5.6.1 Frequency-Sampling Design

[n Chapter 3 we showed that a finite-duration sequence can be represented
by its discrete Fourier transform. Thus an FIR filter has a representation
in terms of the “frequency samples”
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As we showed in Chapter 3, H(z) can be represented in terms of the samples
H(k) by the expression
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As was shown in Chapter 4, Eq. (5.56) serves as the basis of the frequency-
sampling realization of an FIR filter. If we let z = ¢’®, then the frequency

response has the representation
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Equation (5.57) suggests a simple but rather naive approach to filter
design, i.e., to specify the flter in terms of samples of one period of the desired

frequency response
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relying on the interpolation indicated in Eq. (5.57) to “fill in the gaps” in
the frequency response. As an illustration of this approach, consider the
approximation of an ideal .IOWpaSS filter with cutoff frequency w, = /2.
Figure 5.39(a) shows the desired frequency response H,(e’) and the samples
A(k) for N = 33. As can be seen, the magnitude of the frequency response
is specified at multiples of 27/33 radians, with the cutoff frequency w, =
/2 being between @ = 16/33 and 187/33. The phase is taken to be linear
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Fig. 5.39 Fixed samples of ideal lowpass filter frequency response: (a) no
transition sample; (b) one transition sample H,.

with delay equal to (N — 1)/2 samples. The impulse response can of course
be obtained using the inverse discrete Fourier transform, as in
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If we evaluate the frequency response corresponding to such a filter, we
obtain the rather disappointing curve shown in Fig. 5.40(a). This figure
shows 20 log,, | H(e’)], with the fixed sample points being indicated by the
heavy dots in the passband and the points indicating infinite attenuation at
the zero samples in the stopband. We note that there is 3 smooth transition
between 167r/33 and 187/33; however, the minimum stopband attenuation is
somewhat less than 20 dB. This filter would be unsatisfactory for most
purposes. As we have repeatedly seen, one way to improve the stopband
attenuation is to widen the transition band. This can be easily done i, tliz
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Fig. 5.40 Effect of a single transition sample: (a) H,
s sample); (b) H; = 0.5; (c) H, = 0.3904.

case by allowing a sample at the boundary between pagsbanc} anczl stopband
to take on a value different from either 1 or 0, as depicted in Fig. 5.39(b).
Figure 5.40(b) shows the frequency response for H, = 0..5.. Note that the
transition band is now about twice as wide, but the minimum stopband
attenuation is considerably greater. o

It can be seen from Eq. (5.57) that H(e™) isa linear function of the param-
eters H(k). Thus linear optimization tech-mqu.es can be used to vary these
parameters so as to give the best approximation to the desired filter. This
approach, first proposed by Gold and Jordan [23], and developed by
Rabiner, et al. [24], has been used to design a variety of filters. For example,
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Fig. 5.41 Frequency sampling design using two transition samples: (a)
desired frequency response with fixed samples and two transition

samples; (b) resulting optimum frequency r
le es
transition samples. 1 Y St

in the case that we are discussing, a simple gradient search technique can be
used to choose the value of H, such that the maximum error in either the
passband or stopband is minimized. Figure 5.40(c) shows the response for
H, = 0.3904, the value that minimizes the error (maximi
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Thus, it is clear that the stopband attenuation is significantly improved. If
ed.

further improvement is required, we can broaden the trancis;
. ’ ansitio i
by allowing a second} sample to differ from 1 or 0. If Nis r}‘l éle(%lg:et;lrtt};e'r
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T Rabiner et al. [24] give results for lowpass filters with up to f :
samples. i PSRN st ransition
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results in 2 transition region twice as wide. However greater attenuati
can be achieved. Of course, if we double N, the tran,sition widthelr'1 mains
the same, while allowing two transition Samples to vary. Figure 5.41(a ;;iilns
such a set of samples for the example that we have been di.scussin ;Z:
N = 65.1 Figure 5.41(b) shows 20 log,y |H(e’™)| for N = 65 and °

H;, = H(17) = H(e'®/%)) _ ( 5886
H, = H(18) = H(e!®/%)) _ (,1065

These are very close to the optimum transition samples that minimize the
maximum absolute error (maximize the attenuation) in the stopband. As can
be seen, by comparing Fig. 5.41(b) to Fig. 5.40(c), by using two transition
samples and increasing N by approximately a factor of 2 (from 33 to 65), the
stopband attenuation is increased by about 24 dB, with a transition band that
is somewhat narrower (67/65 versus 8x7/66) than for one transition sample
when N = 33.

Frequency sampling designs are particularly attractive for narrow-band
frequency selective filters where only a few of the samples of the frequency
response are nonzero [25,26]. In such cases a frequency sampling realization
as discussed in Chapter 4 may be considerably more efficient than either
direct convolution or convolution using the DFT. In general, even if more
than a few samples are nonzero, the frequency-sampling design method yields
excellent results. However, it is clear from the example of lowpass filter
design that the method lacks flexibility in specifying the passband and stop-
band cutoff frequencies since the placement of ones and zeros and transition
samples is constrained to integer multiples of 27/N. By making N large
enough, samples can be obtained arbitrarily close to any given frequency;
however, this is an inefficient approach. For this reason, particularly if the
filter is not to be realized using the frequency sampling structure, other
algorithmic design techniques have been developed with more attractive
features for general frequency selective filter design.



