
18-491/691 Lecture #16
FAST FOURIER TRANSFORM

ALTERNATE IMPLEMENTATIONS

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Phone: +1 (412) 268-2535
FAX: +1 (412) 268-3890

rms@cs.cmu.edu
http://www.ece.cmu.edu/~rms

March 24, 2021

Richard M. Stern

http://www.ece.cmu.edu/~rms

Carnegie
Mellon Slide 2 ECE Department

Introduction

n In our lecture last Monday we described and discussed the
basic decimation-in-time Cooley-Tuckey fast Fourier transform
algorithm for DFT sizes that are integer powers of 2 (radix 2)

n Today we will discuss some variations and extensions of the
basic FFT algorithm:
– Computation of the inverse FFT

– One further trivial efficiency

– Alternate forms of the FFT structure

– The decimation-in-frequency FFT algorithm

– FFT structures for DFT sizes that are not an integer power of 2

Carnegie
Mellon Slide 3 ECE Department

Alternate FFT structures

n We developed the basic decimation-in-time (DIT) FFT structure
in the last lecture, but other forms are possible simply by
rearranging the branches of the signal flowgraph

n Some issues to consider:
– Natural or bit-reversed input and output?

– In-place computation?

Carnegie
Mellon Slide 4 ECE Department

Alternate DIT FFT structures (continued)

n DIT structure with input bit-reversed, output natural (OSYP
9.11):

Carnegie
Mellon Slide 5 ECE Department

Alternate DIT FFT structures (continued)

n The original DIT
structure (OSYP 9.11):

n Rearranged structure
(OSYP 9.15):

Carnegie
Mellon Slide 6 ECE Department

n DIT structure with input natural, output bit-reversed (OSYP
9.15):

Alternate DIT FFT structures (continued)

Carnegie
Mellon Slide 7 ECE Department

Alternate DIT FFT structures (continued)

n DIT structure with both input and output in natural order (OSYP
9.16):

Carnegie
Mellon Slide 8 ECE Department

Alternate DIT FFT structures (continued)

n DIT structure with same structure for each stage (OSYP 9.17):

Carnegie
Mellon Slide 9 ECE Department

Comments on alternate FFT structures

n A method to avoid bit-reversal in filtering operations is:
– Compute forward transform using natural input, bit-reversed output (as

in OSB 9.10)

– Multiply DFT coefficients of input and filter response (both in bit-
reversed order)

– Compute inverse transform of product using bit-reversed input and
natural output (as in OSB 9/14)

n Latter two topologies (as in OSYP 9.16 and 9.17) are now rarely
used

Carnegie
Mellon Slide 10 ECE Department

The decimation-in-frequency (DIF)
FFT algorithm

n Introduction: Decimation in frequency is an alternate way of
developing the FFT algorithm

n It is different from decimation in time in its development,
although it leads to a very similar structure

Carnegie
Mellon Slide 11 ECE Department

The decimation in frequency FFT (continued)

n Consider the original DFT equation ….

n Separate the first half and the second half of time samples:

n Note that these are not N/2-point DFTs

X[k] =
n=0

N−1
∑ x[n]WN

nk

X[k] =
n=0

(N / 2)−1
∑ x[n]WN

nk +
n=N / 2

N−1
∑ x[n]WN

nk

=
n=0

(N / 2)−1
∑ x[n]WN

nk +WN
(N / 2)k

n=0

(N / 2)−1
∑ x[n + (N / 2)]WN

nk

=
n=0

(N / 2)−1
∑ x[n]+ (−1)k x[n + (N / 2)][]WNnk

Carnegie
Mellon Slide 12 ECE Department

Continuing with decimation in frequency ...

n For k even, let

n For k odd, let

n These expressions are the N/2-point DFTs of

X[k] =
n=0

(N / 2)−1
∑ x[n]+ (−1)k x[n + (N / 2)][]WNnk

k = 2r

X[k] =
n=0

(N / 2)−1
∑ x[n]+ (−1)2r x[n + (N / 2)][]WNn2r =

n=0

(N / 2)−1
∑ x[n]+ x[n + (N / 2)][]WN /2

nr

k = 2r +1

X[k] =
n=0

(N / 2)−1
∑ x[n]+ (−1)2r (−1)x[n+ (N / 2)][]WNn(2r+1)

=
n=0

(N / 2)−1
∑ x[n]− x[n+ (N / 2)][]WN

nWN / 2
nr

x[n]+ x[n + (N / 2)] and [x[n]− x[n + (N / 2)]]WN
n

Carnegie
Mellon Slide 13 ECE Department

These equations describe the following
structure:

Carnegie
Mellon Slide 14 ECE Department

Continuing by decomposing the odd and even
output points we obtain …

Carnegie
Mellon Slide 15 ECE Department

… and replacing the N/4-point DFTs by
butterflys we obtain

Carnegie
Mellon Slide 16 ECE Department

The DIF FFT is the transpose of the DIT FFT

n To obtain flowgraph transposes:
– Reverse direction of flowgraph arrows

– Interchange input(s) and output(s)

n DIT butterfly: DIF butterfly:

n Comment:
– We will revisit transposed forms again in our discussion of filter

implementation

Carnegie
Mellon Slide 17 ECE Department

The DIF FFT is the transpose of the DIT FFT

n Comparing DIT and DIF structures:
DIT FFT structure: DIF FFT structure:

n Alternate forms for DIF FFTs are similar to those of DIT FFTs

Carnegie
Mellon Slide 18 ECE Department

Alternate DIF FFT structures

n DIF structure with input natural, output bit-reversed (OSYP
9.22):

Carnegie
Mellon Slide 19 ECE Department

Alternate DIF FFT structures (continued)

n DIF structure with input bit-reversed, output natural (OSB 9.22):

Carnegie
Mellon Slide 20 ECE Department

Alternate DIF FFT structures (continued)

n DIF structure with both input and output natural (OSYP 9.24):

Carnegie
Mellon Slide 21 ECE Department

Alternate DIF FFT structures (continued)

n DIF structure with same structure for each stage (OSYP 9.25):

Carnegie
Mellon Slide 22 ECE Department

FFT structures for other DFT sizes

n Can we do anything when the DFT size N is not an integer
power of 2 (the non-radix 2 case)?

n Yes! Consider a value of N that is not a power of 2, but that
still is highly factorable …

n Then let

Let N = p1p2p3p4...pν ; q1 = N / p1, q2 = N / p1p2,etc.

X[k] =
n=0

N−1
∑ x[n]WN

nk

= x[p1r]WN
p1rk

r=0

q1−1
∑ + x[p1r +1]WN

(p1r+1)k

r=0

q1−1
∑ + x[p1r + 2]WN

(p1r+2)k

r=0

q1−1
∑ + ...

Carnegie
Mellon Slide 23 ECE Department

Non-radix 2 FFTs (continued)

n An arbitrary term of the sum on the previous panel is

n This is, of course, a DFT of size of points spaced by

r=0

q1−1
∑ x[p1r + l]WN

(p1r+l)k

=
r=0

q1−1
∑ x[p1r + l]WN

p1rkWN
lk =WN

lk

r=0

q1−1
∑ x[p1r + l]Wq1

rk

q1 p1

Carnegie
Mellon Slide 24 ECE Department

Non-radix 2 FFTs (continued)

n In general, for the first decomposition we use

n Comments:
– This procedure can be repeated for subsequent factors of N

– The amount of computational savings depends on the extent to which N
is “composite”, able to be factored into small integers

– Generally the smallest factors possible used, with the exception of some
use of radix-4 and radix-8 FFTs

X[k] = WN
lk

l=0

p1−1
∑

r=0

q1−1
∑ x[p1r + l]Wq1

rk

Carnegie
Mellon Slide 25 ECE Department

An example …. The 6-point DIT FFT

n P1 = 2; P2 = 3; X[k] =
l=0

1
∑ W6

lk

r=0

2
∑ x[2r + l]W3

rk

Carnegie
Mellon Slide 26 ECE Department

Summary

n This morning we considered a number of alternative ways of
computing the FFT:
– Alternate implementation structures

– The decimation-in-frequency structure

– FFTs for sizes that are non-integer powers of 2

– Using standard FFT structures for inverse FFTs

n Starting on Monday we will begin to discuss digital filter
implementation structures

