18-491/691 Lecture #15
INTRODUCTION TO THE
FAST FOURIER TRANSFORM ALGORITHM

Richard M. Stern

Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Phone: +1 (412) 268-2535
FAX: +1 (412) 268-3890
rms@cs.cmu.edu
http://www.ece.cmu.edu/~rms

March 22, 2021
[OSYP 9.2]

http://www.ece.cmu.edu/~rms

Introduction

B Today we will begin our discussion of the family of algorithms
known as “Fast Fourier Transforms,” which have
revolutionized digital signal processing

B What is the FFT?

— A collection of “tricks” that exploit the symmetry of the DFT calculation
to make its execution much faster

— Speedup increases with DFT size

B Today - will outline the basic workings of the simplest
formulation, the radix-2 decimation-in-time algorithm

B Wednesday - will discuss some of the variations and
extensions

— Alternate structures

esic NON-radix 2 formulations
0% Slide 2 ECE Department

Introduction, continued

B Some dates:
— ~1880 - algorithm first described by Gauss

— 1965 - algorithm rediscovered (not for the first time) by Cooley and
Tukey

B In 1967 (spring of my freshman year), calculation of a 8192-
point DFT on the top-of-the line IBM 7094 took

— ~30 minutes using conventional techniques

— ~5 seconds using FFTs

eﬁie
0 Slide 3 ECE Department

Measures of computational efficiency

B Could consider
— Number of additions
— Number of multiplications
— Amount of memory required

— Scalability and regularity

B For the present discussion we’ll focus most on number of
multiplications as a measure of computational complexity

— More costly than additions for fixed-point processors

— Same cost as additions for floating-point processors, but number of
operations is comparable

eﬁie
0 Slide 4 ECE Department

Computational Cost of Discrete-Time Filtering

Convolution of an N-point input with an M-point unit sample
response

B Direct convolution:

o

Minl= Y xlklhln- k]

k=—OO

— Number of multiplys = MN
— For M = N, the number of multiplys is 0(N2)

eﬁie
0 Slide 5 ECE Department

Computational Cost of Discrete-Time Filtering

Convolution of an N-point input with an M-point unit sample
response

B Using transforms directly:

N-1 |
n=0

— Computation of N-point DFTs requires N2 multiplys

— Each convolution requires three DFTs of length N+M-1 plus an
additional N+M-1 complex multiplys or

AN+M-1)2+(N+M-1)

— For N >> M for example, the computation is 0(N2)

eﬁie
0 Slide 6 ECE Department

The Cooley-Tukey decimation-in-time
algorithm

B Consider the DFT algorithm for an integer power of 2, N = 2"

N-1 N-1 | |
X(kl= S xnWy"™* =S xn)e I2RIN 2 omJ2RIN
n=0 n=0

B Create separate sums for even and odd values of n:

X[k]= SanWy™ + S xlnwy"*

n even n odd
B Letting n=2r fornevenand n=2r+1 for n odd, we obtain
(N/2)-1 (N/2)-1

X[k] = E X[ZV]WNZFk " E x[2r + 1]WN(2r+1)k
r=0 r=0

eﬁie
0 Slide 7 ECE Department

The Cooley-Tukey decimation in time algorithm

B Splitting indices in time, we have obtained

(N/2)-1 (N/2)-1
X[k] = 2 x[zr]WNZrk n E x[27 + I]WN(2F+1)/€
r=0 r=0

B But Wi =e /272N _ o= /20INID) _yyyn and WETFWY = WA WY,

So ... (N/2)-1 (N/2)-1
XIkl= > x[2r Wi +WN S xl2r+ 1Wa
n=0 n=0

N/2-point DFT of x[2r] N/2-point DFT of x[2r+1]
G[k] Hl[k]

Slide 8 ECE Department

Savings so far ...

B We have split the DFT computation into two halves:

N-1
X[kl =Y x[n]Wy"™*
k=0
(N/2)-1 . ((N2)-1 :
n=0 n=0

B Have we gained anything? Consider the nominal number of
multiplications for N =8

2
— Original form produces 8~ =64 multiplications
— New form produces 2(4%)+8 = 40 multiplications

— So we’ re already ahead Let’ s keep going!!

eﬁie
0 Slide 9 ECE Department

Signal flowgraph notation

B In generalizing this formulation, it is most convenient to adopt
a graphic approach ...

B Signal flowgraph notation describes the three basic DSP

operations: i
XIN[———
— Addition . x[n]+y[n]
yin] ——
a
— Multiplication by a constant ~ X[n]/ > ax[nf
71
_ Bl x[n] > x[n-1]

eﬁie
0 Slide 10 ECE Department

Signal flowgraph representation of 8-point DFT

B Recall that the DFT is now of the form X[k] = G[k]+ W H[]
B The DFT in (partial) flowgraph notation:

G10]
x[0] |)Of [0]

x[2] o—>—
— — point

x (4] o—»— DFT

x[6] O—»—

x[1] o——

g - point
DFT

Slide 11 ECE Department

Continuing with the decomposition ...

B So why not break up into additional DFTs? Let’ s take the
upper 4-point DFT and break it up into two 2-point DFTs:

x[0] o—— N I >— G[0]
oy B Wi
x[4] o—— DFT > G|[1]
x[2] o—>— —0 G|[2]
N _ point Wxn
x[6] o—>— DFT — e G|3]
144
NI2

Slide 12 ECE Department

The complete decomposition into 2-point DFTs

x[0Jo—>— . > o> X[0]
x40~ Pt —a— ~—» X[1]
x[2] o—=>— > > > X[2]
N ; 4
i point Wy WA2/

x[6] o—— DFT > > XI3
1] o—>— > > X4
x[5]o—>—] PFT pace > X[5]
BSOS TN
N
x[3] o—=>— > 0 X[6]

%’ — point Wy WA(}
DFT
Y[7]O+ ‘;6"’ > 7 X[7]
N Wy

Slide 13 ECE Department

Now let’s take a closer look at the 2-point DFT

B The expression for the 2-point DFT is:

1 1 |
X[k1= Y xfnwg = Y xfnle™/ 2K/ 2
n=0 n=0

B Evaluating for £ =0,1 we obtain
X[0] = x[0] + x[1]
X[1] = x[0] + e~/ 2™/ 2 x[1] = x[0]- x[1]

which in signal flowgraph notation looks like ...

This topology is referred to as the
basic butterfly

Slide 14 ECE Department

The complete 8-point decimation-in-time FFT

Slide 15 ECE Department

Number of multiplys for N-point FFTs

X [O] > > > X[O]
Wy W) /VAS
x[4] > X[1]

B Let N=2" where v=1log,(N)
B (log,(N) columns)(N/2 butterflys/column)(2 mults/butterfly)
or ~ Nlog,(N) multiplys

egie
0 Slide 16 ECE Department

Comparing processing with and without FFTs

B “Slow” DFT requires N2 mults; FFT requires N log,(N) mults

B Filtering using FFTs requires 3(N log,(N))+N mults
B Let o = Nlogy (N)/ N°; oy =[3(Nlog, (N))+ N]/N?

N Ol oLy
16 25 .8124

32 156 .90

64 .0935 297

128 .055 A71
256 .031 .097
1024 .0097 .0302
Slide 17

Note: 1024-point FFTs
accomplish speedups of 100
for DFTs, 30 for filtering!

ECE Department

Additional timesavers: reducing multiplications
in the basic butterfly

B As we derived it, the basic butterfly is of the form

B Since W]{}]/z =-1 we can reduce computation by 2 by
premultiplying by W4

[

1

Slide 18 ECE Department

Bit reversal of the input

B Recall the first stages of the 8-point FFT:

Consider the binary representation of the
indices of the input:

x[0] >
x[4] 1;/3
x[2] /

W4

x[3]

000
100
010
110
001
101
011
111

N WUl =0 e O

Slide 19

If these binary indices are

time reversed, we get the

binary sequence representing
0,1,2,3,4,5,6,7

Hence the indices of the FFT

inputs are said to be in
bit-reversed order

ECE Department

Some comments on bit reversal

B In the implementation of the FFT that we discussed, the input
is bit reversed and the output is developed in natural order

B Some other implementations of the FFT have the input in
natural order and the output bit reversed (to be described
Wednesday)

B In some situations it is convenient to implement filtering
applications by

— Use FFTs with input in natural order, output in bit-reversed order
— Multiply frequency coefficients together (in bit-reversed order)

— Use inverse FFTs with input in bit-reversed order, output in natural order

B Computing in this fashion means we never have to compute bit
reversal explicitly

eﬁie
0 Slide 20 ECE Department

Using FFTs for inverse DFTs

B We’'ve always been talking about forward DFTs in our
discussion about FFTs what about the inverse FFT?

dnl=4 3 XIKW": X[Kl= 3, alnW,”

B One way to modify FFT algorithm for the inverse DFT
computation is:

— Replace W]lf, by W]_,k wherever it appears
— Multiply final output by 1/ N

B This method has the disadvantage that it requires modifying
the internal code in the FFT subroutine

eﬁie
0 Slide 21 ECE Department

A better way to modify FFT code for
inverse DFTs

B Taking the complex conjugate of both sides of the IDFT
equation and multiplying by N:

N-1 ¥
:ZX*[k]W ; or x[n [ZX]
k=0
B This suggests that we can modify the FFT algorithm for the

inverse DFT computation by the following:

— Complex conjugate the input DFT coefficients

— Compute the forward FFT
— Complex conjugate the output of the FFT and multiply by 1/ N

B This method has the advantage that the internal FFT code is
undisturbed; it is widely used.

eﬁie
0 Slide 22 ECE Department

Summary

B We developed the structure of the basic decimation-in-time
FFT

B Use of the FFT algorithm reduces the number of multiplys
required to perform the DFT by a factor of more than 100 for
1024-point DFTs, with the advantage increasing with
increasing DFT size

B We can use the same structure to compute inverse FFTs

B On Wednesday we will consider alternate forms of the FFT, and
FFTs for values of DFT sizes that are not an integer power of 2

eﬁie
0 Slide 23 ECE Department

