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Note: This handout is a copy of a section of the original text by Oppenheim and Schafer
(1975) which describes the development of decimation-in-time algorithms for values of

N that are not an integer power of 2.

The section opens with the following text:

6.4 FFT Algorithms for N a Composite Number

Our previous discussion has illustrated the basic principles of decimation-in-time and
decimation-in-frequency for the important special case of N power of 2; i.e. N=2". More

generally, the efficient computation of the discrete Fouier transform is tied to the

representation of N as a product of factors; i.e., suppose that

N=pp:.pv

As we have seen in the case of N a power of 2 (where all the factors can be taken to be

equal to 2), such as decomposition leads to a highly efficient ....
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computational aigorithm. Furthermore, all the required computations are
butterfly computations that correspond essentially to two-point DFTs. For
this reason the power-of-2 algorithms are particularly simple to implement,
and often in applications it is advantageous to always deal with sequences
whose length is a power of 2. This can be done in many cases by simply
augmenting a finite-length sequence with zero samples if necessary. How-
ever, in some cases it may not be possible to choose ¥ to be a power of 2, .
thus making it necessary to consider the more general situation of Eq.’
(6.25). Let us therefore consider the application of the decimation-in-time

principle in the case where ¥ is a product of factors that are not ali necessarily
equal to 2.

Let us define

‘

G PePa - P
50 that

N=p-q

If N is a power of 2, we could choose p, = 2 and ¢, = Nf2. Using decima-
tion-in-time we would then decompose the sequence x(n) into two sequences,
each (Nf2) samples in length, consisting of the even- and odd-numbered
samples, respectively. When N = p, -g,, we can divide the input sequence
into p, sequences of ¢; samples each by associating every p,th sample with a
~ given subsequence. For example if p, = 3 and ¢q; = 4, so that N = [2, then
.. we can decompose x(n) into three sequences of length 4, with the first sequence
consisting of the samples x(0), x{3), x(6), x(9); the second sequence con-
sisting of x(1), x(4), x(7), x(10); and the third sequence consisting of x(2},
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x(5), x(8), and x(.ll). In gencfal we can write X(k) as

-1

X(k) = X x(mWy

nrl
ot pyrk at ‘rrrk o rk ”
=3 x(pNWx" + X x(pir + DWWR™+ ..
r=d, )
2,-1

+ 3. x(pyr + py — DWW
r=0"

or
pr~1 g1 - . } -
XKy =3 WEYS x(pr + DWH* (6.26Y
5 Im0 r=0

The inner sums can be expressed as the ¢,-point DFTs

a1
Gk) = 3 x(pr + DWG, (6.27)
r(
since, as is easily verified,
WNT=Wg for N=p-q (6.28)

Thus Eq. (6.26) expresses X(k) in terms of p, discrete Fourier transforms of
sequences of length ¢, samples. To determine the number of complex
multiplications and additions required in implementing the DFT according
to Eq. (6.26), let us consider, as we did in the original discussion of decima-
tion-in-time, that the g,-point DFTs are implemented by means of the direct
computation. From Eq. (6.26) we observe that the number of q-point
DFTs to be evaluated is p,. Thus a total of p, * gf complex multiplications
and additions are required. The outer sum in Eq. (6.26) is implemented by
multiplying the g,-point DFTs by the factor W¥ and adding the resuits
together. Since the double summation in Eq. (6.26) is to be implemented for
N values of k, a total of N(p, — 1) complex muitiplications and additions
are required to combine the p, g,-point DFTs.{ Therefore, the totai number
of complex multiplications and additions required to compute the discrete
Fourier transform in the form of Eq. (6.26) is N(p; — 1) + pgi. Now the

gy-point DFTs can be decomposed in a similar manner. In particular, if -
We NOW represent gy as '

I =P 42

t Summing g, terms requires py-1 additions and we do not need to multiply by W
when { = 0. We remind the reader that throughout this chapter we have generally counted
multiplication by Wil even when ¥4} is unity or /. In interpreting Eq. (6.26), however, it is

convenient Lo recognize W] as unity for [ = @ in order that the result which we obtain be
consistent with the discussion in Section 6.2.
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then the ¢,-point sequences in the inner sum of Eq. (6.26) can be broken
into p, subsequences, each being g,-points long so that the inner sum in Eq.
(6.26) can be replaced by a double summation in the same way that we began.

‘When this is done, the number of oPeratlons required in computmg the q,-
point DFTs in Eq. (6 26) is, instead of ql,

0 — 1) + pag ' - (6.29)

Consequemly, the factor g3 in the expression N(p, — 1) + pyq5 is replaced

by Eq. (6.29), and thus the total number of complex multiplications and '
additions required is

N(p, — 1) + N(ps — 1) + pypod’ (6.30)

If we continue this procedure by further decomposing the ¢g.-point DFTs,
then when the original sequence has been decomposed as much as possible
the number of complex multiplications and additions will be

Nprtpat.ootp—n) 631)

For example, when py == p, = . .. = p, = p, the number of complex multi-
plications and additions is ¥(p — 1)». When p = 2, this number is ¥ - », as
discussed before.t In general, it can be seen from Eq. (6.31) that it is pref-
erable to carry out the decomposition on the basis of as many factors as
possible for a given N. Formally, there is no advantage to choosing anything
" but prime factors since if p; =r;- 5, with r;and 5, > 1, then p; > r; + 5;

except when r; = 5, = 2, in which case p; = r; 4 5;. However, there are

examples (notably p; == 4 or 8) where additional economies result which are -
not accounted for by Eq. (6.31).

- Toillustrate the decim'ation-in-timc procedure for N not a power of 2, let us
consider computation of an 18-point DFT; ie., N =3-3-2. Letling p, =3

and ¢, = 6, and lollowing the preceding discussion, we first divide the original
sequence into three sequences, each six points long: h

Sequence 11 x(0) x(3) x(6) x(9) x(12) x(15)
Sequence 2: x(1) x(4) x(7) x(10) x(13) x(16)
Sequence 3: x(2) x(5) x(8) x{11) x(14) x(17)

By dividing the original sequence into these lhree subsequences, we can express
Xtk as

Xy = i WIS x(3r + Wik (6.32)

1=0 r=0

= o(k) + WEGK) + WG, ()

t Recall that the number of multiplications caa be fucther reduced by exploiting sym- -
metry,
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Fig. 6.24 Flow graph of first stage of decomposition of an 18-point DFT.

The inner sum is a six-point DFT with-I =

=1 corresponding to sequence 2, and / = 2 corresponding to sequence 3.

Ia this case the s:x-pomt DFETs G(k) are pcnodu: with period 6 The com-

putation of Eq. (6.32) is illustrated in Fig. 6.24.1°

The six-point DFTs corresponding to the inner sum in Eq; (6 32) can be

further decomposed by breaking the sequences x(3r + {) into thre¢ sequences,
each two points long or, alternatively, two sequences, each three points loag,

Choosing the former, i.e., breaking each of the six-point subsequences into three

sequences lwo points long,

s -
=% x(3r +

Fe=

Gf®)

we replace the inner sum by

2 1
DWE =% WES x(9 + 35 + DWW
F= =0

t In this figure, the transmittances on each of the branches are 10 be inferred from the

algebraic expression associated wi

ith each ouipu node,

0 corresponding to sequence 1,



6.4 FFT Algorithms for Na Cémposlte Numbef

313
x(0
x (9}
x{3)
x {12}
x (8]
x (15) 5 wo Ggls)
Fig. .25 Flow graph of further decomposition of one of the six-point.
DFTs in Fig. 6.24.
so that the overall computation of X(k) becomes
P 2 1
X(Kk) =Y WIS WS x(9 + 3s + HWwek (6.33)
=0 =0 n=0 .

- One of the six-point DFTs (Gy(k)) is shown in detail in Fig. 6.25. The other

two have identical form. When Fig. 6.25 and the corresponding flow graphs
for Gi{k)-and G,(k) are placed in appropriate positions in Fig. 6.24, the input
sequence is in the order: x(0), x(9), x(3), x(12), x(6), x(15), x(1), x{10), x{4),
x(13), x(7), x(16), x(2), x(11), x(5), x{14), x(8), and x(17). We observe from
Figs. 6.24 and 6.25 that for this ordering of the inputs, the computation can be
done in place. The two-point transforms are shown as the familiar butterflies in
the first stage of Fig. 6.25; the basi¢ three-point DFT operation is somewhat
more complicated but still obviously an in-place computation. Instead of bit
reversal, the ordering of the input is somewhat more complicated. Specifically,
if we denote X( ) as the input array, then it can be shown that

XeBl+ 25 +p) =x(9p + 3=+ D

wherep =0,1; =0, 1,2; and ! =0, 1, 2. That is, the input must be stored
in a generalized *digit-reversed” order in order to carry out the computation in
place. As is evident from Fig. 6.24, the resulting output is in normal order. We
note from Fig. 6.24 that the basic computation in the (ast stage (as for factorsof 3
in general) is as depicted in Fig. 626 for N =3 -q,.

" We recall that in the case of factors of 2, we were able to reduce the number
of multiplications by a factor of 2 by exploiting symmetry. In the case of factors

A.h'
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Fig. 6.26 Flow graph of the basic romputation for factors of 3.

. k!
of 3, in Fig. 6.26, the comparable manipulation of the flow graph yields Fig. 6.27.
Since N = 3q,, the basic complex multiplier W'§} is

T - a~H{27 13}
WA; =g

Therefore, WS and all poweré thereof ave complex coefficients that rcquiré
multiplications. Thus Fig. 6.27 is no more efficient than Fig. 6.26,

In contrast to factors of 3, it can be shown (see Problem 7 of this
chapter) that the basic DFT computation for a factor of 4 (i.e., N = 4q,)
is as shown in Fig. 6.28. In this case, the flow graph of Fig. 6.28 can be
redrawn as in Fig. 6.29, with a concomitant saving of 4t least 9 complex
multiplications out of the 12 shown in Fig. 6.28. Similar savings result
for factors of 8, 16, etc. [I1]. Thus, even if N =2', it is sometimes
advantageous to base the computation on factors of 4, using one stage based
on a factor of 2if v is odd.

‘Our discussion in this section, although paralieling the earlier discussion,
. has been far from complete in the sense that we have on'ly atiempted to

indicate some of. the advantages and disadvantages. of using-values of N
with factors other than 2. The basic advanlages are increased flexibility and
. speed in some cases; the basic disadvantage is greatly increased complexity

of the computational algorithm. Although we have only discussed decima-

- tion-in-time, a similar discussion clearly holds for decimation-in-frequency

as well. For a more detailed discussion of FFT algonthms for N a general
composnte number see Gentleman and Sande 9 and Slnglelon [19}.
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Fig. 627 Alternative arrangement of Fig. 6.26.
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