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Introduction

n In our lecture last Monday we described and discussed the 
basic decimation-in-time Cooley-Tuckey fast Fourier transform 
algorithm for DFT sizes that are integer powers of 2 (radix 2)

n Today we will discuss some variations and extensions of the 
basic FFT algorithm:
– Computation of the inverse FFT

– One further trivial efficiency

– Alternate forms of the FFT structure

– The decimation-in-frequency FFT algorithm

– FFT structures for DFT sizes that are not an integer power of 2
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Alternate FFT structures

n We developed the basic decimation-in-time (DIT) FFT structure 
in the last lecture, but other forms are possible simply by 
rearranging the branches of the signal flowgraph

n Some issues to consider:
– Natural or bit-reversed input and output?

– In-place computation?
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Alternate DIT FFT structures (continued)

n DIT structure with input bit-reversed, output natural (OSYP 
9.11):
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Alternate DIT FFT structures (continued)

n The original DIT 
structure (OSYP 9.11):

n Rearranged structure 
(OSYP 9.15):
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n DIT structure with input natural, output bit-reversed (OSYP 
9.15):

Alternate DIT FFT structures (continued)
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Alternate DIT FFT structures (continued)

n DIT structure with both input and output in natural order (OSYP 
9.16):
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Alternate DIT FFT structures (continued)

n DIT structure with same structure for each stage (OSYP 9.17):
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Comments on alternate FFT structures

n A method to avoid bit-reversal in filtering operations is:
– Compute forward transform using natural input, bit-reversed output (as 

in OSB 9.10) 

– Multiply DFT coefficients of input and filter response (both in bit-
reversed order)

– Compute inverse transform of product using bit-reversed input and 
natural output (as in OSB 9/14)

n Latter two topologies (as in OSYP 9.16 and 9.17) are now rarely 
used



Carnegie
Mellon Slide 10 ECE Department

The decimation-in-frequency (DIF) 
FFT algorithm

n Introduction: Decimation in frequency is an alternate way of 
developing the FFT algorithm

n It is different from decimation in time in its development, 
although it leads to a very similar structure
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The decimation in frequency FFT (continued)

n Consider the original DFT equation ….

n Separate the first half and the second half of time samples:

n Note that these are not N/2-point DFTs 
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nk
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Continuing with decimation in frequency ...

n For k even, let

n For k odd, let 

n These expressions are the N/2-point DFTs of  

X[k] =
n=0
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These equations describe the following 
structure:
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Continuing by decomposing the odd and even 
output points we obtain …
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… and replacing the N/4-point DFTs by 
butterflys we obtain
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The DIF FFT is the transpose of the DIT FFT

n To obtain flowgraph transposes:
– Reverse direction of flowgraph arrows

– Interchange input(s) and output(s)

n DIT butterfly: DIF butterfly:

n Comment:
– We will revisit transposed forms again in our discussion of filter 

implementation
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The DIF FFT is the transpose of the DIT FFT

n Comparing DIT and DIF structures:
DIT FFT structure: DIF FFT structure:

n Alternate forms for DIF FFTs are similar to those of DIT FFTs
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Alternate DIF FFT structures

n DIF structure with input natural, output bit-reversed (OSYP 
9.22):
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Alternate DIF FFT structures (continued)

n DIF structure with input bit-reversed, output natural (OSB 9.22):
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Alternate DIF FFT structures (continued)

n DIF structure with both input and output natural (OSYP 9.24):
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Alternate DIF FFT structures (continued)

n DIF structure with same structure for each stage (OSYP 9.25):
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FFT structures for other DFT sizes

n Can we do anything when the DFT size N is not an integer 
power of 2 (the non-radix 2 case)?

n Yes!  Consider a value of N that is not a power of 2, but that 
still is highly factorable …

n Then let 

Let N = p1p2p3p4...pν ;   q1 = N / p1,  q2 = N / p1p2,etc.
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Non-radix 2 FFTs (continued)

n An arbitrary term of the sum on the previous panel is

n This is, of course, a DFT of size      of points spaced by    

r=0
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∑ x[p1r + l]WN
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Non-radix 2 FFTs (continued)

n In general, for the first decomposition we use

n Comments:
– This procedure can be repeated for subsequent factors of N

– The amount of computational savings depends on the extent to which N
is “composite”, able to be factored into small integers

– Generally the smallest factors possible used, with the exception of some 
use of radix-4 and radix-8 FFTs

X[k] = WN
lk

l=0

p1−1
∑

r=0
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∑ x[p1r + l]Wq1

rk
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An example …. The 6-point DIT FFT

n P1 = 2; P2 = 3; X[k] =
l=0

1
∑ W6

lk

r=0

2
∑ x[2r + l]W3

rk
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Summary

n This morning we considered a number of alternative ways of 
computing the FFT:
– Alternate implementation structures

– The decimation-in-frequency structure

– FFTs for sizes that are non-integer powers of 2

– Using standard FFT structures for inverse FFTs

n Starting on Monday we will begin to discuss digital filter 
implementation structures


