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6.0 INTRODUCTION

In this chapter, we examine the short-time Fourier transform (STFT), which has
played a significant role in digital signal processing, including speech, music, and
- sonar applications. It has been found that in such applications it is advantageous to
combine traditional time-domain and frequency-domain concepts into a single frame-
work. For example, the physical phenomenon of Doppler shift in signals from moving
sources is genera]]y characterized as a change in center frequency over time. If this
center frequency is defined in terms of the Fourier transform, we encounter the
problem that there is only one Fourier transform for the entire signal. It is thus
impossible to characterize a change in the center frequency over time. In contrast, the
short-time Fourier transform consists of a separate Fourier transform for each instant
in time. In particular, we associate with each instant the Fourier transform of the signal
in the neighborhood of that instant. To illustrate this, we consider the Fourier trans-
form plots in temporal order in Fig. 6.1. These plots were obtained from successive
'2-s intervals of an acoustic recording of a moving helicopter. Each plot contains a gap
whenever the Fourier transform magnitude exceeds a threshold. By following such
gaps frorn plot to plot, we can track the frequencies of highest energy. In particular,
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" Figure 6.1 Consecutive Fourier
transform magnitudes of an acoustic
recording of a moving helicopter. Each

plot contains a gap whenever the Fourier
. transform magnitude exceeds a
threshold. By following such gaps from
. ‘plot to plot, we can track the frequencies
L of highest energy. The frequency tracks
: & 40: of the two highest-energy harmonics are
Tlrrle[s) # g 3 . mdlcatcdbydashedhues

we can clearly see the Doppler shift in the various harmomcs of the underlying
periodic signal. As we will see later in this chapter, the STFT is also useful for
characterizing other nme-dcpendent frequency changes in applications such as sonar,
music, and speech processing. In fact, it has even been suggested that the human ear
performs this type of time-frequency analysis on speech.

'The rigorous development of the STFT originally took place in the context of
analog signals through the works of Fano [1] and Schroeder and Atal [2]. This work
was motivated by previous experimental work for measuring time-dependent spectra
with analog devices such as the sound spectrograph [3]. The time-dependent spectrum
at the output of such a device is generally displayed in a form known as a spectrogram,
an example of which is. illustrated in Fig. 6.2 for a segment of speech. In this
two-dimensional display, the horizontal axis is time and the vertical axis denotes
frequency. The gray level indicates the spectral magnitude, with the darkest regions
corresponding to the highest energy. The real-time constraint for such analysis means
that the transform at any time should depend only on the past values of the signal. Fano
thus defined and developed formal properties of a transform that at any instant
weighted the past values of the signal with a decaying exponential and took the
squared magnitude of the Fourier transform of the result. Schroeder and Atal extended
the concept by using atbitrary weighting functions instead of the exponential. The
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resulting time-frequency function, as we will see, is the magnitude squared of the
STFT.

For application in digital signal processing it is necessary to extend the STFT
framework to discrete-time signals. An early example of such an extension was the
digital spectrogram [4]. This was a digital system for generating speech spectrograms
of the type produced by analog devices such as the sound spectrograph. Just as the
analog spectrogram can be related to the analog STFT, the digital spectrogram can be
related to the concept of a digital or discrete-time STFT. Since in this chapter we are
primarily interested in the discrete-time case, we will assume that the STFT corre-
sponds to a discrete-time signal unless stated otherwise. The underlying idea for the
discrete-time STFT is once again to take a separate (discrete-time) Fourier transform
in the neighborhood of each time sample. These Fourier transforms can be displayed
for analysis as in the case of the digital spectrogram. Alternatively, these Fourier
transforms can be individually processed and then recombined to form a new pro-
cessed signal. This enables the signal processing to be adapted to the individual
spectral characteristics of each short-time region. Examples of such adaptive pro-
cessing for the purpose of speech coding and time-scale modification, beamforming
in sonar, and image enhancement will be discussed at the end of the chapter.

For practical implementation, each Fourier transform in the STFT has to be
replaced by the discrete Fourier transform (DFT). The resulting STFT is discrete in
both time and frequency and thus is suitable for digital implementation. We call this
the discrete STFT to distinguish it from the discrete-time STFT, which is continuous
in frequency. These two transforms, their properties, interrelationships, and applica-
tions are the primary focus of this chapter. The discrete-time STFT is particularly
useful as a conceptual and analytical tool, while the discrete STFT helps us understand
the specific computational details of the algorithms based on the STFT.

This chapter can roughly be divided into two parts, the first four sections dealing
with fundamental concepts and issues and the remaining sections dealing with the
extension and application of the basic ideas. We begin in Section 6.1 with a formal
introduction to the discrete-time and the discrete STFT of a sequence. In particular,
we emphasize the similarities and differences in the various properties of the two
transforms. In Section 6.2 we illustrate the issues involved in choosing an appropriate
framework for computing the STFT in any given situation. We then conmsider in
Section 6.3 the problem of obtaining a sequence back from its STFT. While this is
straightforward for the discrete-time STFT, a number of important STFT concepts are
introduced for explaining the more complicated area of sequence recovery or synthesis
from the discrete STFT. The basic theory part of the chapter is essentially concluded
in Section 6.4, which deals with concepts that have been developed for treating the
magnitude of the STFT as a transform in its own right. In Section 6.5, we consider
the very important practical problem of estimating a signal from a processed STFT
that does not satisfy the definitional constraints of the STFT. This area has led to many
practical applications of the STFT. However, the STFT is not the only transform to
have been considered for time-dependent frequency analysis. In Section 6.6, we
consider the relationship of the STFT to some of the other transforms that have been
proposed for time-frequency analysis. Finally, in Section 6.7, we illustrate the role the
STFT has played in application areas such as speech processing, sensor array pro-
cessing, and image processing.
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6.1 SHORT-TIME FOURIER TRANSFORM OF A SEQUENCE

In this section, we define the STFT representation for a sequence and show how this
representation is related to the time- and frequency-domain properties of the original
sequence. A major theme used throughout this section is that the representation of the
STFT of a sequence is analogous to the Fourier transform representation of a se-
quence. This analogy is extensively used for deriving STFT properties, including the
existence of inverse relations for obtaining a sequence back from its STFT.

6.1.1 Fourier Transform View

The STFT is presented in this section as an extension to the basic Fourier transform
definitions for a sequence. In particular, we introduce the discrete-time STFT and the
discrete STFT as counterparts to the discrete-time Fourier transform and the discrete
Fourier transform, respectively.

The discrete-time STFT is related to the discrete-time Fourier transform which
is given by

X(@) = > x(n)e (6.1)

where w is a continuous variable denoting frequency. The discrete-time STFT of x (n)
is a set of such discrete-time Fourier transforms corresponding to different time
sections of x(n). The time section for time n, is obtained by multiplying x(rn) with a
shifted sequence w(ny, — n). The expression for the discrete-time STFT at time ng is
therefore given by

X(no,w) = > x(mw(ne — nje™ (6.2)
where w(n) is referred to as the analysis window or sometimes as the analysis filter
for reasons that will become clear later in this chapter. The sequence f,,(r) =
x(n)w(ng — n) is generally called a short-time section of x(n) at time n,. This se-
quence is obtained by time-reversing the analysis window w(n), shifting the result by
nq points, and multiplying it with x(n). This series of operations is illustrated in
Fig. 6.3. Once we have the short-time section for time ny, we can take its Fourier

 transform to obtain the frequency function X(ng, @) with n, fixed. To obtain
X(no + 1, w); we slide the time-reversed analysis window one point from its previous
position, multiply it with x(n), and take the Fourier transform of the resulting short-
time section. Continuing this way, we generate a set of discrete-time Fourier trans-
forms that together constitute the discrete-time STFT. We obtain the mathematical
representation for the STFT by replacing the fixed n, of Eq. (6.2) by the variable n.
To avoid confusion, we rename the variable of summation in Eq. (6.2) as m. We thus
obtain the STFT definition:

X, 0 = E x(mw(n — m)e™vem (6.3)

The analysis window is generally considered to be part of the specification of the
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x{nlwing — n)

N AN n Figure 6.3 The series of operations
ng required to compute a short-time section.

STFT. Since a short-time section of x(n) is the product x(n)w (n¢ — n), it is clear that
changing the analysis window will generally change all the short-time sections and
therefore the STFT. Typically, the analysis window is selected to have a much shorter
duration than the signal x(n) for which the STFT is computed. For example, Fig. 6.4
gives an illustration of an analysis window that is commonly used in speech applica-
tions. It is a 256-point window known as a Hamming window. In contrast, if x(n) is
obtained from a speech sentence lasting 3 s and sampled at 10 kHz, x(n) is a

- 30,000-point sequence. The shorter duration of the analysis window is what consti-

tutes the short-time nature of the STFT.

win)

&

w(n) = 0.54 — 0.46 cos(2mn/255), 0 < n < 255

'anTIﬂ hhngs ) i

window.

For digital processing, we use the discrete STFT, which is related to the discrete-
time STFT in the same manner as the DFT is related to the discrete-time Fourier
transform. Recall that the DFT X (k) of a finite-duration sequence x(n) is obtained by
sampling the discrete-time Fourier transform over one period. That is,

X(k) = X(m)lu-lwk/NRN(k) ' (6.4)

where N is the frequency sampling factor and Ry (k) is an N-point rectangular sequence
given by

Ry(k) = u(k) — u(k — N) (6.5)

In analogy, the discrete STFT is obtained from the discrete-time STFT through the
following relation: “
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X(n, k) = X(n, w) | w=2mk/N Ry (k) (6.6)

where we have sampled the discrete-time STFT with a frequency sampling interval of
27/N to obtain the discrete STFT. Substituting Eq. (6.3) into Eq. (6.6), we obtain the
following relation between the discrete STFT and its corresponding sequence x():

X(n k) = > x(mw(n — me "Ry (k) (6.7)
In many applications, the time variation (the » dimension) of X (, k) is decimated by
a temporal decimation factor L to yield the function X (nL, k). - .

Just as the discrete-time STFT can be viewed as a set of Fourier transforms of
the short-time sections f,(m), the discrete STFT in Eq. (6.7) is easily seen to be a set
of DFTs of the short-time sections f,(m). When the time dimension of the discrete
STFT is decimated, the corresponding short-time sections f,, (m) are a subset of fa(m)
obtained by incrementing n"by multiples of L. This notion is illustrated in Fig. 6.5.

.

x(m)

n=1 n=2 n=3 n=4
> i -~ i
T

Figure 6.5 The analysis window positions used in computing X (nL, k).
6.1.2 Filtering View

The STFT can also be viewed as the output of a filtering operation where the analysis
window w(n) plays the role of the filter impulse response; hence the alternative name
analysis filter for w(n). For the filtering view of the STFT, we fix the value of w at
wp and rewrite Eq. (6.3) as

X(n, wy) = i [x(m)e ™™ w(n — m) (6.8)

We then recognize from the form of Eq. (6.8) that it represents the convolution of the
sequence x(n)e /" with the sequence w(n). We rewrite Eq. (6.8) as
X(n, @) = [x(n)e™"] * w(n) (6.9)

where * denotes convolution. Furthermore, the product x(n)e 70" can be interpreted
as the modulation of x(n) up to frequency w,. Thus, X (n, w,) for each w, is a sequence
in 7 that is the output of the process illustrated in Fig. 6.6. The signal x (n) is modulated

x(n) | winl | X(n, wy)

Figure 6.6 Filtering view of STFT
analysis at frequency w,. Complex
exponential modulation is followed by a
¢ Tunn * lowpass filter.
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with ¢™/“0" and the result passed through a filter whose impulse response is the analysis
window, w(n).

‘A slight variation on the filtering and modulation view of the STFT is obtained
by manipulating Eq. (6.9) into the following form: )

X(n, wo) = e [x(n) * w(n)e*o"] S (6.10)

In this case, the sequence x(n) is first passed through the same filter as in the previous
case except for a linear phase factor. The filter output is then modulated by e™7“°". This
view of the time variation of the STFT for a fixed frequency is ﬂlustrated in the block
dlag'ram of Fig. 6.7.

jton

x(n) — w{n}e Xln, wg)

Figure 6.7 -Allcm'aﬁvg filtering view of

STFT analysis at frequency we. A

, bandpass filter is followed by complex
&%t exponential modulation.

The discrete STFT of Eq. (6.7) can also be interpreted from the filtering view-
point. In particular, having a finite number of frequencies allows us to view the
discrete STFT as the output of the filter bank shown in Fig. 6.8. Note that each filter
is acting as a bandpass filter centered around its selected frequency. Thus the discrete
STFT can be viewed as a collection of sequences, each corresponding to the frequency
components of % () falling within a particular frequency band.

> win)el® —»é)—» X(n, 0)

a—i12=/Min

w(&}ef'””’" —> % }— Xin, 1)

g-il2uiNI2n

|

> winle/@MI2n —— % }——> X(n,2)

p—i2niNl (N = 1ln

: Figure 6.8 The discrete STFT as the
> win)e/2nNI N = 1ln X(n, N —1) output of a filter bank consisting of

bandpass filters.

6.1.3 Properties

In this section we develop a number of properties of the discrete and the discrete-time
STFT. These properties provide insight into the characteristics of these transforms for
various classes of signals and certain commonly used signal manipulations (e.g., time
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shifting). The sampling relationship between the discrete-time STFT, X (n, w), and the
discrete STFT, X(n, k), makes it convenient to first investigate the properties of
X (n, w) alone and then to see how they are affected by the sampling. We will see that
most of the properties of the discrete-time STFT have similar counterparts for the
discrete STFT. A number of properties of the discrete-time STFT are easily obtained
by using the Fourier transform viewpoint, while a dlfferent set ot' propemes is most
convenient to derive from the filtering viewpoint.

We begin with a set of properties based on the interpretation of the STFT as a
collection of Fourier transforms corresponding to the short-time sections of the se-
quence. In particular, we view X(n, w) as a Fourier transform for each fixed n.
Therefore, the frequency function X (n, w) for each n has all the general properties of
a Fourier transform. Table 6.1 lists a number of these properties.

TABLE 6.1 ' PROPERTIES OF THE DISCRETE-TIME STFT BASED ON THE FOURIER
TRANSFORM INTERPRETATION

Property 1: X, 0 =X, o+ 27)

Property 2: x(n) real «— X(n, w) = X*(n, —w)

Property 3: x(n) real «— |X(n, w)| = | X (n, —w)|
Property 4: x(n) real «— arg[X(n, 0)] = —arg[X(n, —w)]
Property 5: x(n — ng) «— e X (n — no, w)

The first property follows from the periodic nature of the discrete-time Fourier
transform, whereas the next three properties follow from the conjugate-symmetric
property of the Fourier transform of real sequences. The fifth property is analogous
to the Fourier transform property that a time shift in a sequence leads to a linear phase
factor in the frequency domain. A shift by n, in the original time sequence also means
that we obtain the same short-time sections as before except that each short-time
section has also been shifted in time by n,. For r.h1s reason therc is also a time shift
indicated in the STFT of property 5.

The properties of the discrete-time STFT given in Table 6 1 can be extended to
the discrete STFT using the relationship in Eq. (6.6) where 27/N is the samphng
mtcrval in frequency. The resulting properties of the discrete STFT are shown in Table
6.2.

The first property emphasizes the aperiodic nature of the discrete STFT in the
frequency dimension. The pext three symmetry properties are natural counterparts to
the properties of the discrete-time STFT. The shifting property is also a straight-
forward extension of the corresponding property of the discrete-time STFT. It should

TABLE 6.2 PROPERTIES OF THE DISCRETE STFT

Property 1: X(n, k) is zero outside 0 = k < N

Property 2: x(n)real «— X(n, k) = X*(n,N — b for0 < k <N

Property 3: x(n) real «— |X(n, k)| = |X(n,N — k)| for0 < k < N
Property 4: x(n) real «— arg[X (n, k)] = —arg[X(n,N — k)] for 0 <k <N
Property 5: x(n — ng) > e ICTENY (p — 50 k)
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be noted that if the discrete STFT is decimated in time by a factor L, the first four
properties still hold. However, for the fifth property, when the shift is not an integer
multiple of L, there is no general relationship between the discrete STFTs of x(n) and
x(n — ng). This happens because the short-time sections corresponding to X (nL, k)
cannot be expressed as shifted versions of the short-time sections corresponding to the
discrete STFT of x(n — ny).
As with the Fourier transform mterpretauou the ﬁltenng view also allows us to
easily deduce a number of STFT properties. In particular, we view X (n, ) as a filter
_output for each fixed frequency. Therefore, the time variation of X (n, w) for each w
has all the general properties of a filtered sequencc Table 6.3 lists a number of these
properties for the discrete-time STFT.

TABLE 6.3 PROPERTIES OF DISCRETE-TIME STFT BASED ON THE FILTERING
INTERPRETATION

Property 1: X(n,0) = x(n) = w(n)
Property 2: x(n) length N, w(n) length M, X(n, ») lcngth N+ M- 1alongn

Property 3: Bandwidth of sequence X(n, wo) = Bandwidth of w(n)
Property 4: The sequence X (n, wo) has spectrum centered at the origin
Property 5: x(n) causal, w(n) causal, X(n, @) causal in time

The first property is obtained by substituting wo, = 0 in Eq. (6.9). In the second
property, we make use of a standard result for the length of a sequence obtained
through the convolution of any two sequences of lengths N and M. For the third
property, we note that X(n, w) as a function of n is the output of a filter whose
bandwidth is the bandwidth of the analysis window. The fourth property follows from
the modulation step used in obtaining X (n, @o). The fifth property is a standard result
on the convolution of causal sequences. The STFT properties from the filtering
viewpoint remain the same for the discrete STFT since, for a fixed frequency, the time
variation of the discrete STFT is the same as the time variation of the discrete-time
STFT at that frequency.

We have seen in this section that a number of STFT properties can be derived
from either the Fourier transform viewpoint or the filtering viewpoint. There are of
course many other properties of the STFT, but in this section we have concentrated
on the ones typically encountered in various application areas.

6.1.4 Invertibility

In this section we consider the problem of obtaining a sequence back from its discrete
or discrete-time STFT. Whereas the discrete-time STFT is always invertible in this
sense, the discrete STFT requires certain constraints on its sampling rate for in-
vertibility.

The invertibility of the discrete-time STFT is best seen in analogy with the
discrete-time inverse Fourier transform. In the Fourier transform interpretation, the
discrete-time STFT is viewed for each value of n as a function of frequency obtained
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by taking the Fourier transform of the short-time section f,(m) = x(m)w (n—m). It
follows that if for each n we take the inverse Fourier transform of the corresponding
function of frequency, then we obtain the sequence f, (m). If we evaluate this short-
time section at m = n we obtain the value x(n)w(0). Assuming that w(0) is nonzero,
we can divide by w(0) to recover x(n). The process of taking the inverse Fourier
transform of X (n, ) for a specific n and then dividing by w(0) is represented by the

* following relation: "

x(n) = [217'111»(0)]_’;, X (n, we™ dw (6.11)
This equation represents a synthesis equation for the discrete-time STFT. In fact, there
are numerous synthesis equations that map X (n, ) uniquely back to x(n). We will
discuss these in Section 6.4.

In contrast to the discrete-time STFT, the discrete STFT X (n, k) is not always
invertible. For example, consider the case when w(n) is bandlimited with bandwidth

' B. Figure 6.9 shows the filter regions used to obtain X (n, k) for the case when the

sampling interval 27/N is greater than B. Note that in this case there are frequency
components of x(n) that do not pass through any of the filter regions of the discrete
STFT. Those frequency components can have arbitrary values and yet the discrete
STFT would be the same. Thus in such cases the discrete STFT is not a unique
representation of x(n) and therefore cannot be invertible. The invertibility problem is
also of interest when the discrete STFT has been decimated in time. For example,
consider the case when the analysis window w(n) is nonzero over its finite length N,,.
Figure 6.10 shows the case when temporal decimation factor L is greater than N,,. Note
that in this case there are samples of x(n) that are not included in any short-time section
of the discrete STFT. These samples can have arbitrary values and yet the time-
decimated discrete STFT would be the same. Thus in such cases the discrete STFT
is not a unique representation of x(n) and therefore cannot be invertible.

Figure 6.9 Undersampled STFT when
the frequency sampling interval 2m/N

2r 2r 20 is greater than the analysis filter band-
N N N width B.

By selecting appropriate constraints on the frequency-sampling and time-
decimation rates, the discrete STFT becomes invertible. For example, let’s consider
the case of a finite-length analysis window. We have already seen that in such cases
the discrete STFT is not invertible if the temporal decimation factor L is greater than
the analysis window length N,,. We will now see that if the temporal decimation factor
is less than or equal to the analysis window length, then the discrete STFT is invertible
provided we impose constraints on the frequency sampling interval. Suppose that the
temporal decimation factor is equal to the analysis window length. The discrete STFT
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x{m)

e

Figure 6.10 Underdecimated STFT when the decimation factor L is larger than the
length N, of the analysis window.

in this case consists of the DFTs of adjacent but nonoverlapping short-time sections,
as illustrated in Fig. 6.11. It is clear that the signal x(n) can be obtained only if each
of these short-time sections is known for all time. Thus to reconstruct x(n) from its
discrete STFT, we must require that each N,,-point short-time section be completely
recoverable from its DFT. However, it is well known that the DFT of an N,, -point
sequence is invertible provided its frequency sampling interval is less than 27r/N,,. It
follows from this discussion that the discrete STFT is invertible for situations where
the analysis window is nonzero over its finite-length N,,, the temporal decimation
factor L is less than N,,, and the frequency sampling interval 27r/N is less than 27/N,,.
Even tighter bounds than these can be derived, as we will see in Section 6.4. Further-
more, we will also see that a variety of other assumptions about the analysis window
lead to different tradeoffs between time and frequency sampling.

Figure 6.11 The decimation factor L
equals the analysis window length N,
The window positions are adjacent

without any overlap or missed regions.

6.2 SHORT-TIME FOURIER ANALYSIS

As we discussed in Section 6.0, the time-varying spectral characteristics of a sequence
can be analyzed from its STFT. To carry out such short-time Fourier analysis we must
select the analysis window as well as the algorithm for computing the discrete STFT.
In Section 6.2.1, we discuss the factors influencing analysis window selection. Some
of these factors depend on the algorithm used to compute the discrete STFT. There are
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two basic approaches to computing the discrete STFT that correspond to the Fourier
transform and filtering interpretations of the STFT discussed in Section 6.1. In
Sections 6.2.2 and 6.2.3, we examine each of these approaches and the computational
issues associated with them.

6.2.1 Selection of Analysis Window

The properties of the STFT are sensitive to the selection of the analysis window. To
analyze the output of STFT analysis we should have an understanding of the effects
of the analysis window on the characteristics of the STFT. In this section we discuss
the nature of the dependence of the STFT properties on the analysis window.

A basic issue in analysis window selection is the compromise required between
a long window for frequency resolution and a short window for not allowing the
temporal properties of the signal to vary appreciably. To see this, we first recall that
the STFT X(n,w) is the Fourier transform of the short-time section f,(m) =
x(m)w(n — m). From Fourier transform theory, we know that the Fourier transform
of the product of two sequences is given by the convolution of their respective Fourier
transforms. With X (w) as the Fourier transform of x(n), and W(—w)e " as the
Fourier transform of w(n — m) with respect to the variable m, we can write the STFT
as

21/ )-

Thus, any frequency variation of the STFT for any fixed time may be interpreted as
a smoothed version of the Fourier transform of the underlying signal, as illustrated in
Fig. 6.12. Thus, for faithful reproduction of the properties of X (w) in X (n, w), the
function W (w) should appear as an impulse with respect to X (w). The closer W (w) is
to an impulse (i.€., narrow bandwidth), X(n, ) is said to have better frequency
resolution. However, for a given window, frequency resolution varies inversely with
the length of the window. Thus, better frequency resolution requires longer analysis
windows, whereas the desire for short-time analysis requires shorter analysis win-
dows. An example of this tradeoff is shown in Fig. 6.13. Here we have the Fourier
transform of a section of a chirp signal whose frequency is a linear function of time.
The aim is to measure the instantaneous frequency at time f,. This is done using
analysis windows of various lengths. Very short windows give low resolution because

X(n, @) = (—l-) f " W(8)e™X(w + 6) dO (6.12)

Figure 6.12 The window Fourier
transform as a smoothing function for
the Fourier transform of the underlying
signal. A narrowband and a wideband

“ window are illustrated.
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Figure 6.13 Effect of the length of the analysis window on the Fourier transform of a linearly
frequency-modulated sinusoid of length 256 samples whose frequency increases from /4 to
/8. The Fourier transform is taken for sections centered around the 128th sample (frequency
37/ 16). Transforms are shown for window lengths 32, 64, and 256.

of window spectrum smoothing, whereas very long windows yield a wideband spec-
trum because of the time-varying frequency of the chirp.

. The selection of analysis window is also important when the STFT is to be used
for synthesizing the original signal. As we will see in Section 6.3, the STFT synthesis
methods impose various constraints on the analysis window to guarantee recon-
struction of the original signal. '
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6.2.2 Fast Fourier Transform Implementation

We have seen that the discrete STFT can be viewed as the DFT of each short-time
section corresponding to a different shift in the finite-length analysis window w(n).
Thus one approach to discrete STFT analysis is to implement a DFT process that
computes equally spaced frequency samples of X (n, w) for each possible value of n.
The DFT computation is generally on the order of the square of the DFT length.
However, if the number of frequency samples N is cl_losen to be a highly composite
number (usually a power of two) then, as we will see in this section, the fast Fourier
transform (FFT) algorithm can be used to efﬁc1ently carry out thc DFT computanons
in the discrete STFT. " -

To see how the FFT can be used for short-time Fourier analysm let us assume
that the analys.ls window w(n) has length N,. The function we are interested in
compunng fork =0, 1 ,N—1,is gnren by :

X(n,k) = > win — mx(m)e N = z f,‘(m)e'fz“*"” (6.13)
where f,(m) are the short-time sections of x(n). First let us consider the case where
the desired number of frequency samples N is greater than or equal to N,,. In this case,
each short-time section f, (m), with n fixed, is a finite-length sequence whose length
is less than or equal to N. It follows that X(n, k) for a fixed n can be computed as an
N-point FFT applied to f,(m) padded with the appropriate number of zeros.

- Now we consider the case where the number of frequency samples N is less than
the ‘analysis window length N,. Since X(n, w) is the Fourier transform of f,(m),
uniform frequency sampling of X (n, w) with sampling interval 27/N corresponds in
the time domain to convolution of f, (m) with a periodic impulse train with period N.
The result of this convolution is given by

falm) = 3 fulm + kN) (6.14)

k=, —=
The sequence f,, (m), known as the time-aliased version of f,(m), is periodic with
period N, and the N-point FFT of one period of f,(m) yields the desired N frequency
samples of the discrete STFT. If X (nL, k) is the desired function, we compute the £, (m)
only for every Lth short-time section. That is,

fulm) = 3 fulm + kN) (6.15)
k=—m=
In summary, the FFT can be used to efficiently compute X (n, k) by computing
the time-aliased version of each short-time section and then applying the N-point FFT
to each of those sections. Note that if N is greater than or equal to the analysis window
length, the computation of the time-aliased version is eliminated.

6.2.3 The Filter Bank Approach

Short-time Fourier analysis can also be carried out through computations suggested by
the filtering interpretation of the discrete STFT. In this section we develop the formal
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details of the filter bank analysis. In particular, we present several alternatives for such
implementation. The filter bank analysis is advantageous in applications requiring
infinite or long-duration windows or where the STFT is to be computed at a small
number of frequencies. These advantages wﬂl be discussed in more detail at the end
of the section.

- To develop the ﬁlter bank implementation techmques we begin with the filtering
view of the discrete STFT:

X(n,8) = e”""‘[x(n) wime] - o (6.16)

where wt = 2n-k/N fork =0, 1, , N = 1. The idea is to pass the signal x(n)
- through a bank of bandpass filters, shown in Fig. 6.8, where the output of each filter
is the time variation of the STFT at the frequency w,. If the output of each filter is
decimated in time by a factor L, we obtain the discrete STFT, X (nL, k). Each branch
of the filter bank corresponds to a bandpass filter centered around the frequency
wp = 27Tk/ N.
An alternative Jmplernentanon of the filter bank analys1s rcplaces the bandpass
filters by lowpass filters as in Fig. 6.14. The equanon for each branch of the lowpass
filter bank is given by

X(n, k) = x(n)e " * w(n) ' (6.17)

where w; = 21rk/N fork =0, 1 ,N—1.Asin the bandpass implementation,
~ we can obtain X (nL, k) by decunaung each filter output by the decimation factor L.

Both the bandpass and the lowpass techniques of Figs. 6.8 and 6.14 involve
complex exponential modulations. To carry out this complex modulation in terms of
real operations, a more detailed specification of the filter bank implementations is
needed. For the lowpass implementation, we note that

/)t\ win) p—s— X(n, 0)

g—il2n/N)a

—é— win) |—— Xx(n, 1)

e~ i(2xiNI2n

——é— win) — X(n,2)

g=f12niN} (N = in

/i\ Figure 6.14 The discrete STFT as the
\>_</ win)l ——— X(n, N — 1) output of a filter bank consisting of

lowpass filters.

x(n}
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X(n, k) = x(n)e " * w(n) L _ i
= [x(n)cos(wen) * w(n)] + jlx(n)sin(wn) * w(n)] (6.18)
= Xr(n, k) + ij(n, k) | |

where X, (n, k) and X;(n, k) can be implemented as shown in Fig. 6.15. Similarly, we
can derive a real implementation of the bandpass analysis. The computation for this
implementation is represented in the block diagram of Fig. 6.16.

. cos(w,n) :
q-é— wlnl f——— X, (n, k}
i} sin{w,n) .
7 Figure 6.15 [mp!erﬁemat.ion with real
w(n) t—— X(n, k) operations of each branch of the lowpass
. _ filter bank for STFT analysis.

coslw,n)

» w(n) cos{w,n}

x(n)

= win) sin{w, ) X:An, k)

coslw,n)

Figure 6.16 Implementation with real operations of each branch of the bandpass
filter bank for STFT analysis.

If the bandpass filter bank has the modulation components removed, then the
overall structure becomes much simpler and it computes samples of X (1, w)e/*" rather
than the samples of X (n, w). Such an output often suffices for STFT analysis. In
particular, the linear phase factor does not affect the kinds of spectral characteristics
(e.g., bandwidth, LPC parameters) that are generally of interest in short-time Fourier
analysis of signals like speech. Another reason, which we will explain further in
Section 6.3, is that under certain conditions the outputs of the filter bank in Fig. 6.8
can be simply summed to retrieve the original sequence x(n). In particular, for this
purpose it is required that the frequency responses of the filters should add up to give
unity across the entire bandwidth of x(n).

The filter bank implementations are particularly useful when the analysis win-
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dow is infinitely long (e.g., an exponential) or well approximated by an infinitely long
window. In such cases the filters can be implemented by recursive (infinite impulse
response) techniques. It is noted that the FFT approach to STFT analysis can handle
infinite-duration windows only by approximating them with finite-length windows. As
an example, consider a window w(n) = (0.9)"u(n). A recursive implementation of
this analysis filter is given by
o y(m) =09 —1) +x(n) (6.19)

where x(n) and y(n) are the input and output of the filter with impulse response w (n).
This requires on the order of two operations per sample of the discrete STFT. On the
other hand, using an N-point FFT implementation, where N is the frequency sampling

" factor, requires Log N operations per sample of the discrete STFT. In our example,
the exponential window may be approximated to within 16-bit precision by a
128-point truncation. In this case, the FFT analysis would require Log(128) = 7
operations per sample of the discrete STFT. This compares with 2 operations for the
filter bank analysis. )

The filter bank approach may also be advantageous when the STFT is to be
computed at a relatively small number of frequencies. In some applications, one is
interested in the STFT over only a small band of frequencies. For example, with a
256-point analysis window one may desire four consecutive frequencies with resolu-
tion 27/256. In this case the FFT approach would require N log N = 256
log(256) = 2048 operations per unit time. On the other hand, the filter bank approach
would use four finite impulse response (FIR) filters of length 256 points each. This
means a total of 1024 operations per unit time. Furthermore, if the filters can be
suitably approximated by infinite impulse reponse (IIR) filters, the computation may
require fewer operations.

6.3 SHORT-TIME FOURIER SYNTHESIS

As discussed in Section 6.0, many digital processing applications of the STFT employ
methods for synthesizing a sequence from its discrete STFT. We have already seen in
Section 6.1 that such synthesis is not always possible since the discrete STFT is not
invertible under all conditions. On the other hand, we have seen that the discrete-time
STFT is always invertible. A common approach to developing synthesis methods for
. the discrete STFT has been to start from one of the many synthesis equations that
express a sequence in terms of its discrete-time STFT. A discretized version of such
an equation is then considered as the basis for a candidate synthesis method. Condi-
tions are derived under which such a method can synthesize a sequence from its
discrete STFT. The various synthesis methods differ not only with respect to the con-
ditions under which they are valid but also in terms of their computational properties.
In this section we present a number of synthesis methods as well as their
underlying theory. In particular, we begin with two classical methods that have been
widely used for short-time synthesis. They are the filter bank summation (FBS)
method and the overlap-add (OLA) method. There are other useful synthesis methods
that are best understood by introducing the concept of a synthesis filter for the STFT.
This concept and the associated methods are also discussed in this section.
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6.3.1 Filter Bank Summation (FBS) Method

In this section we present a traditional short-time synthesis method that is commonly
referred to as the filter bank summation (FBS) method. This method is best described
in terms of the filtering interpretation of the discrete STFT. In this interpretation, the
discrete STFT is considered to be the set of outputs of a bank of filters. In the FBS
method, the output of each filter is modulated with a complex exponential and these
modulated filter outputs are summed at each instant of time to obtain the corresponding
time sample of the original sequence, as shown in Fig. 6.17. For dealing with temporal
decimation, the traditional strategy is to perform a temporal interpolation filtering on
the discrete STFT to restore the temporal decimation factor to unity. The FBS method
is then performed on the interpolated output. A g

Xin, 0}

yin)

o/ (25IN) N = 11a .
Figure 6.17 Filter bank summation
procedure for signal synthesis from the
X N=1 ~ discrete STFT. ‘_
The FBS method is motivated by the following relation between a sequence and

its discrete-time STFT:

x(n) = [Zmi (0)] j;X(n, we ™ dw (6.20)

where without loss of generality we assume that w(0) is nonzero. We derived this
equation in Section 6.2 in the context of the invertibility of the discrete-time STFT.
The FBS method carries out a discretized version of the operations suggested on the
right side of Eq. (6.20). That is, given a discrete STFT X (n, k), the FBS method
synthesizes a sequence y(n) satisfying the following equation:

N-1
y(n) = [N_wl(aj] 2_; X (n, k)e/2mmk/N (6.21)

We are of course interested in the FBS method for those situations where the
sequence y(n) in Eq. (6.21) is the same as the sequence x(n) corresponding to the
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discrete STFT X (n, k). Substituting X(n, k) in Eq. (6.21) for the FBS method, we
obtain

) = [ﬁ_l.@] S 3 ximwin - m)eRetngBmiN (6.22)
k=0 m=-2x ;

Using the linear filtering interpretation of the STFT ﬂ'ns equation reduces to

N—1

0 = | g e+ S w62y

k=0

Taking w(n) out of the summation and noting that the finite sum over the complex
exponentials reduces to an impulse train with period N, we obtain

y(n) = [M:(O)]x(n) swN 3 8(n — ) (6.24)

r=—m

In Eq. (6.24) we note that y(n) is obtained by convolving x(n) with a sequence that
is the product of the analysis window with a periodic impulse train. It follows that if
we desire y(n) = x(n), then the product of w(n) and thc periodic impulse train must
reduce to Nw(0)8(n). That is,

w(n)N E 8(n — rN) = Nw(0)8(n) (6.25)
This will clearly be satisfied for any causal analysis window whose length N, is less
than the number of analysis filters N. That is, any finite-length analysis window can
be used in the FBS method provided the length of the window is less than the
frequency sampling factor N. We can even have N < N,, provided w(n) is chosen such
that every N'th sample is zero. That is,

w(rN) =0 for r=-1,1,-2,2,-3,3,... (6.26)

as illustrated in Fig. 6.18.

Equation (6.25) is known as the FBS constraint because this is the requirement
on the analysis window that ensures exact signal synthesis with the FBS method. This
constraint is more commonly expressed in the frequency domain. Taking the Fourier
transform of both sides of Eq. (6.25), we obtain

N-1
> W(w — 2mwk/N) = Nw(0) (6.27)

_ k=0
This constraint essentially states that the frequency responses of the analysis filters
should sum to a constant across the entire bandwidth, as shown in Fig. 6.19. We have
already seen that any finite-length analysis window whose length is less than the
frequency sampling factor N satisfies this constraint. We conclude that a filter bank
with N filters, based on an analysis filter of length less than N, is always an allpass

system.

As noted before, the FBS method is just one of the many different methods
available for synthesizing a sequence from its discrete STFT. Each such method
imposes its own set of constraints on the analysis window as for the FBS method in
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pln)

r”rﬂi]“r:ﬂ”:
o

wialiin) ‘Figure 6.18 Example of an analysis
: window and how it satisfies the FBS

5{n)
constraint. The analysis window length
is longer than the t‘requency sampling
n factor. 7
Amplitude
Nwl0) fg = = — o = = — e — — — R = — i — — = g — — —
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w 2N 3N N %

Figure 6.19 The FBS constraint visualized in the frequency domain.

Eq. (6.27). Additionally, each method has its own computational characteristics. The
FBS method for decimation factor L = 1 and an analysis filter of length N,, requires
on the order of N,, operations (complex additions and multiplications) per sample of
x(n). On the other hand, if the decimation factor L >> 1, the FBS method must be
extended to include interpolation of each analysis filter output. This leads to a com-
putational requirement of order N2 operations per sample of x(n).

6.3.2 Overlap-Add (OLA) Method

We now consider another classical method, the overlap-add (OLA) method for short-
time synthesis. Just as the FBS method was motivated from the filtering view of the
STFT, the OLA method is motivated from the Fourier transform view of the STFT.

The simplest method obtainable from the Fourier transform view is in fact not
the OLA method. It is instead a method known as the inverse discrete Fourier
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transform (IDFT) method. In this method, for each fixed time, we take the inverse
DFT of the corresponding frequency function and divide the result by the analysis
window. This method is generally not favored in practical applications because the
slightest perturbation in the STFT can result in a synthesized signal very different from
the original. For example, consider the case where the STFT is multiplied by a linear
phase factor of the form e/ with n, unknown. Then the IDFT for each fixed time
results in a shifted version of the corresponding short-time section. Since the shift n,
is unknown, dividing by the analysis window without taking the shift into account
introduces a distortion in the resulting synmesizcd signal In contrast, the OLA
method, which we describe next, results in a shlfted vcrswn of thc original signal
without distortion.
The OLA method is also best described in terms of the Fourier transform view.
In the OLA method, we take the inverse DFT for each fixed time in the discrete STFT,
However, instead of dividing out the analysis window from each of the resulting
short-time sections, we perform an overlap-and-add operation between the short-time
sections. This method works provided the analysis window is designed such that the
overlap-and-add operation effectively eliminates the analysis window from the syn-
thesized sequence.
_ The OLA method is motivated by the following relation between a sequence and
its discrete-time STFT:

x(n) = I:Z‘D'W(O)] I E X(r, w)e™ dow (6..28a)

where

wo) = > wn (6.28b)
To derive this synthesis equation, we note that if we take the Fourier transform of both
sides of Eq. (6.9) with respect to the variable » and evaluate the result at frequency
zero, we obtain

X(¢, w) |¢:0 = X(m)W(O) (629)

where we denote the Fourier transform in n of X(n, w) by X(, ®). But because a
Fourier transform evaluated at zero frequency is equal to the sum of all the samples
of the time-domain sequence, we have :

X 0)|gmo = 3 X(r,0) (6.30)

r=—0

Now, dividing Eq. (6.29) by W (0) and substituting for X (¢, @) |40 the expression in
Eq. (6.30), we obtain

X(w) = [W(O)] S X(r,0) ® oy - (6:31)

r=—m

'I'akmg o inverse Fourier transform of Eq. (6.31), which-maps' @ to n, we obtain the
desired relation in Eq. (6.28). hs
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The OLA method carries out a discretized version of the operations suggested
on the right of Eq. (6.28a). That is, given a discrete STFT X (n, k), the OLA method
. synthesizes a sequence y(n) satisfying the following equation:

ye) = [-,;V—‘(a)-] » [1 b (. k)eﬂM] 6.32)

P:l —_—
The term inside the rectangular brackcts on the nght is an inverse DFT that for each
p gives :

%@ = x@w(p-n) (6.33)
The expression for y(n) therefore becomes
y(n) = [W:I 'P‘Z_m x(mw(p - #) (6.34)
which then reduoc;_ to
| y(n) = x(u)l:w(o)] ,‘.2_:., w(p - n} (6.33)
In Eq. (6.35) we note that y(n) will be equal to 'x(n).provided
S we-n=Ww0 (6.36)
= el 5

Furthermore, if the discrete STFT has been decimated in tlme by a factor L, it can be
similarly shown that if the analysis window satisfies

= Ww(0)

,,2_,, w(pL — n) = P (6.37)
then x(n) can be synthesized using the following relation:
= L = 1 2arkn/N
x(n) = [W(O)] ,,Eq [N Z% X(pL, k)e’ (6.38)

Equation (6.37) is the general constraint imposed by the OLA method on the analysis
window. It requires the sum of all the analysis windows (obtained by sliding w(n) with
L-point increments at a time) to add up to a constant, as shown in Fig. 6.20. It is

W{0)/L

n

=t L 2L 3L 4L 5L

Figure 6.20 The OLA constraint visualized in the time domain.
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interesting to note the duality between this constraint and the FBS constraint in Eq.
(6.27) where the shifted versions of the Fourier transform of the analysis window were
required to add up to a constant. For the FBS method we also saw that all finite-length
- analysis windows whose length is less than the frequency sampling factor satisfy the
FBS constraint. Analogously, we can show that the OLA constraint in Eq. (6.37) is
satisfied by all finite-bandwidth analysis windows whose maximum frequency is less
than 27/L, where L is the temporal decimation factor.

To see how finite-bandwidth analysis windows satisfy the OLA constraint,
suppose that the analysis window has maximum frequency w., and consequently
bandwidth 2e,, as illustrated in Fig. 6.21. If we let w(p) denote the sequence
w(pL — n), then the OLA constraint in Eq. (6.37) can be rewritten as

W(0) = w(0)/L (6.39)

where W(w) denotes the Fourier transform of w(p). Noting that w(p) is a sampled
version of w(p — n), we can easily show that

W(w) =% S ety (o — k2m/L) (6.40)

k=—x
If there is no overlap between W(w) and W(w — k27/L) at @ = 0, then Eq. (6.40)
gives the OLA constraint expressed in Eq. (6.39). To have no overlap at @ = 0
between W (w) and W(w — k27r/L) it is easy to see that we must have w, < 2/L,
where w, is the maximum frequency in W(w). We conclude that any finite-bandwidth
window whose maximum frequency is less than 27r/L will satisfy the OLA constraint

in Eq. (6.37).

Wiw)
L -
- et w, % “  Figure 6.21 Example of a Fourier
i | transform of an analysis window with
> 2, = bandwidth 2.

The OLA method has computational properties that differ from those of the FBS
method. Recall that with L = 1, the FBS method with an analysis filter of length N,,
requires on the order of N,, operations per sample of x(n). In contrast, the OLA method
for L = 1 requires on the order of N, Log N, operations per sample of x(n). For
L > 1, the FBS method requires on the order of N2 operations per sample of x(n),
while the OLA method requires on the.order of Log N,, operations per sample of x(n).
That is, for a large decimation rate, the OLA method is significantly more efficient
than the FBS method. The difference is that FBS has to camry out an interpolation to
reduce the decimation factor L to unity while the OLA method uses the decimated
STFT directly.
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6.3.3 Generalized Filter Bank Summation

In this section we present the generalized FBS method, which allows a wider range
of analysis windows than the ordinary FBS method discussed in Section 6.3.1. It also
includes the OLA method as a special case. The generalized FBS method consists of
a two-dimensional smoothing of the discrete STFT followed by the application of the
ordinary FBS method.

The generalized FBS method is motivated by the following relation between a
sequence and its discrete-time STFT:

x(n) = [2 w(m]f Y(r,we " do  ©  (6.41a)

where

Y(n, @) = -—f 2 Fln=r,o— ¢)X(r,$)dp - (6.41b)

and F (n, w) is an arbitrary smoothing function. It should be noted that Eq. (6.41a) has
the same form as the motivating equation (6.20) for the FBS method except that
X(n, ) has been smoothed to form Y (n, w). If we combine Eqs. (6.41a) and (6.41b)
and denote by f(n, m) the inverse Fourier transform (mapping w to m) of F (n, ), then
we obtain ' ;

x(n) = (21 ) N [ 5, flnn = X w)]e"‘" dw (6.42)
where the functlon f(n,m)is genera].ly referred to as the synthesis filter. Note that the
motivating equation for ordinary FBS can be obtained by setting the synthesis filter
to be a nonsmoothing filter, i.e., f(n,m) = 8(m) in Eq. (6.41). It can also be easily
shown that f(n, m) = 1/W(0) yields the synthesis equation in Eq. (6.28) for the OLA
method. In fact, it can be shown [5] that any f(n, m) that satisfies

> flr, —mw(m) = 1 - (6.43)
will make Eq. (6.41) a valid synthesis equation'

. The generalized FBS method carries out a discretized version of the operations
suggested by Eq. (6.42). That is, given a discrete STFT that has been decimated in
time by a factor L, the generalized FBS method synthesizes a sequence y(n) satisfying
the following equation:

= N—1 i

= ~j2mnk/N ,

y(n) = NIZ:G jtE_})f(ﬂ n — L)X (iL, k)e (6.44)
Although Eq. (6.44) contains the time-varying synthesis filter f(n,n — iL), in this
section we consider only the time-invariant case f(n, n — iL) = f(n — iL) because of
its practical importance. For example, we have already seen that the synthesis equa-
tions for both the FBS and OLA methods can be described through time-invariant

synthesis filters. For a time-invariant synthesis filter, Eq. (6.44) reduces to
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®  N-1

y(n == z > fln — .'.L)X(LL k).‘z'*"z’"'"""|r (6.45)
J-—m k=0 ; )
This equation holds only when certain constraints are satisfied by the analysis and
synthesis filters as well as the temporal decimation and frequency sampling factors.
To find these constraints, we first rewrite Eq. (6. 45) as " _
o :
yw =L 'S fo - i)y 3, X(L, Qe (6.46)
and note that the second summation represents an inverse DFT that evaluates as
follows: :

;Ni X(iL, k)e P /N = i x(n — pN)w(iL — n + pN) (6.47)
P:""“

Equation (6.46) therefore becomes

y(n) = i [ > fln - :L)w(:L o pN)]x(n - pN) (6.48)

p=-= Li=—=

For the. right side of Eq. (6.48) to reduce to x(n) we clearly requ::e the term in
rectangular brackets to reduce to 8(p). This condition can then be stated as

L > f(n— iL)w(iL — n + pN) = 8(p) for all n (6.49)
which is a discretized version of the constraint of Eq. (6.43) for a time-invariant
- synthesis filter. This constraint essentially states that the product of f(n) and w(—n)
.- should be such that samples that are an integer multiple of L points apart from each
other add up to unity. Furthermore, N should be such that whenever w.(—n) is shifted
. by an integer multiple of N, then its product with f(n) should be such that samples that
are an integer multiple of L points apart from each other add up to.zero. An easy way
to satisfy the latter constraint is to set N to be larger than or equal to the analysis
window length and then to restrict the synthesis filter length to be the analysis window
length.

The constraint in Eq. (6.49) for generalized FBS reduces to the OLA and FBS
constraints when the- appropriate synthesis window is used for each method. For
example, let us consider how the constraint in Eq. (6.49) reduces to the constraint in
Eq. (6.27) that we derived for the ordinary FBS method. The synthesis filter for the
ordinary FBS method is f(n,m) = 8(m) = f(m) regardless of the analysis filter.
Substituting f(n) = 8(n) in Eq. (6.48), with L = 1, we obtain the synthesis equation

ymw =3 [z a(n—f)w(f—n+p~)]x(n-p~) (6.50)

p=—m [=—0

and the corresponding constraint of Eq. (6.49) becomes

- jm—m

S 8(n — iw(i = n + pN) = 8(p) (6.51)
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Note that the impulse function on the left side of Eq. (6.51) is nonzero oniy ifn=1i.
It is easy to see that in this case, the left-hand side reduces to w{pN). Therefore, Eq.
(6.51) becomes .

w(pN) =é&(p) -~ (652

This can be rewritten as

wem) S 8(m ~ pN) = w(0)5(m) | (6.53)

p=—=

which in the frequency domain is given by

N—-1

> W(w — 2mwk/N) = Nw(0) (6.54)

k=0
This is the same as the condition in Eq..(6.27) for the FBS method. It should also be
noted that if L # 1, and if we let h(n) be the interpolating filter preceding the FBS
method, then the synthesis equation (6.45) with the synthesis filter f(n) = h(n) turns
out to be equivalent to the entire process of interpolation and filter bank summation.

Let us now reconsider in detail the general FBS method as an implementation

of Eq. (6.45). Assuming a finite-length interpolation filter and interchanging the
summations, Eq. (6 '45) can be rewritten as

o =% [ S ftn - DX (L, k)] Rk 5. 5 (6,58)

: k-o i=Ng
where N, and N, are determined by the region of support of the mtetpolauon filter. The
tern within the rectangular brackets

rectn, ) = S fln — DXL, B (6.56)
i=Ng¢
represents the temporal convolution of f(n) and X (nL, k). The computation in Eq.
(6.56) has the same general form as the interpolation required before application of
the FBS method to the discrete STFT with temporal decimation factor L > 1. The
remainder of Eq. (6.55) (i.e., outside of rec(n, k)) is identical to the FBS method; it
requires modulation followed by summation.

The amount of computation required by the generalized FBS method is linearly
proportional to the frequency sampling rate, and it is inversely proportional to the
temporal decimation factor. Let N be the frequency sampling factor for the STFT, L
the temporal decimation factor for the STFT, and K the length of the interpolation
filter. For each sample of x(n) we require N interpolations, followed by a modulation
and summation of the resulting N samples. Each interpolation requires on the order
- of K/L operations. Thus, the N interpolations require a total of NK/L operations. The
modulation and summation involves on the order of N operations. Thus the total
number of operations required per sample of x(n) is on the order of (NK/L) + N =
N(K + L)/L operations. In the next section we will consider another synthesis method
that also utilizes the synthesis filter but offers a different computational tradeoff.
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6.3.4 Helical Interpolation Method

We will now investigate the helical interpolation synthesis method for implementing
Eq. (6.45), which is a discretized version of the STFT synthesis equation (6.42) with
a time-invariant synthesis filter. In the previous section we saw how Eq. (6.45) could
be implemented as a generalized FBS method. In particular, Eq. (6.45) was inter-
preted as an interpolation with a synthesis filter followed by a modulation and sum-
mation of the interpolated output. In contrast, for the helical interpolation method we
interpret Eq. (6.45) as a series of inverse discrete Fourier transforms whose outputs
are combined through a sophisticated interpolation procedure generally known as
helical interpolation. More specifically, we rewrite Eq. (6.45) as follows:

n) =L i il X(iL,k e"ﬂ"*f"] 6.57
y() réff(n z)[Ngo ) (6.57)
where we have assumed that the synt.hesis filter is finite length. The term inside the
rectangular brackets in Eq. (6.57) is an inverse DFT that can be efficiently computed
using the FFT. Denoting the result of this inverse DFT by fi(n), we can rewrite Eq.
(6.57) as ;

yw =L S fn - iLlfm(n) (659
=N, 3
where f; (n) represents a periodic extension of the short—tJme section f,L (n). This
equation represents the computation of y(n) for some particular n as the interpolation
of the nth sample of each of the (N, — N,)/L functions fi(n) centered about n. Since
_the functions fy(n) are periodic with period N, it follows that fd, (n) =
fu(n modulo N). Thus Eq. (6.58) can be rewritten as

N,
y@ =L Y, f(n = iL)f(n modulo N) (6.59)
i=Ng
The fact that » modulo N when plotted as a function of n resembles a helical function
leads to the name helical interpolation for the operation _sliggestcd by Eq. (6.59).
The helical interpolation method for short-time synthesis is computationally
more efficient than the generalized FBS method for realistic situations. If the temporal
decimation factor is L, the frequency sampling factor is N, and the synthesis filter is
K points long, then we have already seen that the generalized FBS method requires
on the order of N(K + L)/L operations per sample of x(n). On the other hand, with
the helical interpolation method we require an FFT with N Log N operations for every
L samples of x(n) and K/L operations per sample of x(n) for the helical interpolation.
Thus, the helical interpolation method requires a total of (K + N Log N)/L oper-
ations per samplc of x(n). If we hold K and L constant, we see that generalized FBS
computation is on the order of N operations per sample while helical interpolation is
on the order of N Log N operations per sample. However, for realistic values of X,
L, and N, helical interpolation is always preferred. To illustrate this, Fig. 6.22 presents
a plot of the number of operations per sample of x(n) as a function of the frequency
sampling factor N. For this figure we have selected typical values for L and X as 32
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Figure 6.22 Comparison of the number of operations per sample used in the helical
interpolation method and the generalized FBS method. It is assumed that the inter-
polation filter is 256 points long and the decimation factor L = 32.' :

and 256. From the figure we see that helical mterpolauon is always better than the
gcncrahzed FBS method for rcahsuc values of N

6.3.5 Weighted Overiap-Add

We will now investigate a third synthesis method for implementing Eq. (6.45). This
method is known as the weighted overlap-add (WOLA) synthesis method and it uses
the same number of arithmetic operations as the helical interpolation method. How-
ever, the order in which the operations are performed is dlfferent for the two methods
and thus leads to different space-time tradeoffs.

: As with the helical interpolation method, the WOLA mthod is best viewed in
terms of Eq. (6.55) when it is rewritten in the form of Eq. (6.57). The WOLA method,

like the helical interpolation method, uses the FFT to compute the inverse DFT
represented in Eq. (6.57) by the term in rectangular brackets. If the inverse DFT of
X(iL, k) is denoted by fi(n), then Eq. (6.57) can be written as in Eq. (6.59). The
difference between the helical interpolation method and the WOLA method lies in the
algorithm used to compute the right side of Eq. (6.59). In the helical interpolation
method, the algorithm was based on an interpretation of that equation as a ﬁltermg
opcranon with respect to the index i. That is, for each n, f(n — iL) as a sequence in
i is multiplied with ff,g (n) and the result is summed over all i to obtain x(r) for the
particular n. If the interpolation filter is X points long, this means that to compute the
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result for a particular n, we need access to approximately K/L short-time sections.
This implies a storage requirement of N,, K/L samples, where N, is the length of each
short-time section. In contrast, the WOLA method is based on interpreting Eq. (6.59)
as an overlap-add procedure with respect to the index n. In particular, for each i,
f(n — iL) as a sequence in n is used to weight the sequence f;(n). The weighted
sequences that overlap each other are then added to obtain x(n) for all n. Since the
weighted sequences are at most K points long, the overlap-add procedure requires at
most K — 1 points from the past to be used for the computation of any particular
sample. This implies a storage requirement of K samples in the WOLA method in
contrast to N, K/L samples needed to be stored for the helical interpolation method.
~ On the other hand, since both the methods are implementing the same equation (6.59),
they both perform the same number of operations. ‘1
It is interesting to note the parallels between the WOLA method and the OLA
method discussed previously. The two methods are essentially the same except that
the WOLA method includes the extra step of multiplying each short-time section with
_ the synthesis window before performing the overlap-add procedure. The extra step is
required because unlike the OLA method, the WOLA method does not place re-
strictions on the analysis window. In fact, the multiplication in the WOLA method of
each short-time section with the synthesis window can be viewed as a transformation
on the analysis window in order to make it satisfy the OLA requirement of Eq. (6.37).

6.4 SHORT-TIME FOURIER TRANSFORM MAGNITUDE (STFTM)
OF A SEQUENCE

In speech applications, the spectrogram that can be related to the magnitude of the
STFT has played a major role. For example, visual cues in the spectrogram have been
related to parameters important for speech perception. In fact, it has been suggested
[6] that the human ear extracts perceptual information strictly from a spectrogram-like
representation of speech. In particular, this rcprcsemauon is a nonnegative time-
frequency function. On the other hand, the STFT is generally a complex-valued
function and for applications such as time-scale modification of speech, estimation of
the phase of this function is computationally difficult [7].. In contrast, a number of
techniques have been developed where the processed signal is estimated from only the
STFT magnitude (STFTM), thus circumventing the phase estimation problem.

~ In this section we introduce the magnitude of the STFT as an alternative time-
frequency signal representation. We will see in this section that many signals can be
represented by the real-valued and nonnegative STFTM. Furthermore, we can de-
velop analysis and synthesis techniques for the STFTM just as we did for the STFT.
We will see that while STFTM analysis is similar to STFT analys:s short-time
synthesis is very different for the two transforms.

As with the discrete-time STFT, the discrete-time STFTM is symmetric and
periodic with period 27r. However, unlike the STFT, the STFTM is a real represen-
tation of the signal x (7). The STFTM can be related to another function, the short-time
autocorrelation, r(n, m), through the following Fourier relationships:
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r(n,m) = %’_ : | X (n, w) fe de (6.60a)
| X(n, ) = 3 r(n,me (6.60b)
where r(n, m) is given by the convolution ofa shdrt—ﬁmi_: section with its time-reversed

version:

r(n, m) = [x(m)w(m — n)] * [x(—m)w(—m — 'n)]
= > x(pw(p — nx(p — mw(p — m — n) (6.60c)

P’—-ﬂ [ 1
with * denoting convolution. Generally, the short-time section x(m)w(m — n) cannot
be obtained from its short-time autocorrelation function [8]. This relationship between
the short-time section, its Fourier transform magnitude, and its autocorrelation is
illustrated .in Fig. 6.23. However, as we will see shortly, the autocorrelations of
short-time sections that have partial overlap in time can be used jointly to solve for
‘the underlying short-time sections. This will enable us under certain conditions to use

the STFTM as a unique representation of the underlying signal.

f,(m) = x(mdw(n — m) _ 1 X, w) 12 rln, m)

m

Alrtlt. [ 2 _,#.rlmmlllh.

L

Figure 6.23 Illustration of the noninvertibility of the short-time Fourier transform magnitude
for a fixed n. The Fourier transform magnitude is one-to-one with the autocorrelation. -

6.4.1 Signal Representation

We will now consider the problem of determining when the discrete-time STFTM can
be used to represent a sequence uniquely. That the STFTM is not a unique represen-
tation in all cases is easily seen from the simple observation that x(n) and its negative,
—x(n), have the same STFTM. We will in fact demonstrate that there are other kinds
of situations where the STFTM is not a unique signal representation. We will then
proceed to show that by imposing certain mild restrictions on the analysis window and
the signal, unique signal representation is indeed possible with the discrete-time
STFTM. In particular, if the analysis window is nonzero over its length N,, then
one-sided sequences can be represented uniquely to within a sign factor except for
those sequences that have N, — 2 or more consecutive zero samples between two
nonzero samples. Furthermore, if we know the sign of just one sample of the sequence
to be represented, the STFTM representation becomes completely unique.

To develop insight into the kinds of situations where a sequence cannot be
represented uniquely by its discrete-time STFTM, let us consider the case of a
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sequence x(n) with a gap of zero samples between two nonzero portions. That is,
suppose x(n) is the sum of two signals x,(n) and x;(n) occupying different regions of
the n-axis as depicted in Fig. 6.24(a). Suppose further that the gap of zeros between
x1(n) and x,(n) is large enough so that there is no analysis window position for which
the corresponding short-time section includes nonzero contribution from x(r) as well
as xy(n). Clearly, in such a situation, the STFTM of x(n) is the sum of the STFT
magnitudes of x(n) and x,(rn). However, we have previously observed that a signal and
its negative have the same STFTM. It follows that x(n) has the same STFTM as the
signals obtained from the differences x,(n) — x(n) and x,(n) — x,(n) shown in Figs.
6.24(b) and (c). We conclude that if there is a large enough gap of zero samples, there
will be sign ambiguities on either side of the gap. Consequently, any uniqueness
conditions must include a restriction on the length of the zero gaps between nonzero
portions of the signal. . '

Let us now see how a one-sided sequence x(n) can be-recovered from its
discrete-time STFTM when the analysis window is nonzero over its finite duration and
x(n) satisfies the appropriate zero-gap restriction. The key to recovering x(n) is the
observation that | X (n, w) | has additional information about the short-time sections of
x(n) besides their spectral magnitudes. This information is contained in the overlap of

_ the analysis window positions. If the short-time section at time n is known, then the
signal corresponding to the spectral magnitude of the adjacent section at time n + 1
must be consistent in the region of overlap with the known short-time section. In
particular, if the analysis window were nonzero and of length N,,, then, as illustrated

N, —1 .
xy(n) - xg(m)
xq(m =x5(n)
n
i /w(n +1—-m)
w<ﬂ.-m} T.....T
—x,(n) x4(n) T il B

7 llll:r”””“ m

. Figure 6.25 Illustration of the comnsistency required
Figure 6.24 Three sequences with the among adjacent short-time sections. Note the samples
same STFTM. that are common to the adjacent sections.
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in Fig. 6.25, after dividing out the analysis window, the first N,, — 1 samples of the
segment at time n + 1 must equal the last N, — 1 samples of the segment at time n.
Therefore, if we could extrapolate the last sample of a segment from its first ¥, — 1
values, we could repeat this process to obtain the entire signal x(rn).

To develop the procedure for extrapolating the next sample of a sequence using
its STFTM, assume that the sequence x (n) has been obtained up to some time n — 1.
Thus, as illustrated in Fig. 6.26, the first N, — 1 samples under the analysis window
positioned at time n are known. The goal is to compute the sample x(n) from these
initial samples and the STFT magnitude | X(n + 1, @) | or, equivalently, r(n, m). Note
that the last value of the short-time autocorrelation function r(n, N,, — 1) is given by
the product of the first and last value of the segment

P8, N, = 1) = WOx(Iw®, — Dx(e = W — D))~ (6.61)
as illustrated in Fig. 6.27. Therefore x(n) is given by b
x(n) = HEN B (6.62)

wOw(N, = Dx(n — N — 1))

If the first value of the short-time séction, i.e., x(n — (N, — 1)), happens to equal
zero, we must then find the first nonzero value within the section and again use the

x(m)

x{n - N, +1)

N, -1 2N, - 1

ple =i 2 x(nlxin = N, + 1) = x(0) x(N,, = 1)

me —m

m N, =1

Figure 6.26 llustration of the samples Figure 6.27 Computation of the last nonzero auto-
under w(n — m). correlation sample (assuming a rectangular analysis window).
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product relation given by Eq. (6.62). We can always find such a sample since we have
assumed at most N, — 2 consecutive zero samples between a.ny two nonzero samples
of x(n).

6.4.2 STFTM Analysis

Like the STFT, the STFTM can be used for analyzing the nme-varymg ‘spectral
characteristics of a sequence. To carry out such STFTM analysis on a digital com-
puter, we need to introduce the discrete STFTM. By sampling the frequency dimen-
sion of the STFTM, |X(n, w)|, we obtain the discréte STFTM, which is defined as
| X(n, k)|, the magnitude of the discrete STFT. In the last section, we saw that under
certain conditions, the discrete-time STFTM is 2 unique signal representation. That
theory can be easily extended to the discrete STFTM. In particular, the uniqueness
conditions of the previous section relied on using the short-time autocorrelation
functions of adjacent short-time sections that are ovcrlappmg in time. These auto-
correlation functions can be obtained even if the STFTM is sampled in frequency.

That is, if the analysis window is N,, points long, then each short-time autocorrelation
function is at most 2N, — 1 points long and thus can be obtained (without aliasing)
from 2N,, — 1 frequency samples of the STFTM. Therefore, the uniqueness condi-
tions of the discrete-time STFTM extend without change to the discrete STFTM with
adequate frequency sampling. To consider the effects of temporal decimation with
factor L, we note that adjacent short-time sections now have an overlap of N, — L
instead of N, — 1. The successive extrapolation procedure discussed in the previous
section can be extended to this case by requiring the extrapolation of the L last samples
of a short-time section, using the first N, — L samples and the short-time auto-
correlation function of that section. This can be accomplished provided the overlap
between adjacent short-time sections is greater than N,,/2 and there are no zero gaps
of length greater than N,, — 2L. In addition, to initialize the extrapolation procedure,
L initial samples of the underlying sequence have to be known. There are also a variety
of other uniqueness conditions that express the tradeoff between time decimation and
frequency sampling [9,10].

Having established the kinds of conditions required for the discrete STFTM to
be a valid signal representation, we now discuss the various implementation ap-
proaches for the discrete STFTM. Since the STFTM and the STFT are closely related,
their analysis implementations are similar. In particular, we can use the FFT and filter
bank approaches of STFT analysis for STFTM analysis.

The FFT implementation of STFT analysis can be extended to STFTM analysis
in a straightforward manner. Recall that the FFT implementation of the discrete STFT
involved the computation of a time-aliased version of each short-time section followed
by an FFT. For STFTM analysis, we can follow the FFT by the magnitude operation
applied to each output sample from the FFT.

The filter bank implementation of STFTM analysis also parallels the STFT
implementations. From Section 6.2.3, we know that there are two types of filter bank
implementations for the STFT—the lowpass filter and bandpass filter imple-
mentations. Each of these implementations has a corresponding implementation for
the discrete STFTM. The STFTM lowpass implementation shown in Fig. 6.28 merely
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cos{w,n)
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Figure 6.28 Implementation with real operations of each branch of the lowpass
filter bank for STFTM analysis. _

involves cascading the magnitude operation after the computation of the STFT. How-
ever, the bandpass implementation shown in Fig. 6.29 is considerably simplified for
the STFTM. This happens because the complex modulation following the bandpass
filter is eliminated by the magnitude operation.

> win) coslw,nl = ()3

( VV2— | X(n, k) |

xin)

> win) sinfwen) —e ()2 =

Figure 6.29 Implementation with real operations of cach branch of the bandpass
filter bank for STFTM analysis.

6.4.3 STFTM Synthesis

A number of methods [9] are available for synthesizing a sequence from its discrete
STFTM. These methods are not related in any simple way to the STFT synthesis
methods because of the nonlinear mapping from the STFT to the STFTM. In this
section, we will discuss only one of these methods as a way of illustrating the basic
issues involved. \ -

The synthesis method we will now discuss is based on the sequential extrapo-
lation approach, illustrated in Fig. 6.30. For synthesizing a sequence x(n) from
|X(nL, k)|, we assume that the analysis window w(n) is a known sequence with no
zero samples over its finite length. Furthermore, these nonzero samples are in the
region 0 < n < N,,. The signal x(n) has no more than N, — 2L consecutive zeros
separating any two nonzero samples. It is also assumed that the first nonzero sample
of x(n) falls at n = 0. Finally, we assume that the L samples of x(n) for0 =n < L
are known. The L known samples of x(n) completely determine the short-time section
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m Figure 6.30 The sequential
: * extrapolation approach for STFTM
-synthesis.  ~

corresponding to |X(nL,k)| for n = 1. The short-time section corresponding to
|X(nL, k)| for n = 2 can then be extrapolated from its DFT magnitude and its known
samples in the region of overlap with the previously determined short-time section.
This process continues as the complete extrapolation of each new short-time section
makes possible the extrapolation of the next overlapping short-time section. The
synthesis stops when a short-time section is encountered for which the known samples
are not sufficient to complete the extrapolation. For finite-length signals the synthesis
stops after all the nonzero short-time sections have been extrapolated.

6.5 SIGNAL ESTIMATION FROM MODIFIED STFT OH STFTM

In many applications it is desired to synthesize a signal from a ume-frequency function
formed by rnodlfymg an STFT or STFTM of a 31g-na.l we wish to process. Such
modifications may arise due to quantization errors in; for example, speech coding or
purposeful time-varying filtering for signal processing applications such as speech
enhancement. An arbitrary function of time and frequency, however, does not neces-
sarily represent the STFT or STFTM of a signal. This is because the definitions of
these transforms impose a structure on their time and frequency variations. In partic-
ular, because of the overlap between short-time sections, adjacent short-time segments
cannot have arbitrary variations. A necessary but not sufficient condition on these
variations is that the short-time section corresponding to each time instant must lie
within the duration of the corresponding analysis window. For example, the short-time

séction corresponding to X (0, w) is given by fo(n) = x(n)w (—n) and therefore it must
lie within the duration of w(—n). Even if this time-placement constraint is satisfied,
a further condition that the STFT or STFTM must satisfy is that adjacent short-time
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sections should be consistent in their region of overlap. When the STFT or STFTM
of a signal is modified, the resulting time-frequency function does not generally satisfy
such constraints. In this section we consider various ways of estimating signals from
such arbitrary time-frequency functions. '

The synthesis methods we discussed in Sections 6.3 and 6.4 were derived with
the assumption that the time-frequency functions to which they are applied satisfy the
constraints in the definitions of the STFT or STFTM. Given a function that does not
satisfy those constraints, the synthesis methods have no theoretical validity for their
application. However, under certain conditions, those methods can be shown to yield
reasonable results in the presence of modifications. For example, in Section 6.5.1 we
will illustrate conditions under which the FBS and OLA methods yield intuitively
satisfying results when the STFT has been modified with a multiplicative factor. In
Section 6.5.2 we discuss a theoretically based approach to signal synthesis from
modified STFT. A similar approach is then discussed in Section 6.5.3 for signal
estimation from the modified STFTM.

6.5.1 Heuristic Application of STFT Synthesis Methods

Historically, signal estimation from modified STFT has been performed by applying
the FBS and OLA synthesis methods of Section 6.3 on time-frequency functions that
are not valid STFT functions. For example, if the valid STFT X (#, w) is multiplied

"by a linear phase factor e/ the resulting time-frequency function Y (n, @) is not a
valid STFT. The reason for this is that the time-placement constraint imposed by the
STFT definition is violated by the linear phase modification. In particular, if w(—n)
falls between n = N;and n = N,, then the time-placement constraint requires that the

~ inverse Fourier transform of Y (0, w) should fall between n = N, and N,. However,
because of the linear phase factor the inverse Fourier transform of Y (0, w) is shifted
by no. Even though Y (n, w) is not a valid STFT, it is desirable that applying a synthesis
method to Y(n, @) should yield a reasonable result.

Such heuristic application of the synthesis methods has been practically utilized
in many signal processing applications. Since the synthesis methods have no the-
oretical basis for their application in such situations, it is common to analyze the
effects that the methods have on the synthesized signal [11].

In this section, we will contrast the FBS and OLA synthesis methods when they
are applied to the STFT that has been modified through multiplication with another
time-frequency function. For both methods the resulting synthesized signal can be
shown to be a time-varying convolution between x(n) and a function p(m,m) as
illustrated in Fig. 6.31(a). Let us assume that the STFT X (n, k) has been modified to
give the function Y (n, k):

Y(n, ) = X(n, OP(n. k) (6.63)

where P (n, k) is the modifying function. Also let 27/N be the frequency sampling
factor for X (n, k) and let p (n, m) for each n be the N-point inverse DFT of P (n, k). For
the FBS method it can be easily shown that §(n, m) can be obtained by multiplying
p(n,m) for each n by the window function w(m), as stiown in Fig. 6.31(b). On the
other hand, for the OLA method it can be similarly shown that j (n, m) can be obtained
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. Figure 6.31 Signal synthesis from a multiplicatively modified STFT using FBS and OLA

methods. (a) p(m, n) relates the original x(n). to the synlhesnzed mgna.l y(r:), (b} and (c)
. illustration of how p(m, n) is obtained for FBS and OLA, respectively.

by oonvolvmg p(n,m) for each m by the window function w(n), as ﬂlustrated in Fig.
6.31(c). It is interesting to note that if p(n,m) is independent of n, i.e., p(n, m) =
p(m), then the FBS method results in a synthesized signal that is the convoluuon of
x(n) with p(n)w(n). On the other hand, the time-invariant case for the OLA method
results.in a synthesmed signal that is the convolution of x(n) with p(n).

In this section we have seen how the effects of applying the FBS and OLA
methods to the modified STFT may be analyzed for the case of multiplicative
modifications. A similar analysis may also be carried out for situations where a
time-frequency function has been added to a valid STFT [11].

65.2 Least-Squares Signal Estimation from Modified STFT

‘Rather than, applymg the FBS and OLA methods in a brute force manner, we will now

; con51der a different approach that is specifically designed for signal estimation from
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the modified STFT. In this approach we estimate a signal whose STFT is closest in
a least-squares sense to the modified STFT. More specifically, we wish to minimize
the mean-square error between the discrete-time STFT X, (n, w) of the signal estimate
and the modified discrete-time STFT, which we denote by Y (n, w). This optimization
results in the following solution for the estimated signal x, (n):
S wim = nful)
x.(n) = —— (6.64)
S wm-n

m=—x

where f.(n) is the inverse Fourier transform of the frequency variation at time m of
the modified STFT Y(m, w). Since in practice we have only the discrete function

Y (n, k), the short-time sections f, (m) can be obtained provided the frequency sampling
" factor N is large enough to avoid ahasmg in the short-time sections. The specific
distance measure used in the minimization is the squared error between X, (n, ) and
Y(n w) mtegrated over all @ and summed over all n:

D[X (n Dl = E f ]x (m m) Y(m w) |2 do  (6.65)

. mes o0

Note that a.[though the distance measure is deﬁnqd p}{er continuous Erequcncy, the
solution for x,(n) that minimizes the distance measure does not involve continuous
frequency. Howcvcr, it is required that the frequency sampling be large enough so that
unaliased versions of the short-time sections are obtained.

The solution in Eq. (6.64) extends in a simple manner to the case involving
temporal decimation. Specifically, if L is the temporal decimation factor, then the
solution in Eq. (6.64) becomes

mé_w w(mL — M ()

xln] = =— (6.66)

In general, the sum in the denominator of the right side of Eq. (6.66) is a function of
n. However, there exist analysis windows w(n) such that the sum in the denominator
is independent of n. It should be noted that the sum in the denominator has the same
form as the sum in the constraint equation (6.37) for the OLA method except that the
analysis window is replaced by its square. That is, any window whose square satisfies
the OLA constraint will make the denominator sum in Eq. (6.66) independent of n.
If this happens, then Eq. (6.66) can be simply interpreted as an overlap-add operation
among the short-time sections corresponding to ¥ (n, w). That is, if the square of the
analysis window satisfies the OLA constraint of Eq. (6.37), then the solution for x, (n)
that minimizes Eq. (6.65) is obtained by essentially applying the WOLA synthesis
method to the modified STFT. In particular, if the analysis window is rectangular, the
WOLA method reduces to the OLA method. We can thus conclude that applying the
OLA method with brute force to a modified STFT with a rectangular analysis window
will indeed give the solution that minimizes Eq. (6.65).
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| 6.5.3 Least-Squares Signal Estimation
from Modified STFTM

The least-squares approach can also be used for signal estimation from the modified
STFTM. The resulting method estimates a sequence x,(n) from a desired time-
frequency function | X,(n, w) |, which is a modified version of an original STFTM,
| X (n, w) |. The method iteratively reduces the following distance measure between the
STFIM |X.(n, w)| of the signal estimate and the modified STFTM | X,(n, o) |:

D[|X.(n, @], | Xa(n, @) [] = I [Xe(m, )| = |Xa(m, @) [P dw (6.67)
The solution is found iteratively because as yet no closed-form solution has been
~ discovered for x, (n) using the distance criterion in Eq. (6.67). The iteration takes place
as follows. An arbitrary sequence (usually white noise) is selected as the first estimate
x}(n) of x.(n). We then compute the STFT of x!(n) and modify it by replacing its
magmtude by the desired magnitude | X,(n, ®)|. From the resulting modified STFT,
we can obtain a signal estimate using the method based on Eq. (6.64) in the previous
section. This process continues iteratively, as shown in Fig. 6.32. In particular, the
(i + I)St esumate x‘“ (n) is first obtained by computing the STFT X.(n, w) of x!(n)

Given STFT magnitude | X {n, w} |
Initial estimate of x,(n), x, lin)

xin)

Compute
STFT

Xi(n, w)

Substitute given | X, (n, w) |
Xiln, w)

Yila, w) = | X,(n, w) | ———
o | X{n, w)

] Yi(n, w)

Estimate signal from Y'(n, w);.
E wim - n) — . I Yiim, w)ef=" dw

Ew’(m-nl

{4-1("'

xi* Mn) " Figure 6.32 Least-squares signal
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and replacing its magnitude by | X4(n, w) | to obtain Y(n, ). The signal with the STFT
closest to Y'(n, w) is found by using Eq. (6.64). All steps in the iteration can be
_ summarized in the following update equation:

E w(m“n)—J Yi(m, w)e! dw

m= =0

x(n) = (6.68a)
2 wz(m - n)

m=-a%

where

i e(m, w)

Yim, w) = | Xs(m, w) | |X' o

It has been shown [12] that this iterative procedu_re reduces the distance measure of

Eq. (6.67) on every iteration. Furthermore, the process converges to one of the critical

points, not necessarily the global minimum of that distance measure. Although we

restricted the preceding discussion to the discrete-time STFT, these results are easily

extendable to the case where the STFT has been decimated in time. Furthermore, even

with discrete frequency the method appears to 1terat1vely reduce the distance measure

in Eq. (6.67) provided the frequency sampling factor is sufficiently large to avoid
aliasing when determining the short-time sections corresponding to Yi(n, w).

(6.68b)

6.6 TIME-FREQUENCY DISTRIBUT!ONS :

Over the ycars, various frameworks have been proposed [13 14] for capturing the
largely intuitive notions of “instantaneous™ or “time-varying” spectra. These frame-
works generally have as their central component a signal transform (or “distribution”)
that maps the original signal into a two-dimensional space with one dimension asso-
ciated with time and the other with frequency. Clearly, the STFT and STFTM share
these characteristics. Furthermore, as we illustrate in this section, the STFT and
STFTM are closely related to well-known time-frequency distributions such as the
complex energy density (CED) [13], the ngner distribution [14] and the ambiguity
function [15].
The discrete-time CED of a sequence x(n) is defined by

E:(n, ) = x(n)X*(w)e 7 (6.69)

where * denotes complex conjugation. The CED has a number of properties that are
often associated with “instantaneous” spectra. For example, integration along the
frequency dimension of the CED gives the instantaneous power | x(#) |*. Conversely,
summation along the time dimension of the CED gives the spectral power | X (w) |? at
the corresponding frequency in the underlying signal. Furthermore, the CED is in-
vertible to within a sign factor. The basic idea is to let @ be zero in Eq. (6.69). We
thus obtain x(n)X *(0). The magnitude of X *(0) can be obtained by summing E, (n, 0)
for all n. In summary, x(n) to within a sign factor is represented by
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E,(n,O)
E E.(n,0)

The CED is related to the STFTM th:ough a convolution process. In particular,
it can be shown that the square of the STFTM is equal to the two-dimensional
convolution of the CED of the original signal with the CED of the analysis window
used in the STFT. For example, if E,(n, @) is the CED of x(n), E, (n, @) is the CED
of w(n), and | X (n, w)| is the STFTM of x(n), then

y(n) = (6.70)

1X(n, @)} = L E.(k, 0)E,(n — k, @ + v) do (6.71)
. k=-x

To derive this relationship, we observe that the CED of the convolution of two

sequences is equal to the convolution (in time) of the CED of each sequence. That is,

if y(n) = xi(n) * x,(n), then |

Emo) = 3 EkoEn— ko) 6.72)

k=—x=

~ Integrating both sides of Eq. (6.'?2) with respect to frequency, we obtain

j E,(n, ®) do = J S E (ks @E.(n — k, o) do (6.73)
k=—=

If we let x,(n) = x(n)e’™ and x,(n) = w(n), then the left-hand side of Eq. (6.73)

becomes the square of the STFTM of x(n), and Eq. (6.73) can be rewritten as

1X(n,0) R~ 2 g Edk, m)E..,(n ko + o) do (6.74)
where we have used the fact thal: the CED of x(n)e’™ is E.(n, @ — v). Interchanging
v and @, we see that Eq. (6.74) becomes identical to Eq. (6.71). We have thus
established the convolutional relationship between the CED and the STFTM. Similar
convolutional relationships exist between the STFTM and other time-frequency func-
tions such as the Wigner distribution [14].

It is also interesting to note that the ambiguity function (AF), well known in the
radar field, is also closely related to time-frequency functions such as the STFT, the
STFTM, and the CED. The ambiguity function (AF) of a sequence x(n) is expressed
as

An,w) = > x(mx(m — n)e’ (6.75)
This function can be viewed as the STFT of x(n) obtained with respect to the analysis
window x(—n). Furthermore, the two-dimensional Fourier transform of the AF is the
CED of x(n). Since the CED is invertible to within a sign factor, it follows that the
same is true for the ambiguity function. We can also show that the two-dimensional
Fourier transform of the STFTM of a sequence is equal to the product of the ambiguity
functions of the sequence and analysis window, respectively. This follows easily by
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taking the two-dimensional Fourier transform of Eq. (6.71) and mapping the CED
convolution into a product of ambiguity functions. In fact, this relationship can be
used to show that the discrete-time STFTM is invertible to within a sign factor
provided the length of the analysis window is longer than that of the signal being
represented [16]. In particular, the recovery procedure consists of taking the two-
dimensional Fourier transform of the square of the STFTM and dividing the result by
the AF of the analysis window. We thus obtain the AF of the original sequence. We
can obtain the original sequence (to within a sign ambiguity) from this AF by taking
its Fourier transform and using the result in Eq. (6.70). The restriction to long analysis
windows results from the division by the analysis window AF in this procedure. For
situations involving shorter analysis windows, a dlfferent approach such as the one
-descnbed in Section 6.4 has to be adopted

- 6.7 APPLICATIONS

- “The STFT concepts introduced in this chapter are used in a number of signal pro-
cessing applications. Most prominent among these applications is speech processing;
however, the STFT is also useful in such diverse areas as acoustic beamforming and
image restoration. In this section, we present some examples that illustrate the role of
the STFT in such applications.

6.7.1 Speech Processmg

* The STFT has played a major role in speech processing applications such as time-scale
modification [7] and bandwidth reduction [17]. In time-scale modification, we are
" interested in changing the apparent rate of articulation of the original speech while
maintaining its perceptual quality. Controls for time-scale modification on a tape
recorder, for example, would allow users to rapidly scan large quantities of material
or slowly play back difficult to understand speech such as a foreign language. For the
blind, this is a particularly encouraging prospect since even normal recorded speech
* offers a reading rate two to three times that for Braille. In bandwidth reduction, we
are also interested in preserving the perceptual quality of the speech in a parsimonious
digital representation for limited-bandwidth transmission. To understand why the
STFT is suitable for such applications, it is useful to examine the nature of the speech

. waveform in terms of a simplified model for speech production.

Speech can be modeled as the output of a linear time-varying filter that approx-
imates the transmission characteristics of the vocal tract, as illustrated in Fig. 6.33.
The input to the filter is constantly changing. Voiced sounds (e.g., the vowel e) are
produced by exciting the vocal tract with approximately periodic pulses of airflow
caused by vibration of the vocal cords at some time-varying fundamental frequency
or “pitch.” Unvoiced or what is often referred to as fricative sounds (e.g., s) are
produced by exciting the vocal tract with a noiselike excitation generated by forcing
air through the constricted vocal cavity. Thus the STFT of a voiced sound takes on
a harmonic appearance, while the STFT of an unvoiced sound is noiselike, as depicted
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Voiced excitation

Vocal tract

" Linear
=0 time-varying j=———x(n)

- ; . filter ~
Unvoiced excitation .
111 L Inl L1 / _
O O | _ %

Figure 6.33 Speech prodncuon model

in Fig. 6.34. More gcucrally, the speech productlon mechanism can generate various
combinations of these sounds as, for example, voiced fricatives. Typically, each of
these sounds lasts for about 20 ms, during which spectral content of the speech
remains stationary except for gradual changes leading into the next sound. Stationarity
of spectral content is important for bandwidth reduction, while the rate of change of
spectral content is important for time-scale modification. In particular, bandwidth
reduction of speech is often achieved by cfﬁcmntly representing the spectral content
of each stationary sound. On the other hand, time-scale modification is obtained by
increasing or decreasing the rate at which the spectral content changes from one sound
to another.

Various speech researchers have established a relationship between the STFT
and time-scale modification of speech. In particular, it is generally agreed that time-
. scale modification of speech leads to a linear time scaling of the STFTM. The effect -
- of time-scale modification on the STFT phase has also been modeled, but this turns

out. to be a rather complex and nonlinear effect. However,- this effect has been
explicitly taken into-account in the work of Portnoff [7]. In his technique, the linearly
time-scaled STFTM and the nonlinearly processed STFT phase are combined to
obtain a modified STFT. This modified STFT is used in the helical interpolation
method of Section 6.3.4 to synthesize the desired speech with time-scale modification.
An alternative. approach to time-scale modification ignores the STFT phase entirely.
Instead, the STFTM is linearly time-scaled and. used as input to the least-squares
technique of Section 6.5.3 for signal estimation from the modified STFTM. The
resulting signal has an STFTM that is closest in the least-squares sense to the linearly
time-scaled STFTM.

Another common speech apphcauon of the STFT is in the area of bandwidth
reduction. The digital representation of the speech waveform is often impractical for
speech transmission over a limited-bandwidth channel. For example, speech sampled
at 8000 samples/s with a 12-bit accuracy contains 96,000 bits/s, and -hence a band-
width requirement too large for most practical channels. The purpose of the vocoder
(voice coder) is to reduce the bandwidth requirement by reducing the required number
of bits transmitted. One approach to bandwidth reduction is to quantize either the
discrete STFT or parameters of an STFT model; according to their relative perceptual
importance. These quantized values are transmitted and handed to a synthesizer to
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obtain a signal estimate. Two illustrative examples of bandwidth reduction techniques
are based respectively on the filter bank and the Fourier transform interpretations of
the STFT.

A bandwidth reduction method [ 18] based on the filter bank interpretation of the
STFT divides the speech band (0-3.2 kHz) into 48 “subbands.” A filter bank with
a filter at the center frequency of each of these subbands is used to compute a discrete
STFT. The output of each of these filters is then quantized (bits per sample) differently
for each subband. In particular, subbands of less perceptual importance are quantized
more coarsely. Generally, the temporal decimation rate and frequency sampling rate
are chosen such that the number of samples in the discrete STFT is equal to the number
of samples in the original sequence. Thus, the key to bandwidth reduction lies in the
coarse quantization of various subbands. The resulting modified STFT is then trans-
mitted over a limited-bandwidth channel. At the receiving end we can use any of the
synthesis techniques in Section 6.5 for signal estimation from a modified STFT.

Another approach to bandwidth reduction is based on the Fourier transform view
of the STFT and is known as adaptive transform coding [19]. In this method a DFT
computation results in typically 64512 uniform frequency samples, thus requiring a
much larger time decimation interval L than does the subband technique. The large
number of frequency samples in this method make evident important perceptual
information about the underlying speech. This information is then used to adaptively
quantize the discrete STFT. The signal estimate at the receiver end is obtained by the
weighted overlap-add synthesis method of Section 6.3.5.

6.7.2 Sénsor Array Processing

The short-time Fourier transform has also been utilized in applications such as sonar
and geophysical exploration [20]. In these applications, arrays of spatially distributed
sensors such as microphones are often used to determine various characteristics of
propagating waves. In particular, the problem of isolating wave components from a
particular direction has received considerable attention. This beamforming problem
can be addressed in a number of ways, including a frequency-domain method in which
the short-time Fourier transform plays a central role.

To isolate the wave components from a particular direction, the basic idea is to
delay each sensor signal in such a way that the wave components of interest are
time-aligned over all sensors. Thus if we sum the sensor signals, the desired wave
components will add coherently while energy from other directions will add incoher-
ently. The signal resulting from this delay-and-sum operation is thus considered an
estimate of the wave components from the desired direction. If the signal from the ith
sensor is digitized to form the sequence x;(n), the delay-and-sum operation is ex-
pressed as '

1 ¥=1

x(n) = - E) x(n — n;) (6.76)
where n; is the delay applied to the ith sensor signal and there are a total of N sensors.
For the frequency-domain method of beamforming, we express Eq. (6.76) in the
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frequency domain. That is, taking the Fourier transfonn of both sides of Eq. (6.76),
we obtain

X(@ = 2 X(@eim (6.77)
t-O .

In practice, the frequency content of the sensor signals slowly changes as a function
of time. For example, the propagating waves may be originating from sources whose
directions are slowly changing with respect to the array. To capture this time de-
pendence of the frequencies coming from a particular direction, the frequency-domain
beamformmg method employs the STFT for each sensor mgnal instead of the Fourier
transform in Eq. (6.77). We thus obtain

Xo(w) = = E Xi(n, w)e 7% . - (6.78)
:-0
where X;(n, ) is the STFT of x;(n) and X,(w) is the final result of the frequency-
. domain beamforming method. The time-frequency function X,(w) represents the
. time-varying frequency content of the wave components coming from a particular
direction. For digital implementations, the frequency variable is discretized, resulnng
. in the use of the discrete STFT.

6.7.3 Image Processing

I.mage processing techniques in the frequency domain such as Wlener ﬁltermg for
noise reduction generally are based on the assumption that the frequency content of
an image is the same over all subsections of the image. However, this assumption is
typically mot valid for many practical images since they usually consist of many
different regions with disparate characteristics. To overcome this problem, one ap-
proach is to divide the image into smaller sections and process each of them separately;
the size of the sections is chosen to be small enough so that most sections consist of
a uniform pattern. A convenient mechanism for implementing this idea is a two-
dimensional extension of the short-time Fourier transform. This extension of the
STFT to a two-dimensional signal x(n,, n;) is given by

X(n,ny, 0, @) = D > x(my,mw(ny — my,ny — meHrmram  (6.79)
my m3a

where w(n,, n;) is the two-dimensional analysis window. As in the case of the one-
dimensional STFT, the two-dimensional STFT can also be interpreted as a set of
Fourier transforms obtained by sliding the analysis window (in two dimensions now)
over the original signal and taking the Fourier transform of the product at each new
position. Thus the analysis window helps divide the original image into separate but
overlapping sections, each the same size as the analysis window. The convenience of
the STFT derives from the fact that after we have processed the separate sections of
the image, it is necessary to combine the sections to form the entire processed image.
The overlap-add synthesis technique for the STFT is ideal for accomplishing this
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purpose. In particular, for the OLA method to succeed we require that the overlapping

analysis window positions should sum to a constant over the entire image. A partic-

ularly convenient way of generating two-dimensional analysis windows with such a

property makes use of one-dimensional windows that satisfy the OLA constraint. In

particular, if w;(n) and wy(n) are any two analysis windows satisfying the OLA

constraint, then it can be shown [21] that the window w(n;, ny) = wi(n,)wz(nz)
; satlsﬁe.s the two—duncnsmnal OLA constraint.

REFERENCES .

‘1. R. M. Fano, “Short-Time Autocorrelation Functions and Power Spectra,” J. Acoustical
Soc. Amer., Vol. 22, pp. 546550, Sept. 1950.

2. M. R. Schroeder and B. S. Atal, “Generalized Short-Time Power Spectra and Auto-
correlation Functions,” J. Acoustical Soc. Amer., Vol. 34, pp. 1679-1683, Nov. 1962.

3. W. Koening, H. K. Dunn, L. Y. Lacey, “The Sound Spectrog:raph e Acousncal Soc

- Amer., Vol. 18, pp. 19-49, 1946.

4. A. V. Oppenheim, “Speech Spectrograms Using the Fast Fourier Transform,” IEEE
Spectrum, Vol. 7, pp. 57-62, August 1970. ’

5. M. R. Portnoff, “Representation of Digital Signals and Systems Based on the Short-Time
Fourier Transform,” IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 28,
pp. 55-69, Feb. 1980.

6. J. C. Anderson, “Speech AnalysmlSynthcsxs Bascd on Pcrccpuon * Ph D Thesm, ;
Cambridge, MA, Sept. 1984. -

7. M. R. Portnoff, “Time-Scale Modification of Speech Based on Short-Time Fourier Anal-
ysis, IEEE Tran: Acausrzcs Speech, andSzgnaI Processmg, Vol. 30 pp 374—390 June
1981.

8. A. V. Oppenheimand R. W. Schafer, Digital S:gnaIProces.s'mg, Prenuce-Ha]l Englewood
"Cliffs, NIJ, 1983.

9. S. H. Nawab, T. F Quatierd, and J. S. Lim, “Signal Reconstruction from Short-Time
Fourier Transform Magnitude,” IEEE Trans. Acoustics, Speech and S:gna! Processing,
Vol. 31, pp. 986-998, Aug. 1983.

10. D. Israelevitz, “Some Results on the Time-Frequency Sampling of the Short-Time Fourier
Transform Magnitude,” IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 33,
pp. 1611-1613, Dec. 1985.

11. J. B. Allen and L. R. Rabiner, “A Unified Theory of Short_—Tlme Spectrum Analysis and
Synthesis,” Proc. IEEE, Vol. 65, pp. 1558-1564, Nov. 1977. '

12. D. Griffin and J. S. Lim, “Signal Estimation from Modified Short-Time Fourier Trans-
form,” IEEE Trans. Acoustics, Speech, aud S:gnai Processing, Vol. 32, pp. 236-243
April 1984.

13. A. W. Rihaczek, “Signal Energy Distribution in the Time and Frequency Domain,” I[EEE
Trans. Information Theory, Vol. 10, May 1968.

14. E. Wigner, Physical Review, No. 40, p. 749, 1932.

15. A. V. Oppenheim, Applications of Digital Slgnal Processmg, Prentice-Hall, Englewood

" 'Cliffs, NJ, 1978.



Chap. 6  References 337

16. R. A. Altes, “Detection, Estimation, and Classification with Spectrograms,” J. Acoustical
Soc. Amer., Vol. 67, pp. 1232-1246, April 1980.

17. L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals, Prentice-Hall,
Englewood Cliffs, NJ, 1978.

18. R. E. Crochiere, “On the Design of Sub-Band Coders for Low-Bit Rate Speech Commu-
nication,” Bell Syst. Tech. J., Vol. 65, pp. 747-770, May-June 1977.

19. 1. S. Tribolet and R. E. Crochiere, “Frequency Domain Coding of Speech,” IEEE Trans.
Acoustics, Speech, and Signal Processing, Vol. 27, pp. 512-530, Oct. 1979.

20. D. E. Dudgeon and R. W. Mersereau, Multidimensional Sigral Processmg. Prentice-Hall,
Englewood Cliffs, NJ, 1984.

21. J. 8. Lim, “Image Restoration by Shorl~Space Spcctral Subtmctlon," IEEE Trans. Acous-
tics, Speech, and Signal Processing, Vol. 29, pp. 191-197, Aug. 1980.



/

Two-Dimensional
Signal Processing

Jae S. Lim -
Massachusetts Institute of Technology

7.0 INTRODUCTION

At a conceptual level, there is a great deal of similarity between two-dimensional
(2-D) signal processing and one-dimensional (1-D) signal processing. In 1-D signal
processing, the concepts discussed are filtering, Fourier transforms, discrete Fourier
transforms, fast Fourier transforms, etc. In 2-D signal processing, we again are
concerned with concepts such as filtering, Fourier transforms, discrete Fourier trans-
forms, and fast Fourier transforms. As a consequence, the general concepts that we
develop in 2-D signal processing can be viewed, in many cases, as straightforward
extensions of the results in 1-D signal processing. '

At a more detailed level, however, considerable differences exist between 1-D
and 2-D signal processing. One major difference is the amount of data involved in
typical applications. In speech processing, an important 1-D signal processing appli-
cation, speech is typically sampled at a 10-kHz rate and we have 10,000 data points
to process in a second. However, in video processing, where processing an image
frame is an important 2-D signal processing application, we may have 30 frames/s,
with each frame consisting of 500 X 500 pixels (picture elements). In this case, we
would have 7.5 million data points to process per second, which is orders of mag-
nitude greater than the case of speech processing. Due to this difference in data rate
requirements, the computational efficiency of a signal processing algorithm plays a
much more important role in 2-D signal processing, and advances in hardware tech-
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