
 DSP
Fundamentals of Signal Processing (18-491)

Spring Semester, 2020

IIR Filter Design Example

These notes summarize the design procedure for IIR filters as discussed in class on April 6.

Introduction:

We discuss in this lecture how to design a discrete-time lowpass filter using both the impulse
invariance method and the bilinear transform method. The specs for the filter to be designed are

• Passband cutoff frequency: ωp = 0.15π

• Stopband cutoff frequency: ωs = 0.35π

• Passband ripple1: −3 dB ≤
∣∣H(ejω)

∣∣ ≤ 0 dB, |ω| ≤ ωp

• Stopband attenuation:
∣∣H(ejω)

∣∣ ≤ −20 dB, ωs ≤ |ω| ≤ π

In terms of the parameters δp and δs discussed in OSYP, this means that

1− δp = 10−3/20 = 0.7079

δs = 10−20/20 = 0.1

For convenience we define two new parameters k1 and k2 that are closely related to δp and δs as
follows:

k1 ≡
1

(1− δp)2
− 1 = 0.9953

k2 ≡
1

δ2
s

− 1 = 99

1Note that the values of passband and stopband attenuation are given in decibels (dB). If x has the dimensions
of amplitude or magnitude (as opposed to energy or power), the value of x expressed in dB would be 20 log10(x).

18-491 IIR Filter Design Notes Page 2 Spring, 2020

Finally, we are designing our filter by transforming the frequency response of a continuous-time
Butterworth filter. As you will recall, the Butterworth filter has the transfer function

|H(jΩ)|2 =
1

1 +
(

Ω
Ωc

)2N

The parameter N specifies the number of poles in the prototype filter, and the parameter Ωc

specifies the critical cutoff frequency. Note that the magnitude response of the Butterworth filter
decreases monotonically with increasing Ω, that the falloff in response as we transit from passband
to stopband becomes sharper as N increases, and that |H(jΩ)|2 equals 1.0 when Ω = 0 and 1/2
when Ω = Ωc for all values of N .

As you will recall from class, a Butterworth filter with parameters N and Ωc has N poles that fall
in the left half of the s-plane, in complex conjugate locations along a circle of radius Ωc separated
by angles of π/N .

Design procedure using impulse invariance

Determining design parameters

Using the impulse invariance design procedure, we have noted that the relation between frequency
in the continuous-time and discrete-time domains is ω = ΩT , where T is merely a design parameter
(and not necessarily the sampling period). Leaving T as an arbitrary constant for now, we obtain

Ωp = ωp/T = 0.47124/T

Ωs = ωs/T = 1.0996/T

At the passband edge frequency,

|H(jΩ)|2 =
1

1 +
(

Ωp

Ωc

)2N
= (1− δp)2

With a few algebraic manipulations we obtain

(
Ωp

Ωc

)2N

=
1

(1− δp)2
− 1 = k1

Similarly, at the stopband edge frequency we have

|H(jΩ)|2 =
1

1 +
(

Ωs
Ωc

)2N
= δ2

s

Copyright 2020, Richard M. Stern

18-491 IIR Filter Design Notes Page 3 Spring, 2020

which produces

(
Ωs

Ωp

)2N

=
1

δ2
s

− 1 = k2

Dividing, we obtain

(Ωp/Ωc)
2N

(Ωs/Ωc)2N
=
k1

k2
or

N =
1

2

log(k2/k1)

log(Ωs/Ωp)
= 2.7144

Note that in using impulse invariance,

Ωs

Ωp
=
ωs/T

ωp/T
=
ωs
ωp

so the design parameter T has no effect at all on the value of N that is needed. Furthermore,
as expected, the value of N specified increases as either δp or δs decreases in magnitude (which
implies decreasing the ripple in the passband and/or stopband) or as the ratio Ωs/Ωp decreases
(which implies a decrease in the width of the transition band).

Since the number of poles must be an integer, we round up to N = 3.

Matching the frequency response exactly at passband produces

(
Ωp

Ωc

)2N

= k1 or Ωc =
Ωp

k
1/2N
1

=
0.4716

T

If we were instead to match the frequency response at stopband, we would obtain

(
Ωs

Ωc

)2N

= k2 or Ωc =
Ωs

k
1/2N
2

=
0.5112

T

In principle, any value of the critical frequency that satisfies 0.4716
T ≤ Ωc ≤ 0.5112

T would be valid.
As discussed in class, we will choose the value that meets the passband spec exactly, Ωc = 0.4716/T
because this value leaves the greatest margin for error at the stopband edge. Since the impulse
invariance procedure always incurs a certain degree of aliasing, it will be expected that the actual
response of the filter at the stopband edge will be larger than designed for. Hence, having the stop-
band edge response be overdesigned will leave more room for error to allow for the effects of aliasing.

Copyright 2020, Richard M. Stern

18-491 IIR Filter Design Notes Page 4 Spring, 2020

Prototype filter design

As noted above, the poles of a Butterworth filter lie in the left half of the s-plane on a circle of
radius Ωc in complex conjugate pairs separated by angles of π/N radians. Since there are three
poles, this produces a filter with the system function

H(s) =
Ω3
c

(s− Ωcejπ)(s− Ωcej(π+π/3))(s− Ωcej(π−π/3))

Plugging in the value of Ωc = 0.4716/T , we obtain (with the help of MATLAB)

H(s) =
(0.4716/T)3

(s+ 0.4716/T)(s− (−0.236 + 0.408j)/T)(s− (−0.236− 0.408j)/T)

Conversion to discrete-time form

Using partial fractions we can rewrite the system function of the continuous-time prototype filter
as

H(s) =
N∑
k=1

Ak
(s− sk)

where the parameters Ak are the continuous-time residues of the poles sk.

Using the MATLAB routine residue we find the residues for the three poles, producing the transfer
function

H(s) =
0.4716

s+ 0.4716/T
+

−0.2316− 0.136j

s− (−0.236 + 0.408j)/T
+

−0.2316 + 0.136j

s− (−0.236− 0.408j)/T

The corresponding discrete-time filter has the transfer function

H(z) =
N∑
k=1

Ak
1− eskT z−1

Note that the poles of the continuous-time filter, sk, are all of the form of a (generally complex)
constant divided by the parameter T . Since sk is multiplied by T wherever it appears in the
equation for H(z) above, the specific value chosen for T has no effect at all on the discrete-time
filter that results from design process. Hence we frequently let T = 1 for simplicity. This produces
the transfer function

H(z) =
0.4716

1− e−0.4716z−1
+
−0.2316− 0.136j

1− e−0.236+0.408jz−1
+
−0.2316 + 0.136j

1− e−0.236−0.408jz−1

or

H(z) =
0.4716

1− 0.624z−1
+

−0.2316− 0.136j

1− (0.7215 + 0.313j)z−1
+

−0.2316 + 0.136j

1− (0.7215− 0.313j)z−1

Copyright 2020, Richard M. Stern

18-491 IIR Filter Design Notes Page 5 Spring, 2020

Combining the second and third terms we obtain

H(z) =
0.4716

1− 0.624z−1
+

−0.472 + 0.341z−1

1− 1.45z−1 + 0.624z−2

This expression is easily implemented using any of the techniques discussed in OSYP Chapter 6.

Design procedure using bilinear transformation

Determining design parameters
Here we will convert from continuous-time to discrete-time form using the bilinear transform

s =
2

T

1− z−1

1 + z−1

This produces the nonlinear relationship between continuous-time frequency and discrete-time fre-
quency

Ω =
2

T
tan(ω/2)

Converting the critical frequencies and to their continuous-time counterparts produces

Ωp =
2

T
tan(ωp/2) = 0.4802/T

Ωs =
2

T
tan(ωs/2) = 1.226/T

We again use the design equation

N =
1

2

log(k2/k1)

log(Ωs/Ωp)
= 2.4546

Note that although we still need to have 3 poles, the actual fractional value of N smaller because
of the greater ratio of stopband to passband edge frequencies provided by the nonlinear frequency
warping of the bilinear transform.

Matching the specs exactly at the passband edge frequency produces the value for the critical
frequency of

Ωc =
Ωp

k
1/2N
1

=
0.4806

T

Similarly, matching the specs exactly at the stopband edge frequency produces a value for the
critical frequency of

Ωc =
Ωs

k
1/2N
2

=
0.5698

T

Although in principle the critical frequency could be any value between the two frequencies above,
we will match the specs exactly at the stopband edge frequency because that is what the buttord

routine in MATLAB appears to do.

Copyright 2020, Richard M. Stern

18-491 IIR Filter Design Notes Page 6 Spring, 2020

Prototype filter design

As before, the transfer function for the Butterworth filter is

H(s) =
Ω3
c

(s− Ωcejπ)(s− Ωcej(π+π/3))(s− Ωcej(π−π/3))

Using the MATLAB routine poly and the value for that we had obtained we find that the transfer
function of the prototype filter is

H(s) =
0.1850/T 3

s3 + 1.1397s2

T + 0.6494s
T 2 + 0.1850

T 3

Conversion to discrete-time form

We can now substitute directly the bilinear transform relationship

s =

(
2

T

1− z−1

1 + z−1

)

This produces

H(s) =
0.1850/T 3

(
2
T

1−z−1

1+z−1

)3
+

1.1397

(
2
T

1−z−1

1+z−1

)2

T +
0.6494

(
2
T

1−z−1

1+z−1

)
T 2 + 0.1850

T 3

Note that the design parameter T appears in cubic form in the denominator of every term in
numerator and denominator. Hence its specific value does not matter and we can cancel it from
the design equation. The value of the parameter T is frequently set to equal 2 to simplify the
expression for the bilinear transform.

We also note that simplifying the expression above is an algebraic nightmare. Using the MATLAB

routine bilinear with the poles and (null) zeros of H(s) as input parameters (or the outputs of
the MATLAB butter routine), and a value of 1 for the parameter T , we obtain

H(z) =
0.0132(1 + 3z−1 + 3z−2 + z−3)

1− 1.9017z−1 + 1.3315z−2 − 0.3244z−3

Copyright 2020, Richard M. Stern

18-491 IIR Filter Design Notes Page 7 Spring, 2020

MATLAB implementation of the bilinear transformation approach

The following MATLAB commands implement the results above, assuming a value of 1 for the
parameter T in these calculations:

wp = .15*pi;

ws = .35*pi;

Wp = 2*tan(wp/2);

Ws = 2*tan(ws/2);

Getting the parameters for the continuous-time Butterworth filter. (MATLAB matches the specifi-
cations at the stopband edge, as noted above.)
[N,Wn] = buttord(Wp,Ws,3,20,’s’)

Calculating the locations of the pole locations on the Butterworth circle (assumes N = 3):
poles = Wn*[-1 exp(j*(pi-(pi/3))) exp(-j*(pi-(pi/3)))]

Forming the denominator and numerator polynomials for the continuous-time transfer function:

as = poly(poles)

bs = [0 0 0 Wn^3]

Checking the continuous-time frequency response:
freqs(bs,as)

In the above sequence of commands we found the transfer function for H(s) by hand. A faster and
easier way to get the same results is to use the MATLAB butter routine to get the same result:
[bs,as] = butter(N,Wn,’s’)

Checking the frequency response:
freqs(bs,as)

Now invoking the bilinear transform using the MATLAB bilinear routine:
[b,a] = bilinear(bs,as,1)

Note that I used a value of 1 for the parameter Fs which represents sampling frequency (the
reciprocal of the OSYP parameter T).

Checking the discrete-time frequency response:

close all

[h,w] = freqz(b,a);

plot((w/pi),20*log10(abs(h)))

axis([0,1,-30,10])

By mousing over the figure produced by these steps you will notice that when the x-axis is equal
to .15 (corresponding to a discrete-time frequency of .15π), the y-axis is at −20 (corresponding to
a gain of −20 dB), as specified.

Copyright 2020, Richard M. Stern

