
INTRODUCTION TO THE DFS AND THE DFT

Notes: This brief handout contains in very brief outline form the lecture notes used for a video lecture in a 
previous year introducing the DFS and the DFT. This material is covered in Secs. 8.0 through 8.6 in the 
text. This material is covered over several lectures this year, and there may be some deviations from the 
presentation in OSYP.

I. Introduction

In previous lectures we discussed the relationship between pole and zero locations in the z-plane of an LSI 
system and the magnitude and phase of the transfer function of that system. We also introduced the idea of 
the discrete Fourier transform (DFT). The DFT is important because it is the mathematical relation that is 
implemented by the various Fast Fourier Transform (FFT) algorithms. In today’s lecture we will discuss

• relationships between periodic and finite-duration time functions

• the discrete Fourier series (DFS) for periodic time functions

• the discrete Fourier transform (DFT) for finite-duration time functions

• circular versus linear convolution

The discrete Fourier series (DFS) is used to represent periodic time functions and the DFT is used to repre-
sent finite-duration time functions. The two representations are virtually identical mathematically, and they 
are closely related because a finite-duration time function can be thought of as a single period of a periodic 
time function. Conversely, a periodic time function can be easily constructed from a finite-duration time 
function simply by repeating the finite-duration sequence over an over again, ad infinitum. 

We adopt the notation used by OSYP to distinguish these functions: let x̃ n   represent a periodic discrete-

time sequence with period N, and let x n   (without the tilde) represent a finite-duration sequence that is 

nonzero for 0 n N 1–  . We than note (trivially) that

x n  x̃ n  0 n N 1– =  and

x̃ n  x n mod N  x n  N =
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II. The Discrete Fourier Series (DFS)

A. Definitions of the DFS

If a time function x̃ n   is periodic has period N, we can write 

x̃ n  1
N
---- X̃ k e

jk
2
N
------n

k 0=

N 1–

=  and

X̃ k  x̃ n e
j– k

2
N
------n

n 0=

N 1–

=

There are only N unique frequency components because 

e
j2kn N

e
j2 k rN+ n N

e
j2kn N

e
j2rnN N

e
j2kn N

1 = = =

for integer k, n, and r.

Comments:

1. Both the time function x̃ n   and the Fourier series coefficients X̃ k   are periodic with period N, so 

they are represented by only N distinct (possibly complex) numbers.

2. The series can be evaluated over any consecutive of values of n or k of length N. 

3. The frequency components of the DFS are the complex exponentials e
j
2
N
------kn

, where the frequency 

2
N
------  can be considered to be the “fundamental frequency” of the periodic waveform and all other fre-

quencies are integer multiples of it.

4. The frequency components are N equally-spaced samples of the frequencies of the DTFT, or alterna-
tively they represent N equally-spaced locations around the unit circle of the z-plane. 

We commonly use the notational shorthand WN e
j2– N

= , so the DFS equations can be rewritten as

x̃ n  1
N
---- X̃ k WN

nk–

k 0=

N 1–

=  and

X̃ k  x̃ n WN
nk

n 0=

N 1–

=
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B. The DTFT of periodic time functions

As we had discussed previously, we can apply the properties of ordinary DTFTs to express the DTFT of 
any periodic time function in terms of its DFS coefficients. If x̃ n   has period N and DFS coefficients 

X̃ k  , the DTFT of x̃ n   can be written as

X̃ e
j  2

N
------X̃ k   2k

N
--------- 2r–– 

 

k 0=

N 1–


r –=




2
N
------X̃ k   2k

N
---------– 

 

k –=



= =

In other words, the DTFT of a periodic time function x̃ n   with period N consists of a sequence of delta 

functions located at frequencies  2k N= . The areas of these delta functions are all 2 N  times the 

corresponding DFS coefficients.

C. Properties of the DFS

In general, the properties of the DFS are very similar to what we would expect from the DTFT, except that 
the functions considered are periodic. We only touch on a few important properties in the lecture, but a 
more complete list is available in OSYP Table 8.1.

1. Linearity: ax̃1 n  bx̃2 n + aX̃1 n  bX̃2 n +  provided that the period of the two time functions 

is the same.

2. Time shift: x̃ n m–  WN
km

X̃ k   

3. Multiplication by a complex exponential: x̃ n WN
rn–

X̃ k r– 

Note that in the previous two properties, shift in one domain corresponds to multiplication in the other by a 
complex exponential, both of which may be easier to evaluate when you apply the definition for WN .

4. Multiplication-convolution: x̃1 n x̃2 n  1
N
---- X̃1 r X̃2 k r– 

r 0=

N 1–



This relationship was derived in class in the opposite domain. The sum on the right hand side is very 
important for our work and is referred to as periodic convolution or circular convolution. The operator for 
circular convolution is normally written as an asterisk with a circle around it, possibly with an accompany-
ing number that indicates the size of the convolution (which matters).

III. The Discrete Fourier Transform (DFT)

A. Introduction

The DFT is used to represent the frequency components of a finite-duration function. In reality it is nothing 
more than the DFS for the corresponding periodic time functions, imagining that we have only a single 
Copyright 2019, Richard M. Stern



18-491 Notes: the DFS and DFT -4- Spring, 2019
period of that function. It is always important to keep in mind the implied periodicity of the functions in 
both time and frequency domains to understand the properties of the transform. 

Specifically, the DFT relationships are written as:

x n  1
N
---- X k e

jk
2
N
------n

k 0=

N 1–


1
N
---- X k WN

k– n

k 0=

N 1–

= =  and

X k  x n e
j– k

2
N
------n

n 0=

N 1–

 x n WN
kn

n 0=

N 1–

= =

Comments:

1. While strictly speaking the DFT and its inverse are zero for values of n and k that do not lie between 
0 and N-1, in reality we know that both of these functions are implicitly periodic.

2. The DFT can be thought of as the representation that is obtained by sampling the DTFT of a finite-
duration time function at  2k N= , which is to say N evenly spaced samples along the   axis 

starting at  0= , or equivalently, the DFT coefficients can be thought of as samples of the z-trans-

form of the time function at locations z e
j2k N

=  in the z-plane, or N evenly-spaced locations 

along the unit circle of the z-plane beginning at z 1= . Mathematically we can write

X k  X e
j 

 2k N=
X z 

z e
j2k N

=
= =

B. Properties of the DFT

The properties of the DFT are virtually identical to the corresponding DFS relationships, except that we are 
talking about finite-duration rather than periodic time functions. A much more complete list may be found 
in OSYP Table 8.2.

1. Linearity: ax1 n  bx2 n + aX1 n  bX2 n +  provided that the two DFTs are of equal size

2. Time shift: x n m–  N  WN
km

X k   

3. Multiplication by a complex exponential: x n WN
rn–

X k r–  N 

Note the use of the modulo-N notation to denote circular shift. Again, this arises because both time and fre-
quency functions are implicitly periodic.

4. Multiplication in time: x1 n x2 n  1
N
---- X1 r X2 k r–  N 

r 0=

N 1–
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5. Convolution in time: x1 m x2 n m–  N 

m 0=

N 1–

 X1 k X2 k =

Note that the previous equation means that if we take N-point DFTs of two time functions x1 n   and 

x2 n  , multiply the two sets of DFT coefficients together, and compute the inverse N-point DFT of the 

product, the resulting sequence is the N-point circular convolution of the original time sequences.

There are also a number of symmetry properties. They follow the corresponding properties for DTFTs with 
the understanding that X k–  X k–  N  X N k– = = .

C. Circular versus linear convolution

As in the case of DTFTs, we frequently find it advantageous to perform convolution using transform tech-
niques, specifically by computing the Fourier transforms of the functions to be convolved, multiplying 
them together, and computing the corresponding inverse transforms. The problem is that with we normally 
desire the result that we would have had with linear convolution of these time functions, and using DFTs 
we really obtain the corresponding circular convolutions.

One useful way of thinking about circular convolution is that the circular convolution of two finite-dura-
tion time functions can be considered equivalent to the linear convolution of the same two functions fol-
lowed by N-point aliasing, where N is the size of the circular convolution.

We showed in class that if we perform the circular convolution of two finite-duration functions of lengths 
N1  and N2  by multiplying together their N-point DFTs and computing the inverse N-point DFT, that result 

will equal the corresponding linear convolution if N N1 N2 1–+ .
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