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Allpass, Minimum Phase,
and Linear Phase Systems

I. Introduction

In previous lectures we have discussed how the pole and zero locations determine the magnitude
and phase of the DTFT of an LSI system. In this brief note we discuss three special cases: allpass,
minimum phase, and linear phase systems.

II. Allpass systems

Consider an LSI system with transfer function

H(z) =
z−1 − a∗

1− az−1

Note that the system above has a pole at z = a and a zero at z = (1/a)∗. This means that if
the pole is located at z = rejθ, the zero would be located at z = (1/r)ejθ. These locations are
illustrated in the figure below for r = 0.6 and θ = π/4.

Re[z]

Im[z]

As usual, the DTFT is the z-transform evaluated along the unit circle:

H(ejω) = H(z)|z=0
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It is easy to obtain the squared magnitude of the frequency response by multiplying H(ejω) by its
complex conjugate:

∣∣∣H(ejω)
∣∣∣2 = H(ejω)H∗(ejω) =

(e−jω − re−jω)(ejω − rejω)

(1− rejθe−jω)(1− re−jθejω)

=
(1− rej(θ−ω) − re−j(θ−ω) + r2)

(1− rej(θ−ω) − re−j(θ−ω) + r2)
= 1

Because the squared magnitude (and hence the magnitude) of the transfer function is a constant
independent of frequency, this system is referred to as an allpass system. A sufficient condition for
the system to be allpass is for the poles and zeros to appear in “mirror-image” locations as they
do in the pole-zero plot on the previous page. (More formally the pole and zero are located in
conjugate reciprocal locations.)

The frequency response of the allpass system with complex impulse response with a pole at z =

0.6ejpi/4 and a zero at z =
(

1
0.6

)
ejπ/4 is depicted below:
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Additional comments:

• If h[n] is real, the poles and zeros would each occur in complex-conjugate pairs. We note that
even though the magnitude is constant, the phase does depend on frequency.

• This property implies that you can invert the magnitude of a pole or zero location in an LSI
system without changing the magnitude of the transfer function of that system.
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III. Minimum-phase systems

Now let us consider an example of reflecting a zero inside the unit circle. Specifically, consider the
two LSI systems:

H1(z) =
z − 9

10

z − 3
4

and H2(z) =
z − 10

9

z − 3
4

The pole-zero plots for these two systems are depicted below:
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System 1
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System 2

We note that the two systems should have the same magnitude of the frequency response, as System
1 can be obtained by cascading System 2 with an allpass filter with a zero at z = 9/10 and a pole
at z = 10/9. And (unsurprisingly) this is the case:
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System 1
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System 2

Note that the magnitude of the phase shift is much greater for System 2 than it is for System 1.
In general System 1 is preferred over System 2, because it has less phase lag, which is normally
considered to be desirable. In the general case, a system is considered to be minimum phase if all
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of its zeros as well as all poles are inside the unit circle. (Recall that you want to have all poles
inside the unit circle so that a system can be both causal and stable.) We also note that a system
is considered to be maximum phase if all poles and zeros are outside the unit circle, although this
is not a very interesting case in practice.

IV. Linear-phase systems

Consider the causal system with the triangularly-shaped impulse response depicted below:
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Note that this response is symmetric about the point n = 3. We can think of this h[n] as a sample
response in the form of h[n] = h′[n− 3] where the sample response h′[n] is a real and even discrete-
time function. This means that H(ejω), the DTFT of h[n], would be the product of H ′(ejω), which
would be a real and even function of frequency and hence zero phase, and the term e−j3ω, which
is the linear phase shift produced by the delay of h[n] by three samples relative to h′[n]. Hence
H(ejω), the DTFT of h[n], would be linear phase. In general a system is linear phase if its sample
response is symmetric about its midpoint.

Now lets examine the impact of the linear-phase constraint on the pole-zero locations of a system.
As an example, consider the transfer function of the system depicted above:

H(z) = 1 + 2z−1 + 3z−2 + 4z−3 + 3z−4 + 2z−5 + 1z−6

Let’s multiply the numerator and denominator of H(z) by z6:

H(z) =
z6 + 2z5 + 3z4 + 4z3 + 3z2 + 2z + 1

z6

The zeros of H(z) are obtained (as usual) by setting the numerator of the expression above to zero:

z6 + 2z5 + 3z4 + 4z3 + 3z2 + 2z + 1 = 0

Because of the symmetric form of h[n], we also note multiplying the above equation by z6 produces

1 + 2z−1 + 3z−2 + 4z−3 + 3z−4 + 2z−5 + 1z−6 = 0
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The above two equations tell us that if a particular value of z is a zero of the linear-phase system
described by H(z), z−1, the inverse value of z would also be a zero of H(z). Now if a particular
zero is located at an arbitrary location z = rejθ, its inverse would be located at z−1 = (1/r)e−jθ. In
other words, the reciprocal location would be found at the reciprocal of the original magnitude and
the negative of the original phase shift. Of course, if h[n] is real, the zeros would appear in complex-
conjugate pairs, which would be accompanied by their reciprocal complex-conjugate locations. The
diagram below summarizes the possible locations of zeros in a finite-impulse response linear-phase
system:
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Complex zeros generally
occur in clusters of four

Pairs of complex zeros may
be found on the unit circle

Pairs of real zeros may
be found on the real axis

Single zeros are
only at z = ±1

Two final comments on linear-phase systems:

• Infinite-duration sample response can also have linear phase. They just cannot also be causal.

For example, h[n] =
(
1
2

)|n−3|
is linear phase with poles at z = 2 and z = −2, along with a

triple pole at z = 0.

• Finite-duration sample responses with an even number of samples can also be linear phase,
with the midpoint lying between two integers. For example, the sample response h[n] = 1 for
0 ≤ n ≤ 5 and zero otherwise is linear phase. The midpoint of h[n] is at n = 2.5 and hence
the phase is 6 H(ejω) = −2.5ω. Systems like this which have an axis of symmetry that falls
between two sample points are sometimes referred to as exhibiting generalized linear phase.
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