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9.7. Figure P9.7 shows the flow graph for an 8-point decimation-in-time FFT algorithm. Let x[]
be the sequence whose DFT is X[k]. In the flow graph, A[-], B[-], C[-], and D[] represent
separate arrays that are indexed consecutively in the same order as the indicated nodes.

(a) Specify how the elements of the sequence x[n] should be placed in the array A[r],
r=0.1,....7. Also, specify how the elements of the DFT sequence should be ex-
tracted from the array Dir},r =0,1,...,7.

(b) Without determining the values in the intermediate arrays, B[-]and C|[-], determine and

sketch the array sequence D[r],r = 0,1,...,7, if the input sequence is
xnl=(CWp)',n=0,1,...,7. _
(¢) Determine and sketch the sequence C[r],» =0, 1,..., 7, if the output Fourier trans-

formis X{kl=1,k=0,1,...,7.
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Figure P9.7



9.42. Consider aclass of DFT-based algorithms for implementing a causal FIR filter with impulse

response hi[n] that is zero outside the interval 0 < n < 63. The input signal (for the FIR

filter) .‘r[nr] 1S sg:gmenlcd INto an infinite number of possibly overlapping 128-point blocks
x;|n]. for 1 aninteger and —oo <1 < oo, such that

rlnl__ x[”]s ’LE"S,L'*']Z‘?,
I K0 otherwise,
where L is a positive integer.

Specify a method for computing
viln) = x,;[n] * h[n]

for any 1. Your answer should be in the form of a block diagram utilizing only the types of
modules shown in Figures PP9.42-1 and PP9.42-2. A module may be used more than once
or not at all.

The four modules in Figure P9.42-2 either use radix-2 FFTs to compute X[k], the
N-point DFT of x[n], or use radix-2 inverse FFTs to compute x[n] from X[k].

Your specification must include the lengths of the FFTs and IFFTs used. For each
“shift by ny™ module, you should also specify a value for ng, the amount by which the input
sequence 1s to be shifted.

: _—
Shm T x[n] Multiply p—>
o Y0 | xln-ng] g 5 [n]xln]
alr] Figure P9.42-1
R—— FFT-1 . where P[k]is X[k] in
x[n) (N-point) P[k] bit-reversed order.

FFT-2 where g[n] is x[n] in

L bit-reversed order.
gln] (N-point) X[k
IFFT-1 where r[n] s x[n] in
p— (N-point) bit-reversed order.
X|[k] r(n]
IFFT-2 where S[k] 1s X[k] in
—— bit-reversed order.

s | POV |y Figure P9.42-2
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).58. In this problem, we will :
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(a) Determine the matrices Fy, Ty, F, T,, and F5 such that

b = Fqa,
¢ =Tyb,
d = Fpe,
e = Tad,
f = Fse.

(b) Theoverall FFT, takinginputa and yielding output f can be described in matrix notation
as f = Qa, where

Q= F3T,F, T F;.

Let Q¥ be the complex (Hermitian) transpose of the matrix Q. Draw the flow graph

for the sequence of operations described by Q. What does this structure compute?
(¢) Determine (1/N)QX Q.
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