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Examples of the Convolution Computation

Introduction

These notes briefly review the convolution examples presented in class.

Computation of the convolution sum Example 1

As I mentioned in class, it is important to understand the convolution operation on many
levels. We use graphical representations of the functions in the convolution sum (as demon-
strated in class using MATLAB) to give us overall insight into the form of the output and the
limits of non-zero output points. In this section we will provide an example of how the convolution
sum is computed analytically.

Computation of actual convolution sums in 18-491/691 most commonly involves generalized ex-
ponential functions (including step functions and the sine/cosine functions). Two mathematical
relationships that are frequently used are

∞∑
n=0

αn =
1

1− α
, which converges only for |α| < 1, and

N−1∑
n−0

αn =
1− αN

1− α
, which is a finite sum and hence always converges

Now lets consider the following pair of functions to be convolved:

x[n] = i[n], and

h[n] =

(
1

2

)n−3
u[n− 3]

The graphical convolution of these function is illustrated in the MATLAB routines that are available
in

http://www.ece.cmu.edu/ ee491/lectures

The calling scripts go4.m and go5.m flip and shift x[n] and h[n], respectively (although the notation
on the screens may be a little different).
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Note that either way, the result of the convolution looks like

To obtain this result analytically we must first decide which function to flip and shift. Normally wed
flip and shift the “simpler time function, which in this case would be x[n], causing the convolution
sum to be written as

y[n] =
∞∑

n=−∞
h[k]x[n− k]

Strictly for the purpose of being more illustrative, though, we will flip and shift the more complicated
function h[n], causing the convolution sum to be written as

y[n] =
∞∑

n=−∞
x[k]h[n− k]

Given our definitions above for x[n] and h[n]T , we can write by substitution

h[n− k] =

(
1

2

)n−k−3
u[n− k − 3]

x[k] = u[k]

Since x[k] equals zero for x< 0 and h[n − kl] equals zero for k > n − 3, we can see that the only
region of “overlap” for which both x[k] and h[n − k] are nonzero is 0 ≤ k ≤ n − 3. Hence the
convolution sum is equal to zero for values of n that are less than 3. For 3 ≤ n we have

y[n] =
∞∑

k=−∞
x[k]h[n− k] =

n−3∑
k=0

1

(
1

2

)n−k−3

y[n] =

(
1

2

)n−3 n−3∑
k=0

2k =

(
1

2

)n−3 (1− 2n−2)

(1− 2)
=

(
1

2

)n−2((1

2

)2−n
− 1

)
= 2−

(
1

2

)n−3
So, for all n we can write

y[n] =

(
2−

(
1

2

)n−3)
u[n− 3]
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Computation of the convolution sum Example 2

Now consider the convolution of x[n] = cos(ω0n)u[n] with h[n] = u[n].

First, lets recall the three “tricks” to be invoked that we reviewed in the lecture:

• Trick 1. Representing sines and cosines in complex exponential form:

cos(θ) =
ejθ + e−jθ

2

sin(θ) =
ejθ − e−jθ

2j

• Trick 2. Infinite and finite summation of exponentials: As noted above,

∞∑
n=0

αn =
1

1− α
, which converges only for |α| < 1, and

N−1∑
n−0

αn =
1− αN

1− α
, which is a finite sum and hence always converges
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• Trick 3. Balancing equations with complex exponentials:

(1− ejωn) = ejωn/2(e−jωn/2 − ejωm/2) = −2jejωn/2 sin(ω/2)

As noted in class, yy[n] = 0 for n < 0. For n ≥ 0 we obtain using the convolution sum

y[n] =
n∑
k=0

x[k]h[n− k] =
n∑
k=0

cos(ω0k)

k=0 k=0 Applying Trick 1, we obtain

y[n] =
n∑
k=0

cos(ω0k) =
1

2

n∑
k=0

ejω0k +
1

2

n∑
k=0

e−jω0k

Applying Trick 2 (not worrying about convergence because the sum is finite), we obtain

y][n] =
1

2

n∑
k=0

ejω0k +
1

2

n∑
k=0

e−jω0k =
1

2

(
1− ejω0(n+1)

)
(1− ejω0)

+
1

2

(
1− e−jω0(n+1)

)
(1− e−jω0)

Applying Trick 3, we obtain

y[n] =
1

2

ejω0(n+1)/2
(
e−jω0(n+1)/2 − ejω0(n+1)/2

)
(ejω0n(e−jω0/2 − ejω0/2))

+
1

2

e−jω0(n+1)/2
(
ejω0(n+1)/2 − e−jω0(n+1)/2

)
(e−jω0n(ejω0/2 − e−jω0/2))

y[n] =
1

2

ejω0n/2(−2j sin((ω0(n+ 1)/2))

−2j sin(ω0/2)
+

1

2

e−jω0n/2(2j sin((ω0(n+ 1)/2))

2j sin(ω0/2)

Combining terms, we obtain for all n

y[n] =
sin(ω0(n+ 1)/2) cos(ω0n/2)

sin(ω0/2)
u[n]

Note that this result must be real, as the two functions in the convolution sum are real,
despite all the complex exponentials flying around along the way.
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