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Introduction

B In our lecture last Monday we described and discussed the
basic decimation-in-time Cooley-Tuckey fast Fourier transform
algorithm for DFT sizes that are integer powers of 2 (radix 2)

B Today we will discuss some variations and extensions of the
basic FFT algorithm:

— Computation of the inverse FFT

— One further trivial efficiency

— Alternate forms of the FFT structure

— The decimation-in-frequency FFT algorithm

— FFT structures for DFT sizes that are not an integer power of 2
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Alternate FFT structures

B We developed the basic decimation-in-time (DIT) FFT structure
in the last lecture, but other forms are possible simply by
rearranging the branches of the signal flowgraph

B Some issues to consider:

— Natural or bit-reversed input and output?

— In-place computation?
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Alternate DIT FFT structures (continued)

B DIT structure with input bit-reversed, output natural (OSYP

9.11):
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Alternate DIT FFT structures (continued)

B The original DIT B Rearranged structure
structure (OSYP 9.11): (OSYP 9.15):
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Alternate DIT FFT structures (continued)

B DIT structure with input natural, output bit-reversed (OSYP
9.15'
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Alternate DIT FFT structures (continued)

B DIT structure with both input and output in natural order (OSYP

9.16):
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Alternate DIT FFT structures (continued)

B DIT structure with same structure for each stage (OSYP 9.17):
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Comments on alternate FFT structures

B A method to avoid bit-reversal in filtering operations is:

— Compute forward transform using natural input, bit-reversed output (as
in OSB 9.10)

— Multiply DFT coefficients of input and filter response (both in bit-
reversed order)

— Compute inverse transform of product using bit-reversed input and
natural output (as in OSB 9/14)

B Latter two topologies (as in OSYP 9.16 and 9.17) are now rarely
used
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The decimation-in-frequency (DIF)
FFT algorithm

B Introduction: Decimation in frequency is an alternate way of
developing the FFT algorithm

B Itis different from decimation in time in its development,
although it leads to a very similar structure
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The decimation in frequency FFT (continued)

B Consider the original DFT equation ....
N-1
Xk= Y xnwt
n=0

B Separate the first half and the second half of time samples:
(N/2)-1 N-1

Xtkl= > AnWik+ S xnwit
n=0 n=N/2
(N/2)-1 (N/2)-1
= Y admwk ewM K xln+(N/2) Wik
n=0 n=0
(N/2)-1
- 3 [x[n]+(-1)"x[n+(N/2)]]W]$"
n=0
Note that these are not N/2-point DFTs

L
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Continuing with decimation in frequency ...

(N/2)-1
X[k]= Y [x[n] + (=¥ x[n + (N/2)]:|W]’{l,k
n=0
B For k even,let £k =2r
(N/2)-1 (N/2)-1
Xlkl= Y [x[n] + (=D xin + (N/2)]]W]§2” = S [xdnl+ xln+(N/ )WY,
n=0 n=0
B Forkodd,let Kk =2r+1
(N/2)-1
XK= 3 [anl+ DX (Dxtn+ (V2R C+D
n=0
(N/2)-1
= Y [xln]-xln+ (NI2)IWyWy ),
B These e)?spessions are the N/2-point DFTs of
~ x[n]+x[n+(N/2)] and [x[n]- x[n +(N/2)]Wy
‘18%‘“
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These equations describe the following
structure:
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Continuing by decomposing the odd and even
output points we obtain ...
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.. and replacing the N/4-point DFTs by
butterflys we obtain

Wy

»—0 X[6]

o——o X[1]
Wy

o X[5]

o X[3]
Wy

o0 X[7]

ECE Department



The DIF FFT is the transpose of the DIT FFT

B To obtain flowgraph transposes:
— Reverse direction of flowgraph arrows
— Interchange input(s) and output(s)

] DIT butterfly: DIF butterfly:

x[0]

X,‘ ][P] ﬂ‘\/1[[7]

x[4] X, 1lq]

W2 = W/’CJ/ZZ -1

B Comment:

— We will revisit transposed forms again in our discussion of filter
implementation
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The DIF FFT is the transpose of the DIT FFT

B Comparing DIT and DIF structures:
DIT FFT structure: DIF FFT structure:

o X[0]
o X[4]
o X[2]
o X[6]

o X[1]

o—~ o X[5]

o X[3]

o X[7]

B Alternate forms for DIF FFTs are similar to those of DIT FFTs
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Alternate DIF FFT structures

B DIF structure with input natural, output bit-reversed (OSYP
9.22):
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Alternate DIF FFT structures (continued)

B DIF structure with input bit-reversed, output natural (OSB 9.22):
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Alternate DIF FFT structures (continued)

B DIF structure with both input and output natural (OSYP 9.24):
x{0] V >—Q O
[1] al = X[1]
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Alternate DIF FFT structures (continued)

B DIF structure with same structure for each stage (OSYP 9.25):

[0} - - >0 X[0]
0
*[1] o Mm Wy o X[1]
\ \ q\ £
'

x[2] . Q ' o X[2]
\/ \/\, Wy
" '(0)00- VNCanvivomnty

\\
/
x[4] c

D9, . 0
2% \/(‘:W\%‘

‘\“ / Wy
x[5] ¢ /‘ P / o0 X(s]
. .

x[7] o X[7]

Slide 21 ECE Department




FFT structures for other DFT sizes

B Can we do anything when the DFT size N is not an integer
power of 2 (the non-radix 2 case)?

B Yes! Consider a value of N that is not a power of 2, but that
still is highly factorable ...

Let N = piprp3pa.-pyvi q1 =N/p1, g3 = N/ppy.etc.

B Then let
N-1 L
X[kl= Y x[n]Wy
n=0

q1-1 q1 -1 q1-1
= E X[PI”]W;\?I”/C N E x[prr+ l]Wji,lel)k + E x[pyr + 2]W](\,p1r+2)k + ...
r=0

r=0 r=0
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Non-radix 2 FFTs (continued)

B An arbitrary term of the sum on the previous panel is

E x[p1r+l]W]S]p1r+l)k
r=0
q1-1 q1-1
_ Ptk lk ol rk
= 20 x[p1r+l]WN WN = WnN . X[p1r+l]qu
r= r=

B This is, of course, a DFT of size g1 of points spaced by p;
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Non-radix 2 FFTs (continued)

B In general, for the first decomposition we use

pyt o ad] "
X[k]= 20 Wy 20 xlpyr+ W,

B Comments:
— This procedure can be repeated for subsequent factors of N

— The amount of computational savings depends on the extent to which N
is “composite”, able to be factored into small integers

— Generally the smallest factors possible used, with the exception of some
use of radix-4 and radix-8 FFTs
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An example .... The 6-point DIT FFT

1 2
B P=2P,=3 Xk=Y W5 x2r+qwi*
[=0 r=0
Twiddle factors for 3- ponnt butterflys, top to bottom
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Summary

B This morning we considered a number of alternative ways of
computing the FFT:

— Alternate implementation structures
— The decimation-in-frequency structure
— FFTs for sizes that are non-integer powers of 2

— Using standard FFT structures for inverse FFTs

B Starting on Monday we will begin to discuss digital filter
implementation structures
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