
18-491/691 Lecture #15
INTRODUCTION TO THE

FAST FOURIER TRANSFORM ALGORITHM

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Phone: +1 (412) 268-2535
FAX: +1 (412) 268-3890

rms@cs.cmu.edu
http://www.ece.cmu.edu/~rms

March 22, 2021
[OSYP 9.2]

Richard M. Stern

http://www.ece.cmu.edu/~rms

Carnegie
Mellon Slide 2 ECE Department

Introduction

n Today we will begin our discussion of the family of algorithms
known as “Fast Fourier Transforms,” which have
revolutionized digital signal processing

n What is the FFT?
– A collection of “tricks” that exploit the symmetry of the DFT calculation

to make its execution much faster

– Speedup increases with DFT size

n Today - will outline the basic workings of the simplest
formulation, the radix-2 decimation-in-time algorithm

n Wednesday - will discuss some of the variations and
extensions
– Alternate structures

– Non-radix 2 formulations

Carnegie
Mellon Slide 3 ECE Department

Introduction, continued

n Some dates:
– ~1880 - algorithm first described by Gauss

– 1965 - algorithm rediscovered (not for the first time) by Cooley and
Tukey

n In 1967 (spring of my freshman year), calculation of a 8192-
point DFT on the top-of-the line IBM 7094 took ….
– ~30 minutes using conventional techniques

– ~5 seconds using FFTs

Carnegie
Mellon Slide 4 ECE Department

Measures of computational efficiency

n Could consider
– Number of additions

– Number of multiplications

– Amount of memory required

– Scalability and regularity

n For the present discussion we’ll focus most on number of
multiplications as a measure of computational complexity
– More costly than additions for fixed-point processors

– Same cost as additions for floating-point processors, but number of
operations is comparable

Carnegie
Mellon Slide 5 ECE Department

Computational Cost of Discrete-Time Filtering

Convolution of an N-point input with an M-point unit sample
response ….

n Direct convolution:

– Number of multiplys ≈ MN

– For M ≈ N, the number of multiplys is

y[n] = x[k]h[n− k]
k=−∞

∞
∑

O(N2)

Carnegie
Mellon Slide 6 ECE Department

Computational Cost of Discrete-Time Filtering

Convolution of an N-point input with an M-point unit sample
response ….

n Using transforms directly:

– Computation of N-point DFTs requires multiplys

– Each convolution requires three DFTs of length N+M-1 plus an
additional N+M-1 complex multiplys or

– For , for example, the computation is

X[k] = x[n]e− j2πkn / N
n=0

N−1
∑

N2

3(N + M −1)2 + (N + M −1)

N >> M O(N2)

Carnegie
Mellon Slide 7 ECE Department

The Cooley-Tukey decimation-in-time
algorithm

n Consider the DFT algorithm for an integer power of 2,

n Create separate sums for even and odd values of n:

n Letting for n even and for n odd, we obtain

N = 2ν

€

X[k] =
n=0

N−1
∑ x[n]WN

nk =
n=0

N−1
∑ x[n]e− j2πnk /N ; WN = e− j2π /N

€

X[k] = x[n]WN
nk +

n even
∑ x[n]WN

nk

n odd
∑

n = 2r n = 2r +1

X[k] = x[2r]WN2rk +
r=0

N / 2()−1
∑ x[2r +1]WN 2r+1()k

r=0

N /2()−1
∑

Carnegie
Mellon Slide 8 ECE Department

The Cooley-Tukey decimation in time algorithm

n Splitting indices in time, we have obtained

n But and
So …

N/2-point DFT of x[2r] N/2-point DFT of x[2r+1]

X[k] = x[2r]WN2rk +
r=0

N / 2()−1
∑ x[2r +1]WN 2r+1()k

r=0

N /2()−1
∑

WN
2 = e− j2π2 / N = e− j2π /(N / 2) = WN / 2 WN

2rkWN
k =WN

kWN / 2
rk

X[k] =
n=0

(N/ 2)−1
∑ x[2r]WN /2

rk +WN
k

n=0

(N/ 2)−1
∑ x[2r +1]WN / 2

rk

G[k] H[k]

Carnegie
Mellon Slide 9 ECE Department

Savings so far …

n We have split the DFT computation into two halves:

n Have we gained anything? Consider the nominal number of
multiplications for
– Original form produces multiplications

– New form produces multiplications

– So we’re already ahead ….. Let’s keep going!!

X[k] =
k=0

N−1
∑ x[n]WNnk

=
n=0

(N/ 2)−1
∑ x[2r]WN /2

rk +WN
k

n=0

(N/ 2)−1
∑ x[2r +1]WN / 2

rk

N = 8

2(42) + 8 = 40

82 = 64

Carnegie
Mellon Slide 10 ECE Department

Signal flowgraph notation

n In generalizing this formulation, it is most convenient to adopt
a graphic approach …

n Signal flowgraph notation describes the three basic DSP
operations:
– Addition

– Multiplication by a constant

– Delay

x[n]

y[n]
x[n]+y[n]

x[n]
a

ax[n]

x[n] x[n-1]
z-1

Carnegie
Mellon Slide 11 ECE Department

Signal flowgraph representation of 8-point DFT

n Recall that the DFT is now of the form
n The DFT in (partial) flowgraph notation:

X[k] = G[k]+WN
k H[k]

Carnegie
Mellon Slide 12 ECE Department

Continuing with the decomposition …

n So why not break up into additional DFTs? Let’s take the
upper 4-point DFT and break it up into two 2-point DFTs:

Carnegie
Mellon Slide 13 ECE Department

The complete decomposition into 2-point DFTs

Carnegie
Mellon Slide 14 ECE Department

Now let’s take a closer look at the 2-point DFT

n The expression for the 2-point DFT is:

n Evaluating for we obtain

which in signal flowgraph notation looks like ...

X[k] =
n=0

1
∑ x[n]W2

nk =
n=0

1
∑ x[n]e− j2πnk / 2

k = 0,1

X[0] = x[0]+ x[1]

X[1] = x[0]+ e− j2π1 / 2x[1] = x[0]− x[1]

This topology is referred to as the
basic butterfly

Carnegie
Mellon Slide 15 ECE Department

The complete 8-point decimation-in-time FFT

Carnegie
Mellon Slide 16 ECE Department

Number of multiplys for N-point FFTs

n Let
n (log2(N) columns)(N/2 butterflys/column)(2 mults/butterfly)

or ~ multiplys

N = 2ν where ν = log2(N)

N log2(N)

Carnegie
Mellon Slide 17 ECE Department

n “Slow” DFT requires N2 mults; FFT requires N log2(N) mults
n Filtering using FFTs requires 3(N log2(N))+N mults
n Let

N a1 a2

16 .25 .8124
32 .156 .50
64 .0935 .297
128 .055 .171
256 .031 .097
1024 .0097 .0302

Comparing processing with and without FFTs

Note: 1024-point FFTs
accomplish speedups of 100
for DFTs, 30 for filtering!

α1 = N log2 (N) / N2; α2 = [3(N log2 (N))+ N] / N2

Carnegie
Mellon Slide 18 ECE Department

Additional timesavers: reducing multiplications
in the basic butterfly

n As we derived it, the basic butterfly is of the form

n Since we can reduce computation by 2 by
premultiplying by

WN
N / 2 = −1

WN
r

WN
r

WN
r+N / 2

WN
r

1

−1

Carnegie
Mellon Slide 19 ECE Department

Consider the binary representation of the
indices of the input:

0 000
4 100
2 010
6 110
1 001
5 101
3 011
7 111

Bit reversal of the input

n Recall the first stages of the 8-point FFT:

If these binary indices are
time reversed, we get the
binary sequence representing

0,1,2,3,4,5,6,7

Hence the indices of the FFT
inputs are said to be in
bit-reversed order

Carnegie
Mellon Slide 20 ECE Department

Some comments on bit reversal

n In the implementation of the FFT that we discussed, the input
is bit reversed and the output is developed in natural order

n Some other implementations of the FFT have the input in
natural order and the output bit reversed (to be described
Wednesday)

n In some situations it is convenient to implement filtering
applications by
– Use FFTs with input in natural order, output in bit-reversed order

– Multiply frequency coefficients together (in bit-reversed order)

– Use inverse FFTs with input in bit-reversed order, output in natural order

n Computing in this fashion means we never have to compute bit
reversal explicitly

Carnegie
Mellon Slide 21 ECE Department

Using FFTs for inverse DFTs

n We’ve always been talking about forward DFTs in our
discussion about FFTs …. what about the inverse FFT?

n One way to modify FFT algorithm for the inverse DFT
computation is:
– Replace by wherever it appears

– Multiply final output by

n This method has the disadvantage that it requires modifying
the internal code in the FFT subroutine

WN
k WN

−k

1/ N
€

x[n] = 1
N
k= 0

N−1

∑ X[k]WN
−kn; X[k] =

n= 0

N−1

∑ x[n]WN
kn

Carnegie
Mellon Slide 22 ECE Department

A better way to modify FFT code for
inverse DFTs

n Taking the complex conjugate of both sides of the IDFT
equation and multiplying by N:

n This suggests that we can modify the FFT algorithm for the
inverse DFT computation by the following:
– Complex conjugate the input DFT coefficients

– Compute the forward FFT

– Complex conjugate the output of the FFT and multiply by

n This method has the advantage that the internal FFT code is
undisturbed; it is widely used.

1/ N

Nx⇤[n] =
N�1X

k=0

X⇤[k]Wnk
N ; or x[n] =

1

N

"
N�1X

k=0

X⇤[k]Wnk
N

#⇤

<latexit sha1_base64="hduS+TGhVW0ODBqXJ86MoALCa5c=">AAACaXichVFdi9QwFE3r1zquOqsooi/BQRBhh1ZWXJCFBV98GlZwdgbaTkkztzOhSVqSW5khFPyNvvkHfPFPmPl40F3B83Q4557k5qRopLAYRT+C8MbNW7fvHNzt3Tu8/+Bh/+jRpa1bw2HMa1mbacEsSKFhjAIlTBsDTBUSJkX1ceNPvoKxotZfcN1ApthCi1Jwhl7K+99Gq1nKLCY6O6OpbVXuqrOom7nRcdxNd1aVTfLRzOmqSxFWaJT7QGtDu9UuVBrGXdy5UUdTCSXS5L/n0NSIxRJpNnuT9wfRMNqCXifxngzIHhd5/3s6r3mrQCOXzNokjhrMHDMouISul7YWGsYrtoDEU80U2Mxtm+roK6/Maem3L2uNdKv+mXBMWbtWhZ9UDJf2qrcR/+UlLZanmRO6aRE0311UtpJiTTe107kwwFGuPWHcCL8r5Uvmm0P/OT1fQnz1ydfJ5dthfDJ89/lkcH66r+OAvCAvyWsSk/fknHwiF2RMOPkZHAZPgqfBr/AofBY+342GwT7zmPyFcPAbCtO6Fg==</latexit>

Carnegie
Mellon Slide 23 ECE Department

Summary

n We developed the structure of the basic decimation-in-time
FFT

n Use of the FFT algorithm reduces the number of multiplys
required to perform the DFT by a factor of more than 100 for
1024-point DFTs, with the advantage increasing with
increasing DFT size

n We can use the same structure to compute inverse FFTs
n On Wednesday we will consider alternate forms of the FFT, and

FFTs for values of DFT sizes that are not an integer power of 2

