24)
1=0

In other words, the FBS constraint is satisfied if the DTFTs of the window translated every
271t/N radians along the w-axis and added together sum to a constant that is independent
of w.

3.5.2 The Overlap-Add (OLA) method

The overlap-add (OLA) method, which is based on the Fourier transform implementation
of the STFT, is easier to describe and analyze than the FBS method. In our discussion here
we will make use of the DTFT-based definition of the STFT, but the OLA method using
the DFT-based definition works in exactly the same way.

Consider samples of the STFT spaced apart by R frames, X[rR, w), which we will also
refer to as Y,(e/¢). The inverse DTFT of Y, (e/*) is w[rR —m]x[m] = y,[m], as defined in Eq.
(3.7). We obtain the output function y[m] by simply adding all of the inverse transforms
y,[m] together:

y[m] = Z y,[m] = i w[rR —mx[m] = x[m] i w[rR —m] (3.25)

r=—o0 r=—o0 r=—o0



46 3.6. Sampling in time and frequency

Clearly, for y[n] to be equal to x[n] we must ensure that the sum of all the window func-
tions equals 1:

Z w[rR-m] =1 (3.26)
r=—o0
This is satisfied, for example, by rectangular windows that are abutted and triangular or
Hamming windows that are overlapped by 50 percent, as depicted in Fig. 3.11, among
many other window shapes and spacings.
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Figure 3.11: Examples of sequences of rectangular, triangular (Bartlett), and Hamming
window functions of length 200 that sum to 1. Note that the the rectangular windows
may be abutted, while the triangular and Hamming windows must be overlapped by 50
percent.

3.6 Sampling in time and frequency

As in many other engineering applications, we are interested in being as efficient in com-
putation and storage as possible. We briefly discuss in this section the number of numbers
that are (nominally) needed to obtain a complete characterization of a time function us-
ing short-time Fourier analysis, specifically reviewing how many frequency channels we
need and how sparsely we can sample in time for a given window w[n]. As will see, the
answer to these questions can depend on whether OLA or FBS synthesis is used. We
will consider only FIR windows at this time, although the same principles hold for IIR
windows as well.

3.6.1 The Fourier-transform implementation with overlap-add synthesis

Let us consider first the Fourier-transform implementation with overlap-add synthesis.
As has been discussed above, time sampling using OLA is determined by the length and
shape of the window. Specifically, the spacing must be such that the sum of the windows
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(in the locations that they occur at) must add to a constant, as discussed above. This
means, for example, that if we have a rectangular window with length N,,, successive
windows can be abutted, causing the window spacing to be N,,. If Hamming windows
are used, on the other hand, a 50% overlap will be needed, requiring the windows to be
spaced apart by N,,/2 samples. Since we are computing DFTs for each window, we need a
DFT size that is at least as large as the duration of the window to avoid temporal aliasing,
or at least N, channels. Now let us define the constant N, to represent the total number
of numbers per second of input needed to store the signal using the STFT representation.
For a sampling rate of F; and a rectangular window of length N,, the Ny would be equal to
the sampling rate times the number of channels divided by the spacing of the windows.
For rectangular windows this would be

N, = = F, (3.27)

N, = = 2F, (3.28)

3.6.2 Thelowpass and bandpass implementations with filterbank-summation
synthesis

For either the lowpass or bandpass implementation with FBS resynthesis, the number
of channels is determined by the FBS constraint that for a given window length N,, the
window shape w[n] must be such that

w(n] =0 for n=rN, with r =0 (3.29)

This constraint is automatically satisfied for an FIR window if the number of channels N
is greater than or equal to N,,. The time sampling is determined by the effective band-
width of the window. This is determined by looking for the first frequency w at which
the Fourier transform of the window, W(e/“) is zero, as shown in Fig. 3.9. For a rectan-
gular window this frequency is 27t/N,, and for the Hamming window this frequency is
41t/(N,, —1). Recall from our discussion of multi-rate DSP that if a discrete-time signal
is limited to frequencies of /M, we can downsample it by a factor of M;. Hence, for a
sampling rate of F; and a downsampling rate of M, the total number of samples per sec-
ond would be the sampling rate times the number of channels divided by the decimation
rate, which for rectangular windows would be

FsNy

= =2F .
N; No/2) s (3.30)

For Hamming windows the total number of samples per second would be

EsNy

Ne=N, 1ya

~ 4F, (3.31)
As can be seen, the number of numbers per second using FBS resynthesis needed to rep-
resent a signal is twice as many as with OLA resynthesis, which in turn is twice as many
as the original sampled waveform in the time domain. In fact, the representation is even
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more inefficient because the STFT coefficients are complex, requiring two real numbers
each, although if the time function is real, the coefficients representing positive and neg-
ative frequencies would be complex conjugates of each other. Nevertheless, the STFT
representation is widely used in all cases because of the insight it can provide in analyz-
ing signals as well as the signal-manipulation operations that it enables.

3.7 Applications of short-time Fourier analysis

3.7.1 Phase vocoding

Phase vocoding was originally developed by Flanagan and Golden (1966) as a technique
to accomplish high-quality speech coding. While phase vocoding did not prove to be a
commercially-successful method to encode speech, it does have a number of properties
that make it useful for expanding and contracting speech in time, and for changing the
pitch of music with relatively small changes in the musical timbre. In this section we
describe the basic principles of phase vocoding and describe how it is applied to nonlinear
transformations in time and frequency.

cos(wgn)
a[n, k]
2[n] 7 wn] L
— wn] ——» X|[n, k]
T sin(wgn)
e—jwk.n b[n, k]
il |—

Figure 3.12: The lowpass filter interpretation of the STFT in complex form (left panel)
and with real coefficients (right panel)s.

Figure 3.12 recapitulates a single channel of the lowpass filter implementation of short-
time Fourier analysis, in both the original complex exponential form (left panel), and
using real coefficients (right panel). Note that we are now using a slightly different nota-
tion to represent the STFT coefficients as

X[n, k] =a[n, k] —jb[n, k] (3.32)
where a[n, k] = Re[X[n,k]] and b[n, k] = —Im[X[n, k]].

Now let us consider the STFT coefficients in terms of their magnitude and phase. Specif-
ically, we can represent X[, k] as

X[n, k] = |X[n, k]| (3.33)

where O[n, k| represents the instantaneous phase at frame n and frequency bin k. Clearly,
we can obtain the magnitude and phase of the STFT directly from the real and imaginary
parts a[n, k] and b[n, k] via the standard trigonometric relations:

b[n, k
a[n, k|

—_—

|X[n, k]| = \/az[n,k] +b2[n,k] and O[n, k] = —tan"! ( ) (3.34)



Chapter 3. Short-Time Fourier Transforms 49

Note that if the STFT coefficients X[#n, k] are Hermitian symmetric, by taking the inverse
transform we can represent the corresponding time function for that channel as

x[n] = |X[n, k]| (ejg[”’k]ej“’” + e_je[”’k]e_j“’k”) =2|X[n, k]| cos(wgn + O[n, k]) (3.35)

and in principle the entire waveform could be reconstructed by summing these cosines
across all channels:

x[n] = Zxk[n] = Z2IX[n,k]|cos(a)kn +0[n,k]) (3.36)
k k

The original idea of phase vocoding was to extract and transmit the magnitude and phase
terms representing the signal at each frame, reconstructing the waveform at the far end
from this information only.

Outputs of 500-Hz channel
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Figure 3.13: Representations obtained via phase vocoding for a channel at w; = 27500.
From top to bottom, depicted for that channel are (a) xi[n], |X[n, k]|, 2X[n, k] (unwrapped),
and /X[n, k| (wrapped and normalized by dividing by ).

Figure 3.13 depicts the magnitude and phase of the “Welcome to DSP-1” utterance for a
typical channel at 500 Hz. The figures show the representation of the waveform in that
channel as reconstructed using Eq. (3.35), along with the magnitude and phase of the
STFT representation. Note that the phase is presented twice: in its original “unwrapped”
form and in terms of the principal value, with the values of 6[n, k]| constrained to lie
between —7mt and 7 radians.

From Fig. 3.13 it can be seen that both forms of the phase function are problematic.
Specifically, if the phase is transmitted in its original unwrapped form, the magnitude of
the phase is unbounded and in general will get large quickly, ultimately causing overflow
after a sufficient time. If only the principal value is transmitted, that signal will have a
very large bandwidth because of the abrupt transitions by 27 radians when the magni-
tude of the phase exceeds 7 in either direction. The solution to this problem is to transmit
an approximation to the derivative with respect to time of the phase function.
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To simplify the analysis of this approach, we will briefly detour into continuous-time
processing. Specifically, let the continuous-time and continuous-frequency representa-
tion that is similar to that of Egs. (3.35) and (3.36) be:

x(t) = Zxk(t) - zle[t,Q]lcos(wkt+ o[t,Q)) (3.37)
k k
where
(1) = 2|1X(t, Q)| cos(wy t + O(t, Q) (3.38)

Note that the derivative of the argument of the cosine term, wy + Q(t, ), has the dimen-
sion of frequency. In fact, the derivative of the phase term 6(t,Q;) is considered to be
the instantaneous frequency of that channel. One of the motivations for transmitting the
magnitude and phase derivative rather than the magnitude and phase is that the instan-
taneous frequency of a signal typically changes slowly because of physical limitations on
how that signal was produced, regardless of whether the source is a human or a machine.

Generalizing, we can define the continuous-time analog of the STFT as

[ee]

X (t,Qp) = J x (T )w(t —1)e 7k dt (3.39)
—00

where w,(t) is a continuous-time window function, and the other variables are in direct

correspondence to their discrete-time counterparts. This suggests that the STFT coeffi-

cients in continuous time and frequency can be represented as

Xe(t, Q) = [Xc(t, Qp)le OO = a (8, Q) - b (£, Q) (3.40)
where
X (, Q)| = [a2 (£, Q) + B2(, Q)| (3.41)
and ,
t,
0.(t,Q;) = —tan™ [M] (3.42)
ac(t,Qk)
Using the relationship
d 1 1
— = 3.43
ax " ) 1+x? (343)
it follows directly that instantaneous frequency can be represented as
gc(t:Qk) — bc(ter)ac(ttQk) ~ ac(t!Qk)bc(t!Qk) (3.44)

az (t, Q) + be (£, )
The discrete-time analogy to Eq. (3.44) is

; _ b[n, wJa[n, wi] - a[n, wi]b[n, wy]
Ol il = a?[n, wi ]+ b2[n, wy] (3-45)

These equations have the advantage that they do not require the arctan operation to be
evaluated directly.

Figures 3.14 and 3.15 summarize the encoding and decoding steps for phase vocoding.
In the encoding process, the magnitude and phase derivative, |X[n, k]| and O[n, k], are
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Figure 3.14: Block diagram of the encoding portion of the phase vocoder.
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Figure 3.15: Block diagram of the decoding portion of the phase vocoder.

computed from the real and imaginary parts of the STFT coefficients, a[n, k] and b[n, k]
according to Eq. (3.34) for the magnitude and Eq. (3.45) for the phase derivative. While
the differentiation in time in the expressions d[n, k] and b[n,k] in Eq. (3.44) cannot be
implemented exactly in discrete time, there are many discrete-time approximations to
continuous-time differentiation of which the simplest is the first difference:

xginln] = = (x{n] = x[n - 1) (3.46)
where T is the sampling period. This is a reasonable approximation to differentiation
at low frequencies for which sin(wn/2) ~ wn/2. In addition, there are many standard
filter design techniques (including the Parks-McClellan equiripple filter design method)
that produce approximations to ideal differentiation that are valid over a much greater
frequency range.

As Fig. 3.15 indicates, conversion from the magnitude and phase-derivative represen-
tation to the time function is begun by “integrating” the phase derivative to obtain the
instantaneous running phase. This is normally approximated by computing the running
cumulative sum of the phase derivative after processing is completed. The instantaneous
phase and the magnitude are combined to obtain the time-domain signal in each channel:

xx[n] = 2|1X[n, k]|cos(wgn + O[n, k]) (3.47)

where as usual wy = 27k/N. The signals in each positive frequency channel x;[n] are
summed over all channels to obtain the output waveform.

Time compression and transposition. Two popular uses of phase vocoding are in chang-
ing the rate of speech without affecting intelligibility, and in musical transposition. Specif-
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ically, multiplying all of the instantaneous frequencies of the representation of a musical
performance by a constant will increase the pitch by the same constant. For example,
multiplying the instantaneous frequencies by 6/5 = 1.2 will increase the pitch by the ra-
tio of 6 : 5, which is equivalent to transposing upward by a minor third in music.

Speech rate can be changed by scaling the instantaneous frequencies by a constant factor
while changing the sampling rate by that same factor. For example, slowing down speech
by a factor of 1.2 is easily accomplished by multiplying the instantaneous frequency by
1.2 while increasing the sampling frequency by the same factor.



