
 DSP DSP DSP DSP DSP DSP DSP DSP DSP DSP DSP DSP DSPDSPDSPDSPDSPDSPDSPDSPDSPDSPDSPDSPDSP
Digital Signal Processing (18-491/18-691)

pring Semester, 20S 25

Problem Set 3

Issued: 1/30/25

Due: 2/7/25 at 0100 via Gradescope

Note: You will be submitting your homework using Gradescope. Write your homework on paper,
scan your results, and upload them to the gradescope site.

Reading: During the past week we began our discussions of basic properties of z-transforms,
focussing on the nature of the time function and the shape of the region of convergence (ROC),
following Secs. 3.0-3.3 in the text. In the week to come we will continue this discussion, focussing
on z-transform properties and the computation of inverse z-transforms using the partial fraction
method and linear constant-coefficient difference equations, and the development of the magnitude
and phase of the DTFT from the locations of poles and zeros in the z-plane. We also discussed the
impact of pole/zero locations on frequency response, focusing on allpass systems, minimum and
maximum-phase systems, zero-phase systems, and linear-phase systems. This material is discussed
in OSYP Secs. 3.3-3.5 and 5.5-5.7, as well as the lecture notes on frequency response from pole/zero
locations.

This material is also reviewed more compactly in the Notes on Z-Transform Properties and Inverses
posted on the Lectures page of the course website. Some reminders:

• Remember that if the input of an LSI system is x[n] = ejω0n, the output will be

y[n] = ejω0nH(ejω0)

• While we will discuss z-transform properties in some detail, the properties below may be
useful in working some problems on the problem set. Note that Table 3.2 on OSYP page 132
provides a more complete list of properties.

– x1[n] + x2[n]⇔ X1(z) +X2(z) where the ROC is the overlap of the ROCs of X1(z) and
X2(z).

– x[n−N]⇔ z−N where the ROC is is the same as the ROC of x[n].

– x[n] ∗ h[n]⇔ X(z)H(z) where the ROC is the overlap of the ROCs of X(z) and H(z).

18-491/691 Problem Set 3 Page 2 Spring, 2025

Problem 3.1:

-5

-4

-3

-2

-1

0

1

2

3

4

x[
n]

0 1 2 3 4 5 6 7 8 9 10

n

Notes: All solutions in this problem exploit the symmetry properties of DTFTs. They also make
use of some of the relationships below:

∞∑
n=−∞

|x[n]|2 =
1

2π

∫ π

−π

∣∣∣X(ejω)
∣∣∣2 dω (Parseval’s theorem)

x[0] =
1

2π

∫ π

−π
X(ejω)dω

X(ej0) =
∞∑

n=−∞
x[n]

Consider the time function x[n] depicted above:

x[n] = 2δ[n− 1]− 4δ[n− 2]− 2δ[n− 3]− 2δ[n− 5]− 4δ[n− 6] + 2δ[n− 7]

Note that x[n] can be thought of as an even function that is shifted in time. The following questions
can be answered using DTFT properties including the ones cited above. There is no need to solve
them directly.

(a) Determine the value of X(ejω) for ω = 10π

Copyright 2025, Richard M. Stern

18-491/691 Problem Set 3 Page 3 Spring, 2025

(b) Determine the value of X(ejω) for ω = π/2

(c) Determine 6 X(ejω)

(d) Determine the value of 1
2π

∫ π
−πX(ejω)dω

(e) Determine the value of 1
2π

∫ π
−π |X(ejω)|2dω

(f) Determine and sketch the signal whose DTFT is the real part of X(ejω)

Problem 3.2: Determine the z-transform of each of the following sequences. Sketch the pole-zero
plot and indicate the region of convergence. Indicate whether or not the Fourier transform of the se-
quence exists. Use of the properties of the z-transforms will make many of the solutions much easier.

(a)

[(
1

5

)n
+

1

4

(−2

3

)n]
u[n]

(b) 3nu[4− n]

(c)

(
1

4

)n−3
u[n− 3] +

(
1

2

)−n+2

u[−n+ 2]

(d) n

(
1

3

)n
u[n+ 3]u[1− n]

Be sure to check both the transform tables and properties here. You may leave your answer in the
form of the convolution of two functions, but you must end up with an analytical result, not in
polynomial form.

(e) − (2)−|n−4|

(f)

(
1

5

)n−4
cos(5π(n− 4)/4)u[n− 4]

Problem 3.3: Consider a linear shift-invariant system with transfer function

H(z) =
Y (z)

X(z)
=

z3 − 2(
z − 1

5

) (
z −

(
−1
4 + j 14

)) (
z −

(
−1
4 − j

1
4

))
(a) Sketch the pole-zero diagram associated with this transfer function.

Copyright 2025, Richard M. Stern

18-491/691 Problem Set 3 Page 4 Spring, 2025

(b) List all the possible regions of convergence that could be associated with H(z). For each pos-
sible ROC, indicate whether the corresponding unit sample response h[n] is right-sided, left-sided,
both-sided, or finite in duration.

(c) Suppose that you are told that the system is actually causal. Is it stable as well? Why or why
not?

(d) As we have discussed in class, we can also write the transfer function as

H(z) =
Y (z)

X(z)
=

1− 2z−3(
1− 1

5z
−1
) (

1− z−1
(
−1
4 + j 14

)) (
1− z−1

(
−1
4 − j

1
4

))
By cross-multiplying the two expressions on the right and taking the inverse transform of the result
of the cross-multiplication, obtain a difference equation that expresses the current output y[n] as
a linear combination of previous outputs and current and previous inputs. All the coefficients of
your difference equation should be real.

Hint: Remember the property x[n−N]⇔ X(z)z−N

(e) Note that, the initial conditions for this difference equation must be zero in order for the system
to be both linear and shift invariant. Specifically, if the system input x[n] begins at n = 0 the
initial conditions would be that all previous values of y[n] that are needed to calculate the output
y[n]. (This applies to only a finite number of previous values of y[n].)

If the input to this system is applied at n = 0, what are the required initial conditions?

(f) As you know, the unit sample response of the system h[n] is the inverse z-transform of the
transfer function H(z). We began a discussion Monday about a set of general procedures involving
partial fractions that enable us to compute inverse z-transforms when the transfer function is of the
form of a ratio of polynomials in z or z−1 as is the case in the present example (and most situations
that you will encounter in this course).

An alternate way of obtaining h[n] on a sample-by-sample basis is to calculate the system output
y[n] when the input is x[n] = δ[n]. This can be done using iteration, which is described in Sec. III of
the z-transform notes and which was reviewed briefly last Monday. Using the iteration techniques,
obtain numerical values of h[n] for n equal to 0 through 2.

Problem 3.4:

In Problem 1.4c and again in Problem 2.2 we considered the convolution of the following two
functions:

x[n] = (1/3)n−1u[n− 1] with h[n] = (1/3)−n+1u[−n+ 1]

Copyright 2025, Richard M. Stern

18-491/691 Problem Set 3 Page 5 Spring, 2025

As you know from the homework solutions, the result of this convolution is

y[n] =

(
1
8

) (
1
3

)−n
, < 2(

81
8

) (
1
3

)n
, n ≥ 2

(a) Obtain X(z) and H(z), the z-transforms for x[n] and h[n]. Be sure to specify the regions of
convergence.

(b) Obtain Y (z), the z-transform of y[n], and its region of convergence.

(c) Show that Y (z) = X(z)H(z) with the appropriate region of convergence.

Problem 3.5: Listed below are three z-transforms:

1. X1(z) =
1

1 + 1
4z
−1 for |z| > 1

4

2. X2(z) =
1

1 + 1
4z
−1 for |z| < 1

4

3. X3(z) =
1− 3z−1(

1 + 1
4z
−1
) (

1− 1
3z
−1
) for

1

4
< |z| < 1

3

For each of the z-transforms above, determine the inverse z-transform using partial fraction expan-
sion. (This is trivial in the first two cases.) For the first two functions, also determine the first three
nonzero terms of the inverse z-transform using the “long-division” method. Convince yourself that
the two methods produce equivalent answers.

MATLAB Problems

Note that the MATLAB functions zplane, roots, poly, residuez, and freqz are especially useful
in dealing with some of the issues addressed in this weeks problem set. Look over the help files for
these MATLAB functions as they will be very useful in the weeks to come.

For Python users: The recommended general local Python configuration is

- Python Version: v3.10.x

- Libraries & Recommended Versions

- SciPy: 1.10.0

- NumPy: 1.24.1

- Matplotlib: 3.6.3

Some general recommendations for Python users include:

Copyright 2025, Richard M. Stern

18-491/691 Problem Set 3 Page 6 Spring, 2025

• Store signals as numpy arrays

• Read the online documentations of the functions we use to understand the differences between
the MATLAB and Python implementations (although they are mostly like-for-like, nuanced
differences may exist for a few of these functions)

• You would be able to find Python equivalents for most MATLAB functions by searching for
Python equivalent for <MATLAB function name> online. Stack overflow often helps as
well.

Problem C3.1:

In this short problem we will compensate for simple echos in audio signals using an inverse filter.

A very simple model of a single echo is the expression

xe[n] = x[n] + αx[n−N]

Included in the h3 extras folder are two files, welcome16.wav and xe.wav, where xe.wav was
generated with the parameter N corresponding to 40 ms and α = .4. xe.wav was generated with
the following script:

[x,fs] = audioread(’welcome16.wav’);

% set and echo amplitude parameters

alpha = .4;

N = round(.04*fs); % number of samples in .04 seconds

h = [1 zeros([1,N-1]) alpha]; % effective unit sample response of echo "filter"

xe = conv(x,h);

audiowrite(’xe.wav’,xe,fs);

soundsc(xe,fs)

Alternate starter code for Python users:

C3.1a

import numpy as np

from scipy.io import wavfile

fs, x = wavfile.read(’welcome16.wav’)

set echo and amplitude parameters

x_max = x.max()

alpha = 0.4

N = np.rint(0.04 * fs).astype(np.int32) # number of samples in .04 seconds

h = np.hstack((1.0, np.zeros(N - 2), alpha)) # effective unit sample response of echo "filter"

xe = np.convolve(x, h).astype(np.int16) # converting from float32 to int16 to retain original amplitude

wavfile.write(’xe.wav’, fs, xe) # saving the file instead of playing it

Copyright 2025, Richard M. Stern

18-491/691 Problem Set 3 Page 7 Spring, 2025

An inverse filter is an LSI system that is the reciprocal of a given filter:

HI(z) =
1

H(z)

where HI(z) is (you guessed it) the inverse of H(z). Because the product of H(z) and HI(z) is 1,
the result of passing a signal through the cascade of any filter and its inverse is in principle the
original signal once again. In practice though, there is no guarantee that the inverse of a causal
and stable LSI system is also stable and causal.

(a) In this section we will explore some attributes of inverse filtering in this case.

1. Suppose an arbitrary system H(z) is known to be causal and stable. What is the constraint
on the location of the poles and zeros of H(z) that guarantees that its inverse is also causal
and stable?

2. What is the z-transform of the filter H(z) that takes x[n] as the input and produces xe[n] as
the output?

3. What is the z-transform of the inverse filter HI(z) that takes xe[n] as the input and produces
xr[n] as the output, where xr[n] is intended to be a close approximation to x[n]?

4. Write the difference equation of the system defined by HI(z).

5. Use the MATLAB filter command to implement the inverse filter HI(z), taking xe.wav

as the input and outputting xr.wav as the output. (Be sure to read the MATLAB help

file for filter to specify the arguments correctly.) Python users: You can use Python’s
scipy.signal.lfilter instead of MATLAB’s filter routine.

6. Use the MATLAB soundsc routine to play the recovered signal. To what extent does xr[n]
sound like the original x[n]? Python users: You can use scipy.io.wavfile.write(destination
file name.wav,fs,x) instead of MATLAB’s soundsc.

(b) The approach above relied on our having knowledge of the echo amplitude and delay parameters.
In this part of the problem we will explore the use of the autocorrelation function of xe[n] to estimate
the time delay of the echo. The autocorrelation function of a finite-energy deterministic signal x[n]
is defined to be

φxx[m] =
∞∑

n=−∞
x[n]x[n+m]

The autocorrelation function φxx[m] is a measure of how much the time function x[n] resembles itself
in the past and in the future. It is sometimes convenient to think of the autocorrelation function as
the convolution of x[n] with x[−n]. Python users: You can use numpy.correlate(x,y,"full")

instead of MATLAB’s xcorr routine. Do not change the third argument. The default value for this
argument will not give the same result as MATLAB’s xcorr.

The autocorrelation function of x[n] can be implemented directly in MATLAB using conv or by using
the MATLAB function xcorr. For example, you can plot the first 10,000 lags of the autocorrelation
function of x[n] using the command

Copyright 2025, Richard M. Stern

18-491/691 Problem Set 3 Page 8 Spring, 2025

[c,lags] = xcorr(x,x,10000);

stem(lags,c)

1. Plot the autocorrelation functions of x[n] and xe[n] and compare them carefully. Is there
anything in the nature of the plots that can enable you to estimate the delay parameter N?

2. Is there anything in the nature of the plots that can enable you to estimate the attenuation
parameter α?

3. A second version of the “Welcome” utterance, xe2.wav is also included in h3 extras. This
signal also includes an echo, but with different and unknown delay and attenuation parame-
ters. Estimate the delay and attenuation parameters as best you can from the autocorrelation
function of xe2[n]. Pass the echoed signal xe2.wav’ through an appropriate inverse filter to
produce the restored signal xr2[n]. Use MATLAB to generate and save the signal xr2.wav.
To what extent does xr2[n] sound like x[n]?

4. Do you think that this approach will work for all values of N and α? What are some practical
limitations of its utility?

What to turn in: Turn in to Gradescope the following:

• Written answers for parts (a) 1, 2, 3, 4, and 6, and (b) 1, 2, and 4. Also include the plots
for part (b) 1.

• Code for the answers for parts (a) 5 and (b) 3

• .wav files for xr.wav and xr2.wav

Copyright 2025, Richard M. Stern

