18-491/691 Lecture #15 INTRODUCTION TO THE FAST FOURIER TRANSFORM ALGORITHM

Richard M. Stern

Department of Electrical and Computer Engineering Carnegie Mellon University Pittsburgh, Pennsylvania 15213

> Phone: +1 (412) 268-2535 FAX: +1 (412) 268-3890 rms@cs.cmu.edu http://www.ece.cmu.edu/~rms

> > March 22, 2021 [OSYP 9.2]

Introduction

Today we will begin our discussion of the family of algorithms known as "Fast Fourier Transforms," which have revolutionized digital signal processing

What is the FFT?

 A collection of "tricks" that exploit the symmetry of the DFT calculation to make its execution much faster

Speedup increases with DFT size

Today - will outline the basic workings of the simplest formulation, the radix-2 decimation-in-time algorithm

Wednesday - will discuss some of the variations and extensions

Alternate structures

Slide 2

Introduction, continued

Some dates:

- ~1880 algorithm first described by Gauss
- 1965 algorithm rediscovered (not for the first time) by Cooley and Tukey

In 1967 (spring of my freshman year), calculation of a 8192point DFT on the top-of-the line IBM 7094 took

- ~30 minutes using conventional techniques
- ~5 seconds using FFTs

Measures of computational efficiency

Could consider

- Number of additions
- Number of multiplications
- Amount of memory required
- Scalability and regularity

For the present discussion we'll focus most on number of multiplications as a measure of computational complexity

- More costly than additions for fixed-point processors
- Same cost as additions for floating-point processors, but number of operations is comparable

Computational Cost of Discrete-Time Filtering

Convolution of an *N*-point input with an *M*-point unit sample response

Direct convolution:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

- Number of multiplys $\approx MN$
- For $M \approx N$, the number of multiplys is $O(N^2)$

ECE Department

Computational Cost of Discrete-Time Filtering

Convolution of an *N*-point input with an *M*-point unit sample response

Using transforms directly:

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi kn/N}$$

- Computation of *N*-point DFTs requires N^2 multiplys
- Each convolution requires three DFTs of length N+M-1 plus an additional N+M-1 complex multiplys or

$$3(N+M-1)^2 + (N+M-1)$$

- For N >> M, for example, the computation is $O(N^2)$

The Cooley-Tukey decimation-in-time algorithm

Consider the DFT algorithm for an integer power of 2, $N = 2^{V}$ $X[k] = \sum_{n=1}^{N-1} x[n] W_N^{nk} = \sum_{n=1}^{N-1} x[n] e^{-j2\pi nk/N}; W_N = e^{-j2\pi/N}$ n=0n=0Create separate sums for even and odd values of n: $X[k] = \sum x[n] W_N^{nk} + \sum x[n] W_N^{nk}$ n even n odd Letting n = 2r for *n* even and n = 2r + 1 for *n* odd, we obtain $X[k] = \sum^{(N/2)-1} x[2r]W_N^{2rk} + \sum^{(N/2)-1} x[2r+1]W_N^{(2r+1)k}$ r=0r=0

The Cooley-Tukey decimation in time algorithm

Splitting indices in time, we have obtained

$$X[k] = \sum_{r=0}^{(N/2)-1} x[2r]W_N^{2rk} + \sum_{r=0}^{(N/2)-1} x[2r+1]W_N^{(2r+1)k}$$

But
$$W_N^2 = e^{-j2\pi 2/N} = e^{-j2\pi/(N/2)} = W_{N/2}$$
 and $W_N^{2rk}W_N^k = W_N^k W_{N/2}^{rk}$
So ...
 $X[k] = \sum_{n=0}^{(N/2)-1} x[2r]W_{N/2}^{rk} + W_N^k \sum_{n=0}^{(N/2)-1} x[2r+1]W_{N/2}^{rk}$
N/2-point DFT of x[2r] N/2-point DFT of x[2r+1]
G[k] N/2-point DFT of x[2r] H[k]

Savings so far ...

We have split the DFT computation into two halves:

$$X[k] = \sum_{k=0}^{N-1} x[n] W_N^{nk}$$

=
$$\sum_{n=0}^{(N/2)-1} x[2r] W_{N/2}^{rk} + W_N^k \sum_{n=0}^{(N/2)-1} x[2r+1] W_{N/2}^{rk}$$

Have we gained anything? Consider the nominal number of multiplications for N = 8

- Original form produces $8^2 = 64$ multiplications
- New form produces $2(4^2) + 8 = 40$ multiplications
- So we're already ahead …… Let's keep going!!

Signal flowgraph notation

- In generalizing this formulation, it is most convenient to adopt a graphic approach ...
- Signal flowgraph notation describes the three basic DSP operations:

Multiplication by a constant

 $x[n] \longrightarrow ax[n]$

- Delay

$$x[n] \xrightarrow{z^{-1}} x[n-1]$$

 \boldsymbol{a}

Signal flowgraph representation of 8-point DFT

- **Recall that the DFT is now of the form** $X[k] = G[k] + W_N^k H[k]$
- The DFT in (partial) flowgraph notation:

Continuing with the decomposition ...

So why not break up into additional DFTs? Let's take the upper 4-point DFT and break it up into two 2-point DFTs:

The complete decomposition into 2-point DFTs

ECE Department

Now let's take a closer look at the 2-point DFT

The expression for the 2-point DFT is:

$$X[k] = \sum_{n=0}^{1} x[n] W_2^{nk} = \sum_{n=0}^{1} x[n] e^{-j2\pi nk/2}$$

Evaluating for k = 0, 1 we obtain

$$X[0] = x[0] + x[1]$$
$$X[1] = x[0] + e^{-j2\pi 1/2} x[1] = x[0] - x[1]$$

which in signal flowgraph notation looks like ...

This topology is referred to as the basic butterfly

The complete 8-point decimation-in-time FFT

ECE Department

Number of multiplys for N-point FFTs

• Let $N = 2^{\nu}$ where $\nu = \log_2(N)$

- (log₂(N) columns)(N/2 butterflys/column)(2 mults/butterfly)
 - or ~ $N\log_2(N)$ multiplys

Comparing processing with and without FFTs

- "Slow" DFT requires N² mults; FFT requires N log₂(N) mults
- Filtering using FFTs requires 3(*N* log₂(*N*))+*N* mults
- Let $\alpha_1 = N \log_2(N) / N^2$; $\alpha_2 = [3(N \log_2(N)) + N] / N^2$

N	α ₁	α2
16	.25	.8124
32	.156	.50
64	.0935	.297
128	.055	.171
256	.031	.097
1024	.0097	.0302

Note: 1024-point FFTs accomplish speedups of 100 for DFTs, 30 for filtering!

Additional timesavers: reducing multiplications in the basic butterfly

As we derived it, the basic butterfly is of the form

Bit reversal of the input

Recall the first stages of the 8-point FFT:

4

6

1

5

7

2 010

110

001

101

111

3 011

Consider the binary representation of the indices of the input:

- 000 If these binary indices are100 time reversed, we get the
 - time reversed, we get the binary sequence representing 0,1,2,3,4,5,6,7
 - Hence the indices of the FFT inputs are said to be in bit-reversed order

Some comments on bit reversal

- In the implementation of the FFT that we discussed, the input is bit reversed and the output is developed in natural order
- Some other implementations of the FFT have the input in natural order and the output bit reversed (to be described Wednesday)
- In some situations it is convenient to implement filtering applications by
 - Use FFTs with input in natural order, output in bit-reversed order
 - Multiply frequency coefficients together (in bit-reversed order)
 - Use inverse FFTs with input in bit-reversed order, output in natural order

Computing in this fashion means we never have to compute bit reversal explicitly

Using FFTs for inverse DFTs

We've always been talking about forward DFTs in our discussion about FFTs what about the inverse FFT?

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}; \quad X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}$$

One way to modify FFT algorithm for the inverse DFT computation is:

- Replace W_N^k by W_N^{-k} wherever it appears
- Multiply final output by 1/N
- This method has the disadvantage that it requires modifying the internal code in the FFT subroutine

A better way to modify FFT code for inverse DFTs

Taking the complex conjugate of both sides of the IDFT equation and multiplying by *N*:

$$Nx^*[n] = \sum_{k=0}^{N-1} X^*[k] W_N^{nk}; \text{ or } x[n] = \frac{1}{N} \left[\sum_{k=0}^{N-1} X^*[k] W_N^{nk} \right]^*$$

This suggests that we can modify the FFT algorithm for the inverse DFT computation by the following:

- Complex conjugate the input DFT coefficients
- Compute the *forward* FFT
- Complex conjugate the output of the FFT and multiply by $1/\,N$

This method has the advantage that the internal FFT code is undisturbed; it is widely used.

Slide 22

Summary

- We developed the structure of the basic decimation-in-time FFT
- Use of the FFT algorithm reduces the number of multiplys required to perform the DFT by a factor of more than 100 for 1024-point DFTs, with the advantage increasing with increasing DFT size
- We can use the same structure to compute inverse FFTs
- On Wednesday we will consider alternate forms of the FFT, and FFTs for values of DFT sizes that are not an integer power of 2

