

10.5.1. Spectral Subtraction

The basic assumption in this section is that the desired clean signal $x[m]$ has been corrupted by additive noise $n[m]$:

$$y[m] = x[m] + n[m] \quad (10.102)$$

and that both $x[m]$ and $n[m]$ are statistically independent, so that the power spectrum of the output $y[m]$ can be approximated as the sum of the power spectra:

$$|Y(f)|^2 \approx |X(f)|^2 + |N(f)|^2 \quad (10.103)$$

with equality if we take expected values, as the expected value of the cross term vanishes (see Section 10.1.3).

Although we don't know $|N(f)|^2$, we can obtain an estimate using the average periodogram over M frames that are known to be just noise (i.e., when no signal is present) as long as the noise is stationary

$$|\hat{N}(f)|^2 = \frac{1}{M} \sum_{i=0}^{M-1} |Y_i(f)|^2 \quad (10.104)$$

Spectral subtraction supplies an intuitive estimate for $|X(f)|$ using Eqs. (10.103) and (10.104) as

$$|\hat{X}(f)|^2 = |Y(f)|^2 - |\hat{N}(f)|^2 = |Y(f)|^2 \left(1 - \frac{1}{SNR(f)} \right) \quad (10.105)$$

where we have defined the frequency-dependent signal-to-noise ratio $SNR(f)$ as

$$SNR(f) = \frac{|Y(f)|^2}{|\hat{N}(f)|^2} \quad (10.106)$$

Equation (10.105) describes the magnitude of the Fourier transform but not the phase. This is not a problem if we are interested in computing the mel-cepstrum as discussed in Chapter 6. We can just modify the magnitude and keep the original phase of $Y(f)$ using a filter $H_{ss}(f)$:

$$\hat{X}(f) = Y(f)H_{ss}(f) \quad (10.107)$$

where, according to Eq. (10.105), $H_{ss}(f)$ is given by

$$H_{ss}(f) = \sqrt{1 - \frac{1}{SNR(f)}} \quad (10.108)$$

Since $|\hat{X}(f)|^2$ is a power spectral density, it has to be positive, and therefore

$$SNR(f) \geq 1 \quad (10.109)$$

but we have no guarantee that $SNR(f)$, as computed by Eq. (10.106), satisfies Eq. (10.109). In fact, it is easy to see that noise frames do not comply. To enforce this constraint, Boll [13] suggested modifying Eq. (10.108) as follows:

$$H_{ss}(f) = \sqrt{\max\left(1 - \frac{1}{SNR(f)}, \alpha\right)} \quad (10.110)$$

with $\alpha \geq 0$, so that the quantity within the square root is always positive, and where $f_{ss}(x)$ is given by

$$f_{ss}(x) = \sqrt{\max\left(1 - \frac{1}{x}, \alpha\right)} \quad (10.111)$$

It is useful to express $SNR(f)$ in dB so that

$$\bar{x} = 10 \log_{10} SNR \quad (10.112)$$

and the gain of the filter in Eq. (10.111) also in dB:

$$g_{ss}(\bar{x}) = 20 \log_{10} f_{ss}(\bar{x}) \quad (10.113)$$

Using Eqs. (10.111) and (10.112), we can express Eq. (10.113) by

$$g_{ss}(\bar{x}) = \max\left(10 \log_{10} \left(1 - 10^{-\bar{x}/10}\right), -A\right) \quad (10.114)$$

after expressing the attenuation α in dB:

$$\alpha = 10^{-A/10} \quad (10.115)$$

Equation (10.114) is plotted in Figure 10.27 for $A = 10$ dB.

The spectral subtraction rule in Eq. (10.111) is quite intuitive. To implement it we can do a short-time analysis, as shown in Chapter 6, by using overlapping windowed segments, zero-padding, computing the FFT, modifying the magnitude spectrum, taking the inverse FFT, and adding the resulting windows.

This implementation results in output speech that has significantly less noise, though it exhibits what is called *musical noise* [12]. This is caused by frequency bands f for which $|Y(f)|^2 \approx |\hat{N}(f)|^2$. As shown in Figure 10.27, a frequency f_0 for which $|Y(f_0)|^2 < |\hat{N}(f_0)|^2$ is attenuated by A dB, whereas a neighboring frequency f_1 , where $|Y(f_1)|^2 > |\hat{N}(f_1)|^2$, has a much smaller attenuation. These rapid changes with frequency introduce tones at varying frequencies that appear and disappear rapidly.

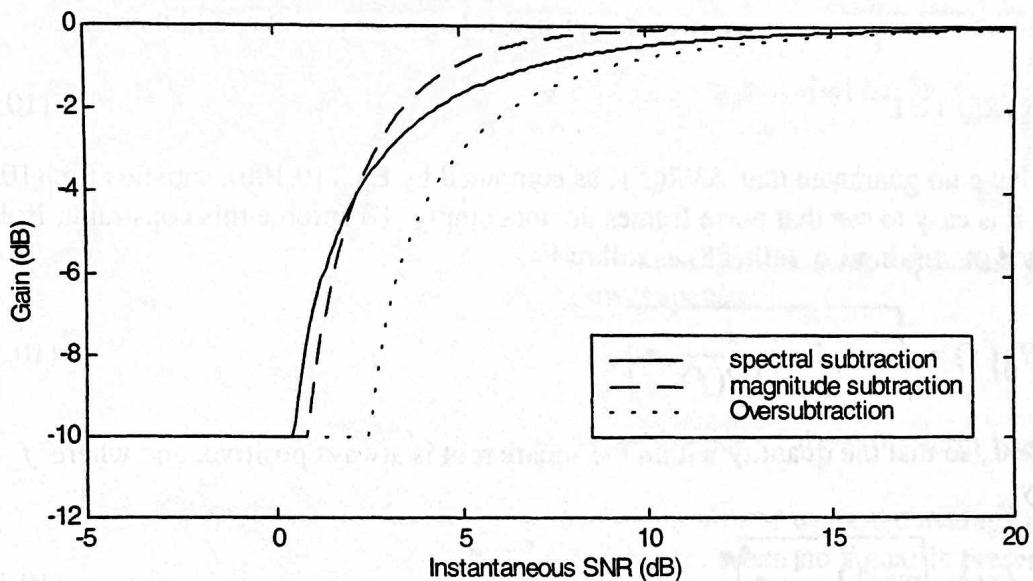


Figure 10.27 Magnitude of the spectral subtraction filter gain as a function of the input instantaneous SNR for $A = 10$ dB, for the spectral subtraction of Eq. (10.114), magnitude subtraction of Eq. (10.118), and oversubtraction of Eq. (10.119) with $\beta = 2$ dB.

The main reason for the presence of musical noise is that the estimates of $SNR(f)$ through Eqs. (10.104) and (10.106) are poor. This is partly because $SNR(f)$ is computed independently for each frequency, whereas we know that $SNR(f_0)$ and $SNR(f_1)$ are correlated if f_0 and f_1 are close to each other. Thus, one possibility is to smooth the filter in Eq. (10.114) over frequency. This approach suppresses a smaller amount of noise, but it does not distort the signal as much, and thus may be preferred by listeners. Similarly, smoothing over time

$$SNR(f, t) = \gamma SNR(f, t-1) + (1-\gamma) \frac{|Y(f)|^2}{|\hat{N}(f)|^2} \quad (10.116)$$

can also be done to reduce the distortion, at the expense of a smaller noise attenuation. Smoothing over both time and frequency can be done to obtain more accurate SNR measurements and thus less distortion. As shown in Figure 10.28, use of spectral subtraction can reduce the error rate.

Additionally, the attenuation A can be made a function of frequency. This is useful when we want to suppress more noise at one frequency than another, which is a tradeoff between noise reduction and nonlinear distortion of speech.

Other enhancements to the basic algorithm have been proposed to reduce the musical noise. Sometimes Eq. (10.111) is generalized to

$$f_{ms}(x) = \left(\max \left(1 - \frac{1}{x^{\alpha/2}}, \alpha \right) \right)^{1/\alpha} \quad (10.117)$$

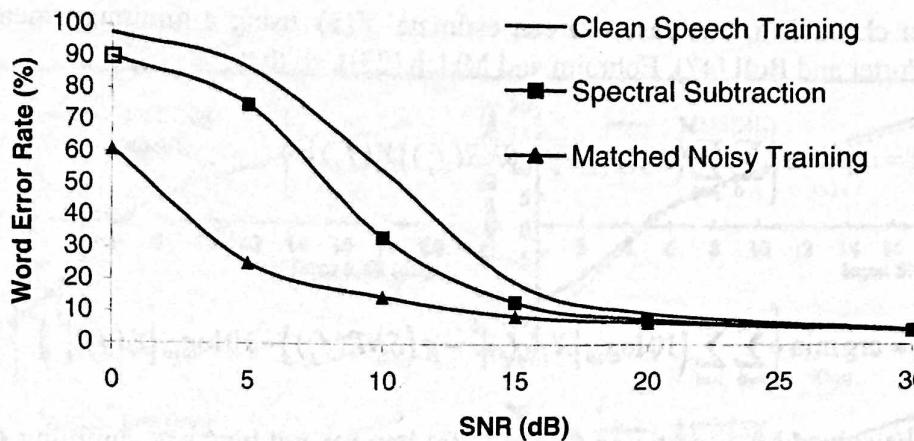


Figure 10.28 Word error rate as a function of SNR (dB) using Whisper on the *Wall Street Journal* 5000-word dictation task. White noise was added at different SNRs. The solid line represents the baseline system trained with clean speech, the line with squares the use of spectral subtraction with the previous clean HMMs. They are compared to a system trained on the same speech with the same SNR as the speech tested on.

where $\alpha = 2$ corresponds to the *power spectral subtraction* rule in Eq. (10.111), and $\alpha = 1$ corresponds to the *magnitude subtraction* rule (plotted in Figure 10.27 for $A = 10$ dB):

$$g_{ms}(\bar{x}) = \max \left(20 \log_{10} \left(1 - 10^{-\bar{x}/5} \right), -A \right) \quad (10.118)$$

Another variation, called *oversubtraction*, consists of multiplying the estimate of the noise power spectral density $|\hat{N}(f)|^2$ in Eq. (10.104) by a constant $10^{\beta/10}$, where $\beta > 0$, which causes the power spectral subtraction rule in Eq. (10.114) to be transformed to another function

$$g_{os}(\bar{x}) = \max \left(10 \log_{10} \left(1 - 10^{-(\bar{x}-\beta)/10} \right), -A \right) \quad (10.119)$$

This causes $|Y(f)|^2 < |\hat{N}(f)|^2$ to occur more often than $|Y(f)|^2 > |\hat{N}(f)|^2$ for frames for which $|Y(f)|^2 \approx |\hat{N}(f)|^2$, and thus reduces the musical noise.

10.5.2. Frequency-Domain MMSE from Stereo Data

You have seen that several possible functions, such as Eqs. (10.114), (10.118), or (10.119), can be used to attenuate the noise, and it is not clear that any one of them is better than the others, since each has been obtained through different assumptions. This opens the possibility of estimating the curve $g(\bar{x})$ using a different criterion, and, thus, different approximations than those used in Section 10.5.1.

One interesting possibility occurs when we have pairs of stereo utterances that have been recorded simultaneously in noise-free conditions in one channel and noisy conditions