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In signal processing we need to be able to move fluently between the continuous-time and
discrete-time worlds. Natural signals, and our perception of them, nearly always occur
in the continuous-time world. Nevertheless, almost all signal processing operations are
implemented in the discrete-time world. Hence we need to be able to understand how we
move from one world to the other, and to understand the implications that sampling has
on the nature of the signals in time and frequency.

1.1 Introduction

In this chapter we review the mathematics that are the basis for sampling of continuous-
time signals and their reconstruction. We will also discuss the closely-related mathemat-
ics that underly discrete-time decimation and interpolation that enable changes in the
effective sampling rate of a discrete-time signal.
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1.2 Sampling of continuous-time signals
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Figure 1.1: Upper panel: block diagram of C/D conversion. Lower panel: Specification of
the underlying signal processing.

The block diagram in the upper panel of Fig. 1.1 shows the basic structure of the ideal
continuous-to-discrete-time converter or C/D converter. The input is a continuous-time
function x.(t), which we assume to be a bandlimited time function such that its continuous-
time Fourier transform X(jQ) equals zero for |Q| > W.! The output is a discrete-time
function x[n] that is equal to x.(t) evaluated at times t = nT;, where T is the sampling
period in seconds.

In order to understand the mathematical representation of sampling and its implications,
we use the more detailed description in the lower panel of Fig. 1.1. Specifically, the input
is first multiplied by s(t), an infinite train of delta functions of area 1, which are separated
by an interval of T; seconds. The function x,(t) is the product of x.(t) and s(¢), and is a
train of delta functions x,(t) that are separated in time by intervals of T; seconds and have
areas equal to the amplitude of the original signal x.(nT;) at the times at which the im-
pulses occur. This sequence is then converted magically (in our mathematical model) into
discrete time pulses x[n] which have amplitudes equal to the areas of the corresponding
delta functions in x,(t), so x[n] will be equal to x.(nT;).

Time-domain representations. It is helpful to be able to visualize these signals in both
time and frequency. The left side of Fig. 1.2 depicts, for an arbitrary time function and
its spectrum, the various continuous-time functions and discrete-time functions depicted
in Fig. 1.1. Their Fourier transforms are shown on the right side of the figure. More
specifically,

o0

s(t) = Z 5(t—nTy) (1.1)

n=—oo

IWe will adopt the notational convention of using the Greek letter Q) for continuous-time frequency in
radians per second and using w for discrete-time frequency in radians.
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Figure 1.2: Left column: the time functions (a) x(t), (b) s(t), (c) xs(¢), and (d) x[n]. Right
column: The corresponding Fourier transforms in continuous and discrete time.

As described above,

x(H) = xe(t)s(t) = ) xe(nTy)s(t-nTy) (1.2)

n=—co
The function x[n] is a train of discrete-time samples that have amplitudes that are equal
to the areas of the corresponding impulses of x,(t). We also note that x,(t) is a function of
t, which is a real variable, while x[n] is a function of n, which is meaningful only when it

is an integer.
oo

x[n] = Z x(ITy)8[n —1] (1.3)

I=—c0

Frequency-domain representations. Considering now the corresponding functions in
the frequency domain, let us assume that X.(jQ), the continuous-time Fourier transform
(CTFET) of x.(t), is of arbitrary shape, nonzero only for |[(Q] < W, and with a maximum
amplitude equal to A, as depicted in Fig. 1.2. It can be shown that S(jQ2), the CTFT of
s(t), is also an infinite train of delta functions:

S(jQ):zT—T Zé(g—%") (1.4)

k=—c0
Now, because x4(t) = x(t)s(t) in the time domain, we obtain in the frequency domain

X(j0) = 5= X(j0)+S(j0) = %j X(j0)S(i(C) - 0))d0 (1.5)

(Se]
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where the symbol * indicates convolution. Because convolving X (jQ2) with an infinite
train of delta functions merely replicates and shifts the spectrum, we obtain

, 1. 27 2k 1 © , 21tk
X(jQ) = EXCUQ)*I; Tlé(o - T) - ﬁk; X, (1 (Q - T)) (1.6)
as shown in Row (c) of Fig. 1.2.
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Figure 1.3: Example of aliasing distortion, with an input signal of 8 kHz (upper panel)
sampled at 10 kHz producing an output signal of 2 kHz (lower panel).

Avoiding aliasing distortion. In order for the continuous-time signal to ultimately be
recovered without distortion, it is necessary that the replications of the original spectrum
in Fig. 1.2 not overlap one another. It can easily be seen that the separation of the replica-
tions is related to the sampling period T; while the width of the replications is twice the
signal bandwidth W. It is clear from Fig. 1.2 that overlap will be avoided if

27 T
— -W>WorW< — 1.7
T, or T, (1.7)

In other words, the sampling frequency must be at least twice as great as the bandwidth
of the incoming signal to avoid aliasing distortion. This, of course, is merely a restate-
ment of the Nyquist constraint that determines the minimum sampling frequency for
distortionless recovery of the continuous-time signal.

Figure 1.3 shows an example of the aliasing that occurs when the sampling frequency
is not great enough. The upper panel is an 8-kHz sinusoid with sample points super-
imposed by sampling at 10 kHz, which imposes an upper bound of 5 kHz for sampling
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without aliasing. The lower panel of the figure depicts the function that emerges from the
sampling and reconstruction process: a 2-kHz signal. Note that the discrete-time sample
points fit both the 8-kHz input signal and the 2-kHz output signal equally well. To pre-
vent the effects of aliasing, it is common to precede a C/D converter by a lowpass filter
with gain ideally equal to 1 and a cutoff frequency of Q) = 7t/T;.

Relating continuous-time and discrete-time frequency. The relationship between X,(j(2),
the CTFT of x,(t), and X(e/“), the discrete-time Fourier transform (DTFT) of x[n], is a bit
subtle. From the definition of the DTFT, X(e/?) is

(o) o0

X(el)= ) xlnlem= Y xo(nTy)e e (1.8)

n=—o0o n=—oo

Writing the definition of X,(j(2) and incorporating Eq. (1.2) produces

X,(jQ) = Jm x(t)e 7O dt = Jm i x (nT))8(t —nTy)e 1Pt dt (1.9)

0 p=—c0

Interchanging the sum and the integral and applying the procedures for integrating ex-
pressions with delta functions (see the Appendix for a detailed discussion of integration
with delta functions) produces

=) 00 =)

X,(jQ) = Z xc(nTl)J S(t—nTy) e T dt = Z x(nT;)e 7T (1.10)

Nn=—00 —00 n=—0oo

We note that the final terms of Eqs. (1.8) and (1.10) are identical, except that
w=0QT (1.11)

where again T; is the sampling period. This means that X(e/®), the DTFT of x[n], is
identical to X (jQ), the CTFT of x,(t), except that the frequency axis is scaled by the
sampling period T;.? (Although it is easy to confuse discrete-time and continuous-time
frequency in expressions like Eq. (1.11), keep in mind the dimensional analysis that
discrete-time frequency in radians is equal to continuous-time frequency in radians per
second times the sampling period in seconds.)

2If X,(jQ) includes delta functions, the areas of the delta functions would be scaled according to the
relationship 6(at) = (1/al)o(t), as discussed in the Appendix.
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1.3 Reconstruction of continuous-time signals from their samples
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Figure 1.4: Upper panel: block diagram of D/C conversion. Lower panel: Specification of
the underlying signal processing.

Let us now turn our attention to the reconstruction process, which is in some ways a re-
versal of the sampling process. Figure 1.4 summarizes the major processing steps. The
discrete-time sequence x[n] is converted into the continuous-time sequence of delta func-
tions x,(t), in which the areas of the impulses in continuous time are equal to the corre-
sponding amplitudes of the discrete-time samples:

(o)

X (t) = Z x[n]6(t - nTy) (1.12)

n=-—oo

This sequence of delta functions is passed through an ideal lowpass filter with transfer

function
Tz, |Q| < T(/T2

Hp(jQ) = { 0, otherwise (1.13)

The gain factor of T, in H; p(j(2) ensures that if the original signal is sampled with a great
enough sampling frequency to avoid aliasing, and if the sampling period T; equals the
time T, between the samples used in reconstruction, then the continuous-time recovered
signal x,(t) will be identical to the original input x.(¢). In effect, when T; = T, the gain
factor of T, in the lowpass filter in the D/C converter is intended to compensate for the
factor of 1/T; that incurred in the C/D conversion process. If T, = Tj, the signal passing
through will nominally incur a gain of T,/T;.

The reconstruction process is illustrated in the frequency domain in Fig. 1.5 which can
be seen to retrace most of the functions shown in Fig. 1.2 in reverse order. In this figure
we assume that the reconstruction sample period T, is equal to the original sampling
period T, although this is not always the case. The discrete-time sequence x[n], depicted
in the upper panel of Fig. 1.5 is first converted into the continuous-time sequence of
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Figure 1.5: Reconstruction of a continuous-time function from its samples. Left side: the
time functions (a) x[n], (b) xs(¢), and (d) x,(¢). Right side: The corresponding Fourier
transforms in discrete and continuous time. The ideal lowpass filter H;p(jQ) is also
shown in panel (b) in red. In plotting, we assume that T, = T} in Fig. 1.2.

delta functions, x,(t), which is depicted in the central panel of Fig 1.5. As discussed in
conjunction with Eq. (1.8) through Eq. (1.11), X(jQ), the CTFT of x,(t), is identical to
X(e/®), the DTFT of x[n] except that frequencies are scaled according to the relationship
that w = QT,, which produces an infinite train of replications of the original frequency
response, as in the central panel of Fig. 1.5. The lowpass reconstruction filter is depicted
in red in the central panel of Fig. 1.5, and the product of X,(jCQ2) and H;p(jQ2) is the single-
mode spectrum X,(jQ) which is (ideally) equal to the original input spectrum X.(jQ2)
depicted in Fig. 1.2.

It is helpful to consider what is going on in the time domain to understand the nature of
the reconstruction of the continuous-time output x,(t) from the sequence of delta func-
tions x¢(f). The output in the time domain is (as usual) the convolution of the input with
the unit impulse response of the filter:

Xy (t) = x() * hpp(t) (1.14)
The unit impulse response of the filter is easily obtained directly:
1 (Y . sin (1ct/Tp)
]Qt — jQt _ 2
th J‘ HLP ]Q) dQ = e jn/Tz Tze dQ —T(t/T2 (115)

This is a continuous-time sinc function with amplitude equal to 1 at t = 0 and regularly-
spaced zero crossings at t = nT,. Because the convolution of any function with a train
of impulses produces replication of the original function at the times of the impulses,
weighted by the impulse areas, we obtain

(o) (o)

(0 =it x) = hup(t) ) xlalete—nTs) = )+l ™E B (L1

n=—co N=—o0
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Figure 1.6: Upper panel: a segment of a discrete-time signal. Center panel: representation
of that signal in continuous time by a linear combination of sinc functions. Lower panel:
the sum of the sinc functions as of t = 15 seconds.

In other words, the reconstructed continuous-time function x,(¢) can be represented as
the sum of an infinite train of sinc functions, delayed by intervals of T, and scaled ac-
cording to the corresponding value of x[n]. This is illustrated in Fig. 1.6, which uses the
convenient but unrealistic value of T, = 1 second. The upper panel of Fig. 1.6 depicts
a short segment of a discrete-time signal. The central panel shows its reconstruction as
a series of weighted and delayed sinc functions. Note that the reconstruction is exact at
the time of the original samples as the sinc function centered each sample point has an
amplitude of 1 while the other sinc functions are all zero. The values of the reconstructed
signal (lower panel) between the sample points are obtained by summing all the sinc
functions together. While there is an infinite number of sinc functions, they decay away
fairly rapidly. The lower two panels of Fig. 1.6 are computed only through 15 seconds. It
can be seen that the reconstruction of x,(t) appears to be accurate except for values of ¢
that are near to or greater than 15 seconds.

In practice, of course, the actual lowpass filter to reconstruct the continuous-time signal
would not be ideal for multiple reasons including the fact that all ideal filters are fun-
damentally unrealizable. Nevertheless, the reconstructed signal would still be an infinite
linear combination of the unit impulse response of the lowpass filter that is actually used.
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1.4 Introduction to discrete-time decimation and interpolation

It is frequently necessary or desirable to change the effective sampling rate of discrete-
time signals. We consider three standard ways of manipulating the effective sampling
frequency in discrete time:

* Decimation or downsampling the signal by an integer factor of M, which decreases
the effective sampling rate by a factor of M

* Interpolation or upsampling the signal by an integer factor L, which increases the
effective sampling rate by a factor of L

* A combination of interpolation and decimation which changes the effective sam-
pling rate of the signal by the rational factor of L/M.

There are multiple potential motivations for changing the sampling rate. For example,
the sampling rate may be needed to combine signals that had been recorded at different
different sampling rates, as would be necessary if audio from a CD recorded at the stan-
dard rate of 44.1 kHz were used as background music for a film, which uses 48 kHz as the
standard sampling rate. Multi-rate signal processing is useful for delaying a signal by a
fractional number of samples. For example, a delay of 1/4 sample can be accomplished by
upsampling a signal by a factor of 4, delaying by a single sample, and then downsampling
by a factor of 4. Finally, multi-rate signal processing techniques are frequently useful in
the design of filters that must have a very narrow passband (or stopband) with narrow
transition bands.

Figure 1.7 illustrates downsampling and upsampling for a short segment of a discrete-
time speech signal. The original signal is depicted in the upper panel, while the central
panel shows the signal after downsampling by a factor of 3, and the lower panel shows
the signal after upsampling by a factor of 2. The solid curve in red shows the original
continuous-time signal from which the discrete-time signal was derived. The left column
shows the three functions with the horizontal axes scaled to maintain the continuous-
time envelope unchanged, while the right column plots the three discrete-time samples
in a fashion that preserves the spacing between the samples. It can be seen that the deci-
mation and interpolation operations can be interpreted either as a decrease or increase of
the effective sampling rate of the discrete-time functions relative to the continuous-time
functions (as in the left column) or as an intrinsic compression or expansion in time of
the discrete-time functions (as in the right column).

In the following sections we describe and discuss the fundamental mathematics of discrete-
time decimation, interpolation, and change of sample rate by a rational factor. We will
find that the operations associated with decimation and interpolation are closely related
to ideal C/D and D/C conversion, respectively, that had been described in Secs. 1.2 and
1.3 above. We will discuss computationally-efficient ways of realizing these operations in
Chapter 2 below.

1.4.1 Decimation: reducing the sampling rate by an integer factor M

In continuous-time signal processing, Fourier transform properties relate compression in
time to expansion in frequency and vice-versa. Specifically, if

x(t) & X(jQ) (1.17)
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Figure 1.7: Comparison of an original discrete-time function (upper row), the function
after decimation by M = 3 (central row), and the function after interpolation by L = 2
(lower row). Left column: the spacing of the samples is scaled according to the change in
sample rate. Right column: the spacing of the samples is constant across all three sample
rates.

then

1_(.Q
x(at) & |a|X(]|a|) (1.18)
As we noted above, we can think of decimation as a process by which we compress in
the signal along the time axis. Nevertheless, the time-compression is not straightforward
because of the constraint that discrete-time signals are meaningful only for sample values
that are integer. For example, if we were downsampling by a factor of 2, each of the
odd samples of the original time function would disappear after decimation. In order
to represent the impact of the samples that do not “survive” the decimation process on
the frequency response, we must set those samples to zero explicitly in our mathematical
analysis of the processing. Consequently, we mathematically describe the decimation
process as in lower panel of the block diagrams in Fig. 1.8. The upper panel of this
figure shows the basic structure of a system that performs decimation or downsampling
by a factor of M. The input is a discrete-time function x[n], which we assume to be
a bandlimited time function such that its discrete-time-time Fourier transform X(e/®)
equals zero for W < |w| < . The output is the decimated discrete-time function x,[m]
which is equal to x[n] evaluated at times n = mM, where M is the downsampling ratio.
(We use the index m rather than # to call attention to the fact that the effective time base
changes after decimation.)

The mathematical representation of the decimation process is specified in more detail in
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Figure 1.8: Upper panel: block diagram of decimation by M. Lower panel: Specification
of the underlying signal processing.

the lower panel of Fig. 1.8. Specifically, the input is first multiplied by pys[#], an infinite
train of delta functions in discrete time of amplitude 1, which are separated by an interval
of M samples. The function x,[n] is the product of x[m] and py[n], and is a train of delta
functions of amplitude x[nM] which are separated in time by intervals of M samples,
with the values of x,[n] set equal to zero when 7 is not an integer multiple of M. This
sequence is then compressed in time so that x,;[m] = x[mM].
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Figure 1.9: Representative time functions and their spectra in discrete-time decimation,
illustrated for M = 3. Left side: the time functions (a) x[n], (b) pp[n], (c) x,[n], and (d)
x4[m]. Right side: The corresponding discrete-time Fourier transforms.

Time-domain representations. It is helpful to be able to visualize these signals in both
time and frequency. The left side of Fig. 1.9 depicts, for an arbitrary time function and its
spectrum, the various discrete-time functions depicted in Fig. 1.8 for the downsampling
ratio M = 3. The corresponding Fourier transforms are shown on the right side of the
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figure. More specifically,
pmin] = Zé[n—rM] (1.19)
r=—c0

_ | x[n], n=rM
Xp[”] = x[n]pm([n] = { 0, otherwise

The functions x[n], py([n], and x,[n] are depicted in panels (a), (b), and (c), respectively
in the left column of Fig. 1.9. The function x,[n] consists of the samples of x[n] that will
survive the decimation process. The output of the decimation process, x;[m], consists of
these same nonzero samples, but the time axis is now compressed so that the nonzero
delta functions are now found at successive values of the new time index m.

(1.20)

Frequency-domain representations. Considering now the corresponding functions in
the frequency domain, we will assume that X(e/*’), the DTFT of x[#], is of arbitrary shape,
bandlimited such that X(e/“) = 0 for W < |w| < 77, and with a maximum amplitude equal
to A, as depicted in Fig. 1.9. Like all DTFTs, X (e/®) is periodic with period 27.

It is easy to demonstrate by computing the inverse DTFT that Py;(e/®), the DTFT of py[n],
is also an infinite train of delta functions:

PM(ef“’):%Z i 5(w—2—”k) 2 Z Z (a)———Z r) (1.21)

k=—0c0 r=—00]=—c0

Py(e/¢) is expressed in double-sum form to emphasize the fact that the DTFT is periodic
with period 27 and that there are M equally-spaced delta functions within each periodic
cycle, separated by w = 27t/M, and each with amplitude 27t/M. Because x,[n] = x[n]pp[n]
in the time domain, the corresponding DTFTs are

. 1 ) ) 1 n . .
jwy— jw joy_— jo j(w—0)
Xp(e7?) 27zX(e ) ® Pp(e/) e j X(e!)Py(e )do (1.22)

—TC

where the symbol ® indicates circular convolution. Because convolving X (e/®) with the
limited train of delta functions within a span of w = 27 for Py;(e/“) merely replicates and
shifts the spectrum M — 1 additional times, we obtain

00 M-1
; 1 2 2 1 . r
le) = X)o7 Y ofw- )= ) xe @ #) .

k=—c0
as shown in Row (c) of Fig. 1.9.

Avoiding aliasing distortion. In order for the downsampled discrete-time signal to be
ultimately be recovered without distortion, it is necessary that the replications of the
original spectrum in Fig. 1.9 not overlap one another. It can easily be seen that the
separation of the replications is related to the downsampling ratio of M while the width
of the replications is twice the signal bandwidth W. It is clear from Fig. 1.9 that overlap

will be avoided if 5
T WsWorw< = (1.24)
M M

In other words, the sampling frequency must be at least 2M as great as the bandwidth
of the signal to avoid aliasing distortion. Most practical downsampling systems include
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a lowpass filter of gain 1 and a nominal cutoff frequency of /M to avoid distortion by
aliasing.

Changing the sampling rate. The final step in the decimation process is changing the
time scale of the discrete-time function so that the non-zero samples have successive in-
dices. Specifically, we define a new function and a new time axis x;[m] = x,[mM]. The
DTEFT of x4[m] can be computed directly:

(o) oo

X, (/) = Z xg[m]e 1M = Z xp[mM]e_jw’m (1.25)

m=—oo Mm=—00
Letting | = mM or m = I/M produces

’

X, (el”') = i xy[1]e 1 () = i xy[1e 1) = xp(%) (1.26)

|=—c0 |=—c0

In other words, the output X,(e/®’) is identical to the DTFT xp(ejw), except that it is
stretched in frequency to be wider by a factor of M. We use the symbol w’ to represent the
frequency after downsampling to recognize the fact that the frequency scale has changed
because the time scale has changed. This function is depicted in the right column of the
bottom panel of Fig. 1.9. While you may be concerned that m = [/M is not integer for
some values of m, these are exactly the values of m for which the function x,[m] is equal
to zero.

1.4.2 Interpolation: increasing the sampling rate by an integer factor L

x[n] x;[m] = x[m/L] for m =rL
x[n] e[m] zi[m]
—> Expand —»| Lowpass filter —»

in discrete time

Insert L — 1 zeros Gain L, Cutoff /L

Figure 1.10: Upper panel: block diagram of interpolation by L. Lower panel: Specification
of the underlying signal processing.

Just as decimation or downsampling is similar in some ways to C/D conversion, discrete-
time interpolation or upsampling has some similarities to D/C conversion, which is at
the end of the day itself an interpolation process in continuous time. Interpolation by
a factor of L includes two major steps: (1) “expanding” the discrete-time function by
inserting L — 1 samples of amplitude zero between each successive sample of the input



14 1.4. Introduction to discrete-time decimation and interpolation

and (2) lowpass filtering the resulting signal using an ideal filter with gain L and cutoff
frequency /L.

Expansion in time. Figure 1.10 depicts the major functions involved with interpolation
in time and frequency. Using x[n] to designate the input, we will represent the expanded
time function as

x,[m] :{ x[m/L], m/L integer (1.27)

0, otherwise

to produce the interpolated sequence x;[m] as the filter output. As stated above, we will
use the variable m rather than n for the time index as a reminder that the time scale has
changed.

The discrete-time sequence x,[m] that represents the expanded signal can also be written
as

x,[m] = Z x[1)86[m —IL] (1.28)
|=—c0
This sequence of weighted delta functions is passed through an ideal lowpass filter with

transfer function
L, |w|<m/L

0, M/L<|w|<™ (1.29)

Hyp(e®) = {
The gain factor of L in Hyp(e/®) ensures that if an original signal is upsampled and then
downsampled by the same ratio, the original signal will be recovered without distortion
and with the same amplitude. There is no need to be concerned with aliasing distortion
in the interpolation process because no information is lost.
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Figure 1.11: Functions involved in process of interpolation by a factor of L = 4 in the time
and frequency domains. Left side: the time functions (a) x[n], (b) x,[m], and (c) x,[m].
Right side: The corresponding Fourier transforms in discrete time. The ideal lowpass
filter Hyp(e/®) is also shown in panel (b) in red.

The upsampling process is illustrated in the time and frequency domains in Fig. 1.11,
which can be seen to retrace most of the functions shown in Fig. 1.9 in reverse order. The
discrete-time sequence x[n], depicted in the upper panel of Fig. 1.11 is first converted into
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the expanded sequence of delta functions x,[m], which is depicted in the central panel of
Fig 1.9, as describe above. It is easy to demonstrate that the X,(e/*"), the DTFT of x,[m] is
identical to X(e/¢), the DTFT of x[m] but contracted in frequency by a factor of L:

(o) (o)

X (jo') = Z x,[m]e @™ = Z xy[m/L]e7i®™ (1.30)

m=—o0 m=—oco,m=rL

Letting I = m/L or m = L, we obtain

X (jo') = Z x[m/L]e @™ = Z x[1e 1@ = Z x[1]e 1@ D= X (1) (1.31)
m=—oco,m=rL |=—00 |=—00

Lowpass smoothing. The output of the decimation process is obtained by passing the
expanded signal x.[m] through the lowpass filter. In the time domain we convolve x,[m]
with the unit sample response of the filter:

xi[m] = xc[m]+hyp[m] (1.32)
The unit sample response of the filter is easily obtained directly:

sin (7tm/L)

tm/L (1.33)

1 TC . . 1 /L 0
th[m]:—j HLp(e]“’)e]w"dw:—f Le/>*™dQ =L
210 J 2 -7/L
This is a discrete-time sinc function with amplitude equal to L at m = 0 and regularly-
spaced zero crossings at m = rL. Because the convolution of any function with a train
of impulses produces replication of the original function at the times of the impulses,
weighted by the impulse areas, we obtain

sin(mt(m—rL)/L)
ni(m—rL)/L

xilm] = hyplm]xelm] = huplm]« ) x[rla(m=rL)=1 ) x[r]

r=—00 r=—00

(1.34)

In other words, the interpolated discrete-time function x;[m] can be represented as the
sum of an infinite train of sinc functions in discrete time, delayed by intervals of L and
scaled according to the corresponding value of x[m]. The interpolation process works
exactly the same way as the reconstruction of continuous-time functions in D/C conver-
sion, as illustrated in Fig. 1.11, except that the resulting function x;[m] is discrete in time
rather than continuous in time.

As in C/D conversion, the actual lowpass filter to reconstruct the interpolated signal
would not be ideal. Nevertheless, the interpolated signal would still be an infinite lin-
ear combination of delayed and scaled unit sample response of the lowpass filter that is
actually used.

In the frequency domain, the the lowpass filter limits the frequencies passed to |w’| < 1t/L,
as depicted in red in the central panel of Fig. 1.11. As depicted in the lower panel of Fig.
1.11, the output frequency response is

X(el®), || < 7/L

(o) =
Xi(e™) {o, /L < || <7 (1.35)
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Figure 1.12: Block diagram of a system that changes the sampling rate by the rational
fraction L/M. Upper panel: direct implementation by cascading interpolation by L with
decimation by M. Lower panel: integrated system in which the cascade of two lowpass
filters is replaced by a single lowpass filter.

1.4.3 Changing the sampling rate by a rational factor L/M

Changing the effective sampling rate by a rational factor of L/M can be thought of as first
upsampling by L and then downsampling by M. For example, to change the sample rate
of a speech signal from 20 kHz to 16 kHz, we would first upsample by L = 4 to 80 kHz
and then downsample by M =5 to 16 kHz. Note that 80 is the least common multiple of
the upsampling and downsampling ratios L and M.

Figure 1.12 depicts two implementations of a system that changes the effective sampling
rate by the fraction L/M. The upper panel shows the direct implementation of such a
system, consisting of the cascade of upsampling by L followed by decimation by a factor
of M. The lowpass antialiasing filter that is part of most practical decimation systems is
included explicitly in the figure. In addition to the change in sampling rate, the ampli-
tude of the input will be scaled by the factor of L/M by the processing. As discussed in
the section the ideal antialiasing filter prior to decimation has a gain of 1 and a cutoff
frequency of w/M. The lowpass filter that performs the interpolation in the upsampling
module has a gain of L and a cutoff frequency of /L. The initial block in the upper panel
simply inserts L — 1 zeros between each successive sample of the input. The final block
contracts its input in time by a factor of M, preserving only those samples for which the
input sample index is an integer multiple of M.

The lower panel of Fig. 1.12 depicts a more efficient implementation that replaces the
cascade of the two ideal lowpass filters. It will have a gain of L and a cutoff frequency
that is the minimum of 7t/L and /M.

In summary, we have reviewed in this chapter the mathematics that are used to describe
the processes of ideal conversion of signals from continuous time to discrete time and
vice versa, known as ideal C/D and D/C conversion. We also discussed the basic math-
ematics that describe discrete-time change in sampling rate, including interpolation (or
upsampling), decimation (or downsampling), and change of sampling rate by a rational
fraction. We noted that decimation is similar to C/D conversion in a number of respects
and that interpolation is similar to D/C conversion.
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In the following chapter we will discuss techniques used to make the upsampling and
downsampling operations much more computationally efficient.



