9.6. Figure P9.6 shows the graph representation of a decimation-in-time FFT algorithm f_{0r} N=8. The heavy line shows a path from sample x[7] to DFT sample X[2].

(a) What is the "gain" along the path that is emphasized in Figure P9.6?
(b) How many other paths in the flow graph begin at x[7] and end at X[2]? Is this true output sample?

(c) Now consider the DFT sample X[2]. By tracing paths in the flow graph of Figure P9.6, show that each input sample contributes the proper amount to the output DFT sample; i.e., verify that

$$X[2] = \sum_{n=0}^{N-1} x[n]e^{-j(2\pi/N)2n}.$$

- **9.7.** Figure P9.7 shows the flow graph for an 8-point decimation-in-time FFT algorithm. Let x[n] be the sequence whose DFT is X[k]. In the flow graph, $A[\cdot]$, $B[\cdot]$, $C[\cdot]$, and $D[\cdot]$ represent separate arrays that are indexed consecutively in the same order as the indicated nodes.
 - (a) Specify how the elements of the sequence x[n] should be placed in the array A[r], r = 0, 1, ..., 7. Also, specify how the elements of the DFT sequence should be extracted from the array D[r], r = 0, 1, ..., 7.
 - (b) Without determining the values in the intermediate arrays, $B[\cdot]$ and $C[\cdot]$, determine and sketch the array sequence D[r], r = 0, 1, ..., 7, if the input sequence is $x[n] = (-W_N)^n$, n = 0, 1, ..., 7.
 - (c) Determine and sketch the sequence C[r], r = 0, 1, ..., 7, if the output Fourier transform is X[k] = 1, k = 0, 1, ..., 7.

Figure P9.7

9.42. Consider a class of DFT-based algorithms for implementing a causal FIR filter with impulse response h[n] that is zero outside the interval $0 \le n \le 63$. The input signal (for the FIR filter) x[n] is segmented into an infinite number of possibly overlapping 128-point blocks $x_i[n]$, for i an integer and $-\infty \le i \le \infty$, such that

$$x_i[n] = \begin{cases} x[n], & iL \le n \le iL + 127, \\ 0, & \text{otherwise,} \end{cases}$$

where L is a positive integer.

Specify a method for computing

$$y_i[n] = x_i[n] * h[n]$$

for any i. Your answer should be in the form of a block diagram utilizing only the types of modules shown in Figures PP9.42-1 and PP9.42-2. A module may be used more than once or not at all.

The four modules in Figure P9.42-2 either use radix-2 FFTs to compute X[k], the N-point DFT of x[n], or use radix-2 inverse FFTs to compute x[n] from X[k].

Your specification must include the lengths of the FFTs and IFFTs used. For each "shift by n_0 " module, you should also specify a value for n_0 , the amount by which the input sequence is to be shifted.

2.58. In this problem, we will write the FFT as a sequence of matrix operations. Consider the In this problem, we will write the FF1 as a sequence P9.58. Let a and f denote the 8-point decimation-in-time FFT algorithm shown in Figure P9.58. Let a and f denote the 8-point decimation-in-time FF1 algorithms and state that the input is in bit-reversed order the input and output vectors, respectively. Assume that the input is in bit-reversed order the input and output vectors, respectively. Assume that the input is in bit-reversed order and input and output vectors, respectively. Assume that the input is in bit-reversed order and input and output vectors, respectively. Assume that the input is in bit-reversed order and input and output vectors, respectively. Assume that the input is in bit-reversed order and input and output vectors, respectively. input and output vectors, respectively. Figure 9.11). Let b, c, d, and e denote the flow graph. intermediate vectors shown on the flow graph.

Figure P9.58

(a) Determine the matrices F_1 , T_1 , F_2 , T_2 , and F_3 such that

$$b = F_1a,$$
 $c = T_1b,$
 $d = F_2c,$
 $e = T_2d,$
 $f = F_3e.$

(b) The overall FFT, taking input a and yielding output f can be described in matrix notation as f = Qa, where

$$Q = F_3 T_2 F_2 T_1 F_1.$$

Let Q^H be the complex (Hermitian) transpose of the matrix Q. Draw the flow graph for the sequence of operations described by Q^H . What does this structure compute? (c) Determine $(1/N)Q^HQ$.