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Figure P9.6

(a) Whatis the “gain” along the path that is emphasized in Figure P9.6?

(b) How many other paths in the flow graph begin at x[7] and end at X[2]? Is this truc
in general? That is, how many paths are there between each input sample and each
output sample?

(c) Now consider the DFT sample X([2]. By tracing paths in the flow graph of Figure PY.6.

show that each input sample contributes the proper amount to the output DFT sample:
1.e., verify that

N-1
X[2] = Z x[n)e~i@n/N)2n
n=0




9.7. Figure P9.7 shows the flow graph for an 8-point decimation-in-time FFT algorithm. Let x(n]
be the sequence whose DFT is X[k]. In the flow graph. A[-]. B[-]. C[-]. and D|-] represent
scparate arrays that are indexed consecutively in the same order as the indicated nodes.

(a) Spcafy how the elemcents of the sequence x{n] should be placed in the array Ar].

r = 0.1.....7. Also. specify how the elements of the DFT sequence should be ex-
tracted from the array Dir).r =0.1.....7.

(b) Withoutdetermining the valuesinthe intermediate arrays. B(-}Jand C{-]. determine and
sketch the array sequence Dr].r = 0.1,....7. 1if the input sequence 1s
tfnl =(-Wuy)".n=01... .. 7.

(c¢) Dctermine and sketch the sequence Clr).r =0.1... .. 7. 1f the output Fourier trans-

formis Xlkl=1.k=0.1. ... 7.
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Figure P9.7



%45, A modified FFT algorithm called the split-radix FFT, or SRFFT, was proposed by Duhamel
and Hollman (1984) and Duhamel (1986). The flow graph for the split-radix algorithm is
similar to the radix-2 flow graph, but it requires fewer real multiplications. In this problem,
we illustrate the principles of the SRFFT for computing the DFT X [k] of a sequence x[n]
of length N.

(a) Show that the even-indexed terms of X[k] can be expressed as the N/2-point DFT
(N/2)-1

X[2k] = Z (-’([n]+x[n+N/2])Wif‘”
n=0

fork=0,1,..., (N/2) — 1.
(b) Show that the odd-indexed terms of the DFT X[k] can be expressed as the N /4-point

DFTs
X[dk + 1]
(N/4)-1
= Y (xlnl = xln + N/2D) = Jxln 4 N/ = xpaf Ay e
n=_) S 4
fork =0.1,..., (N/4)—1,and
X4k + 3]
(N/4)—1
= ((x|n] —x[n+ N/2D) + j(x[n+ N/4] — x[n + 3N 41y W3n yakn

fork=0,1,..., (N/d — 1.
(¢) Theflow graphin Figure P9.45 represents the preceding decomposition of the DFT for
16-point transform. Redraw this flow graph. labeling each branch with the fora

. L a it
multiplier coefficient. PProprate
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Figure P9.45

(d) Determine the number of real multiplications required to implement the 16-point
transform when the SRFFT principle is applied to compute the other DFTs in Fig-
ure P9.45. Compare this number with the number of real multiplications required to
implement a 16-point radix-2 decimation-in-frequency algorithm. In both cascs, as-
sume that multiplications by Wg, are not done.



9.58. I this problem, we will write the FFT as a sequence of matrix operations. Consider the
8-point decimation-in-time FFT algorithm shown in Figure P9.58. Let a and f denote the
input and cutput vectors, respectively. Assume that the input is in bit-reversed order and
that the output is in normal order (compare with Figure 9.11). Let b, ¢, d, and e denote the
intermediate vectors shown on the flow graph.
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(a) Determine the matrices Fy, Ty, F2, Tz, and F3 such that

b = Fja.
¢ = Tb,
d = Foc,
e = Thod,
f i Fae,

(b) Theoverall FFT, takinginputa and yielding output f can be described in matrix notation
as f = Qa, where

Q= F3T2F2T1F1.

Let Q be the complex (Hermitian) transpose of the matrix Q. Draw the flow graph

for the sequence of operations described by Q. What does this structure compute?
(¢) Determine (1/N)QH Q.



