
 DSP DSP DSP DSP DSP DSP DSP DSP DSP DSP DSP DSP DSPDSPDSPDSPDSPDSPDSPDSPDSPDSPDSPDSPDSP
Digital Signal Processing (18-491/18-691)

pring Semester, 20S 25

Problem Set 2

Issued: 1/23/25

Due: 1/31/25 at 0100 via Gradescope

Note: During the past week we introduced the discrete-time Fourier transform, and we will con-
tinue with DTFT examples and properties in the coming week, following the material in OSYP
Secs. 2.6-2.9. On Wednesday we will begin our discussion of z-transforms, following the Secs. 3.0-
3.2 in the text. This will be followed by a discussion of z-transforms and their properties, including
consider difference equations and the development of the magnitude and phase of the DTFT from
the locations of poles and zeros in the z-plane. Be sure to look over the class notes on DTFTs
and delta functions that are posted on the Web. Please read the notes on delta functions that are
posted, and look over the summary class notes on DTFTs as well.

Problem 2.1: Compute the discrete-time Fourier transforms for each of the following signals. You
should obtain analytical expressions for your results (i.e. no infinite sums).

(a) x[n] = 4(2)−|n−3|, for all n (Break up the function and solve using superposition.)

(b) x[n] = αn cos (ω0n+ φ)u[n], |α| < 1

(c) x[n] = 9 for all n

Hint: This pair can be solved directly using the inverse-transform relation.

(d) x[n] = A cos (ω0n+ φ) for all n

Hint: You can obtain this answer easily using your result from part (c), the complex exponential
definition of the cosine, and the multiplication property.

(e) x[n] = A sin (ω0n+ φ)(u[n]− u[n− 11])

Hint: Obtain the solution for the finite-duration pulse first (which should be of the form sin(Nx)/ sin(x)
plus a linear phase term) and then apply the effect of the multiplication by the sine using the mul-
tiplication property.

18-491/691 Problem Set 2 Page 2 Spring, 2025

Problem 2.2: In Problem 1.4(c) you obtained the convolution of the function
x[n] = (1/3)n−1u[n− 1] with h[n] = (1/3)−n+1u[−n+ 1].

(a) Using the Fourier transform properties, obtain closed-form expressions for X(ejω) and H(ejω),
the DTFTs of x[n] and h[n], respectively.

Note: Tou may wish to make use of the relationship discussed last week

x[−n]⇔ X(e−jω)

Table 2.2 on OSYP page 58 has a complete list of useful DTFT properties. We discussed most of
these properties during the recitation Friday, and during the regular class on Monday.

(b) Again using Fourier transform properties, obtain Y (ejω), the DTFT of y[n], the result of the
convolution of x[n] and h[n] that you obtained in solving Problem 1.4(c).

(c) Show that your expression for Y (ejω) from part (b) is equal to the product of your expressions
for X(ejω) and H(ejω) obtained in part (a).

Problem 2.3: In class on January 27 we discuss the computation of the inverse DTFT of the ideal
lowpass filter, specifically developing the transform pair

hLP [n] =
sin(ωcn)

πn
⇔ HLP (ejω) =

{
1, |ω| ≤ ωc
0, ωc < |ω| ≤ π

While this relationship is easily obtained by computing the inverse DTFT of HLP (ejω) in the usual
fashion; it is not at all easy to obtain going from the time doman to the frequency domain. On
the other hand, going from the frequency domain to the time domain using the IDTFT is quite
straightforward.

(a) Using DTFT properties, obtain hHP [n], the unit sample response of an ideal highpass filter
with frequency response

HHP (ejω) =

{
0, |ω| ≤ ωc
1, ωc < |ω| ≤ π

(b) Now let us consider the unit sample response hBP [n] of the ideal bandpass filter described by
the DTFT

HBP (ejω) =


0, 0 ≤ |ω| ≤ ω1

1, ω1 < |ω| < ω2

0, ω2 ≤ |ω| ≤ π

Copyright 2025, Richard M. Stern

18-491/691 Problem Set 2 Page 3 Spring, 2025

1. Obtain hBP [n] by subtracting the unit sample responses of two lowpass filters with different
cutoff frequencies, using the properties of DTFTs. Be sure to specify the cutoff frequencies
of the filters.

2. Obtain hBP [n] by multiplying the unit sample response of a lowpass filter by a cosine. Be
sure to specify the cutoff frequency of the lowpass filter and the amplitude and frequency of
the cosine.

3. Show that the mathematical expressions you obtained for hBP [n] using the two methods
above are mathematically equivalent. You can do this most easily by converting the sines
and cosines into their representations as sums and differences of complex exponentials and
using arithmetic operations to show that the two representations are equivalent.

H90(e
jω)

x[n]

s[n]

v[n]

r[n]

y[n]

cos(ω0n)

sin(ω0n)

+

+

Figure 2.4a. Phase-shift single-sideband modulator.

X(ejω)

0.1π–0.1π
ω

A

Figure 2.4b. Spectrum of input.

Problem 2.4: Figure 2.4a above is a block diagram of a simple phase-shift single-sideband modula-
tor. In many communications applications single side band (SSB) modulation is preferred because
the modulated signal can be transmitted with only half the bandwidth of the original double side-
band (DSB) signal without losing any information.

Copyright 2025, Richard M. Stern

18-491/691 Problem Set 2 Page 4 Spring, 2025

The LSI system labelled H90(e
jω) is an ideal phase shifter. It has the response

H90(e
jω) =

{
j, −π < ω < 0
−j, 0 < ω < π

and (as usual) H90(e
jω) is periodic in ω with period 2π.

Figure 2.4b depicts the spectrum of the input, the DTFT X(ejω). The rest of the system is defined
by the relationships

s[n] = v[n] sin(ω0n)

r[n] = x[n] cos(ω0n)

y[n] = r[n] + s[n]

where v[n] is the output of the phase shifter.

(a) Given the spectrum of the input X(ejω) shown in Figure 2.4b and a value of 0.4π for ω0 for,
sketch and dimension the following spectra:

(1) V (ejω) the DTFT of v[n]

(2) R(ejω) the DTFT of r[n]

(3) S(ejω) the DTFT of s[n]

(4) Y (ejω) the DTFT of y[n]

(b) Sketch the block diagram of a system that contains ideal multipliers, adders and ideal filters
that can be used to recover the input function x[n] from y[n].

Problem 2.5: In this problem we review a subtle property of continuous-time delta functions that
is important to understand in order to understand the continuous time to discrete time conversion
of periodic time functions.

Recall that we define delta functions in continuous time implicitly, that is by what they do when
they are part of an integral, rather than explicitly in terms of how they transform their inputs.
Specifically,

∫ ∞
−∞

δ(t− a)φ(t)dt = φ(a)

As I frequently say in class, we evaluate these integrals by asking the following three questions:

Copyright 2025, Richard M. Stern

18-491/691 Problem Set 2 Page 5 Spring, 2025

1. What is the variable being integrated?

2. What is the value of that variable that causes the argument of the delta function to equal
zero?

3. What is the value of the remaining part of the integrand (excepting the delta function) for
that value of the variable?

The answer to the third question, of course, is the value of the integral.

a) Apply the rules above to determine the value of the integral∫ ∞
−∞

e−2tδ(t− 5)dt

(b) One corollary of the original definition of the delta function is the familiar integral∫ ∞
−∞

δ(t)dt = 1

But what does that say about the solution to the slightly different integral below?∫ ∞
−∞

δ(3t)dt = 1

In truth, the integral of δ(3t) is not yet defined. Using an appropriate change of variables, obtain
the value of k that correctly solves the expression∫ ∞

−∞
δ(at)dt = k

∫ ∞
−∞

δ(t)dt

(c) Use your result in part (b) to obtain the solution for the integral

∫ ∞
−∞

e−2tδ(3t− 18)dt

MATLAB Problems

Reading: We will be using MATLAB for verifying homework results, and for use as a design tool
throughout the course. In working the MATLAB problems, turn in a printout of your results, a
copy of the MATLAB code you developed to work the problem, as well as any additional comments
you’d like to add.

If you are not already familiar with MATLAB , we warmly recommend that you look over the
tutorial MatlabTutorial written by our own Carlos Taveras (based on an earlier tutorial by John
Shi). It is posted on the course website. In addition, there are a number of tutorials on the Web

Copyright 2025, Richard M. Stern

18-491/691 Problem Set 2 Page 6 Spring, 2025

that may be found easily by Googling something like MATLAB intro or MATLAB tutorial.

In working the MATLAB problems, turn in a printout of your results, a copy of the MATLAB code
you developed to work the problem, as well as any additional comments you’d like to add. Please
use the MATLAB command publish to publish the MATLAB code.

For Python users: This semester for the first time users of Python will be permitted to turn
in the computer assignments in Python. We remind you that not all computer assignments will
be amenable to Python implemenations and the level of support for Python will be lower than for
MATLAB. We thank Ashwin Pillay for providing support for the Python implementations.

The recommended general local Python configuration is

- Python Version: v3.10.x

- Libraries & Recommended Versions

- SciPy: 1.10.0

- NumPy: 1.24.1

- Matplotlib: 3.6.3

Some general recommendations for Python users include:

• Store signals as numpy arrays

• Read the online documentations of the functions we use to understand the differences between
the MATLAB and Python implementations (although they are mostly like-for-like, nuanced
differences may exist for a few of these functions)

• You would be able to find Python equivalents for most MATLAB functions by searching for
Python equivalent for <MATLAB function name> online. Stack overflow often helps as
well.

Problem C2.1: In this problem you will develop a MATLAB routine that evaluates DTFTs and
you will use it to check your results in Problem 2.1. Please also look over the documentation for the
MATLAB routine freqz. This M-file will be used frequently when you are describing the frequency
response of an LSI system.

You will be given a main file called main 2 1.m that you must complete.

(a) Write a short MATLAB script called dtft 491.m that calculates the DTFT of discrete-time
functions. The function should begin with the descriptive preamble

function [X] = dtft_491(x,n,w)

% Computes Discrete-time Fourier Transform

% [X] = dtft_491(x,n,w)

%

% X = DTFT values computed at frequencies w

Copyright 2025, Richard M. Stern

18-491/691 Problem Set 2 Page 7 Spring, 2025

% x is a finite-duration sequence over n

% n is the vector of "time" values over which the computation is

% performed

% w is a vector of frequencies used in the output

(b) Use your function to compute and display the magnitude and phase of the DTFTs you developed
in Problem 2.1. Note that these results will be inexact because the time functions in Problem 2.1
are generally infinite in duration, and because the frequency responses in some cases are impulsive.
Nevertheless, try to explore values of the vectors n and w that provide reasonable approximations.

(c) Compare the results you get using the function you developed with the results provided by the
built in MATLAB function freqz. Note that freqz uses normalized frequency, and returns the
magnitude in decibels, at least using the default inputs. Look over the help file for freqz to find
out how to store the results in a variable, which you then can plot in any fashion desired.

What you will upload for the Gradescope MATLAB submission:

• main 2 1.m

• dtft 491.m

• All of the plots

• Answers to all of the questions

Note: Upload source code for the routines main 2 1.m and dtft 491.m directly to the assignment
Problem Set 2 - MATLAB. Upload the remaining answers to the main location Problem Set 2.

For Python users:

Suggested Python equivalents of MATLAB functions:

• freqz -> scipy.signal.freqz

Starter code:

def dtft_491(x,n,w):

Computes Discrete-time Fourier Transform

[X] = dtft_491(x,n,w)

#

X = DTFT values computed at frequencies w

x is a finite-duration sequence over n

n is the vector of "time" values over which the computation is performed

w is a vector of frequencies used in the output

return NotImplemented

Copyright 2025, Richard M. Stern

18-491/691 Problem Set 2 Page 8 Spring, 2025

Problem C2.2:

We developed the unit sample response for an ideal lowpass filter in class on January 27, and
you obtained the corresponding unit sample responses for ideal highpass and bandpass filters in
Problem 2.3. A fundamental problem with all of these unit sample responses is that they are (in
principle) nonzero for all n from −∞ to ∞.

In this problem we will explore one easy way of using your answers for Problem 2.3 as the basis of
a practical realizable digital filter. Specifically, we will truncate both tails of the ideal unit sample
responses equally on both ends and then delaying the resulting finite-duration sample response
enough to make it causal. (This approach is a special case of the window design method, which
will be discussed in detail later in the semester.) For example, in the case of the lowpass filter, we
would do the following:

1. hN [n] =

{
hLP [n], −N ≤ n ≤ N

0, otherwise

2. h[n] = hN [n−N] =

{
sin(ωc(n−N))
π(n−N) , 0 ≤ n ≤ 2N

0, otherwise

You will be given a main file called main 2 2.m that you must complete.

(a) Write a simple MATLAB function called lowpass 491.m that implements the lowpass filter h[n]
with ωc and N as input arguments.

1. Display the frequency response of your filter using the command freqz(h,1). As noted
above, the magnitude is in decibels.

2. What is the effect of changing the values of the parameters ωc and N? How would you decide
how to select numerical values for these parameters?

(b) Now we will consider the impact of your lowpass filter on audio input. Read in a short clip of
audio using the commands:

[x,fs] = audioread(’PSO_B1short.wav’); % read in audio excerpt

x = mean(x,2); % convert it to mono

Use a value of ωc = 0.35π and a value of your choosing for N . (Because the sampling rate fs is
16,000 Hz, this value of ωc corresponds to an actual cutoff frequency of 2800 Hz, as we will discuss
later in the semester.) Convolve the audio signal x with your filter response h using the MATLAB

command y = conv(x,h).

1. Listen to the first two seconds of the audio before and after filtering using the MATLAB

commands

Copyright 2025, Richard M. Stern

18-491/691 Problem Set 2 Page 9 Spring, 2025

soundsc(x(1:2*fs),fs)

pause(2)

soundsc(y(1:2*fs),fs)

To what extent does it appear that the filter is performing as expected?

2. Compare the spectrograms of the first two seconds of the audio before and after filtering using
the commands:

subplot(2,1,1),specgram(x(1:2*fs),[],fs)

subplot(2,1,2),specgram(y(1:2*fs),[],fs)

Note: MATLAB is phasing out the function specgram in favor of the far less intuitive function
spectrogram. The following commands should produce the same result, at least for now:

• specgram(x,[],fs)

• spectrogram(x,hamming(320),160,[],fs,’yaxis’); colormap jet; colorbar off;

What to upload for your Gradescope MATLAB submission:

• main 2 2.m

• lowpass 491.m

• Answers to all the questions

• All of the plots

For Python users:

Suggested Python equivalents of MATLAB functions:

• freqz -> scipy.signal.freqz

• [x,fs] = audioread(PSO B1short.wav) -> fs,x = scipy.io.wavfile.read(’PSO B1short.wav’)

• conv -> numpy.convolve item soundsc -> (Alternative: saves the sound file as a .wav file)
scipy.io.wavfile.write(’destination file name.wav’,fs,x)

• specgram(x(1:2*fs),[],fs) -> matplotlib.pyplot.specgram(x[1:2*fs],Fs=fs)

Starter Code:

fs,x = scipy.io.wavfile.read(’PSO_B1short.wav’) # read in audio excerpt

x = np.mean(x,axis=1) # convert it to mono

Copyright 2025, Richard M. Stern

