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10.5.1.  Spectral Subtraction

The basic assumption in this section is that the desired clean signal x[m] has been corrupted
by additive noise n[m]:

Mm] = x[m]+n[m] (10.102)

and that both x[m] and n[m] are statistically independent, so that the power spectrum of the
output y[m] can be approximated as the sum of the power spectra:

[P =X +IN (T (10.103)

with equality if we take expected values, as the expected value of the cross term vanishes

(see Section 10.1.3).
Although we don’t know IN f )l' » WE can obtain an estimate using the average perio-

dogram over M frames that are known to be just noise (i.e., when no signal is present) as =
long as the noise is stationary

[Fenf =ﬁglxml’

Spectral subtraction supplies an intuitive estimate for lX f )l using Egs. (10.103) and
(10.104) as

(10.104)

o =ronf -|ac N =lrof (1-SN I;(f)] (10.105)

where we have defined the frequency-dependent signal-to-noise ratio SNR(f) as

'_Y_(flz (10.106)
7))

Equation (10.105) describes the magnitude of the Fourier transform but not the phas.e.
This is not a problem if we are interested in computing the mel-cepstrum as discussc?d in \
Chapter 6. We can just modify the magnitude and keep the original phase of Y(f) using a '

filter H(f):
XN =Y(NHH,(f)
where, according to Eq. (10.105), H (f) is given by

=/- 1 10.108)
H, (f) lSNR(f) (

SNR(f) =

(10.107)
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Since Iz\;' f )’ ~ is a power spectral density, it has to be positive, and therefore

SNR(f)21 (10.109)

but we have no guarantee that SNR(f), as computed by Eq. (10.106), satisfies Eq. (10.109).
In fact, it is easy to see that noise frames do not comply. To enforce this constraint, Boll [13]

suggested modifying Eq. (10.108) as follows:
a ) (10.110)

- 1

with @ 20, so that the quantity within the square root is always positive, and where f, (x)is

given by

] (10.111)

X

f,(x)= max(l—l,a

It is useful to express SNR(f) in dB so that

X =10log,, SNR (10.112)
and the gain of the filter in Eq. (10.111) also in dB:
8,,(¥) =20log,, £, (X) (10.113)
Using Egs. (10.111) and (10.112), we can express Eq. (10.113) by
g, (%) = max (10log,, (1-107"*),-4) (10.114)
after expressing the attenuation a in dB:
(10.115)

a=1 O—All()
Equation (10.114) is plotted in Figure 10.27 for A = 10 dB.

The spectral subtraction rule in Eq. (10.111) is quite intuitive. To implement it we can
do a short-time analysis, as shown in Chapter 6, by using overlapping windowed segments,
zero-padding, computing the FFT, modifying the magnitude spectrum, taking the inverse

FFT, and adding the resulting windows.
This implementation results in output speech that has significantly less noise, though it

exhibits what is called musical noise [12). This is caused by frequency bands f for which
[¥(5|* =|Rcs)| . As shown in Figure 10.27, a frequency f, for which Y’ <|f§f(fu)|: is
attenuated by A dB, whereas a neighboring frequency f,, where |Y(£)' >|#(£)[, has a
much smaller attenuation. These rapid changes with frequency introduce tones at varying

frequencies that appear and disappear rapidly.
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Figure 10.27 Magnitude of the spectral subtraction filter gain as a function of the input
instantaneous SNR for A = 10 dB, for the spectral subtraction of Eq. (10.114), magnitude
subtraction of Eq. (10.118), and oversubtraction of Eq. (10.119) with 8 =2 dB.

The main reason for the presence of musical noise is that the estimates of SNR(f)
through Eqs. (10.104) and (10.106) are poor. This is partly because SNR(f) is computed inde-
pendently for each frequency, whereas we know that SNR(f,) and SNR(f,) are correlated if
f, and f, are close to each other. Thus, one possibility is to smooth the filter in Eq. (10.114)
over frequency. This approach suppresses a smaller amount of noise, but it does not distort the
signal as much, and thus may be preferred by listeners. Similarly, smoothing over time

Y ()|
SNR(f,t)=ySNR(f,t—1)+(1—y)———; (10.116)

V()

can also be done to reduce the distortion, at the expense of a smaller noise attenuation.
Smoothing over both time and frequency can be done to obtain more accurate SNR meas-
urements and thus less distortion. As shown in Figure 10.28, use of spectral subtraction can

reduce the error rate.
Additionally, the attenuation A can be made a function of frequency. This is useful

when we want to suppress more noise at one frequency than another, which is a tradeoff
between noise reduction and nonlinear distortion of speech.

Other enhancements to the basic algorithm have been proposed to reduce the musical
noise. Sometimes Eq. (10.111) is generalized to

fm(x)=[ma><(1— j aD (10.117)
X
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Figure 10.28 Word error rate as a function of SNR (dB) using Whisper on the Wall Street
Journal 5000-word dictation task. White noise was added at different SNRs. The solid line
represents the baseline system trained with clean speech, the line with squares the use of spec-
tral subtraction with the previous clean HMMs. They are compared to a system trained on the
same speech with the same SNR as the speech tested on.

where o =2 corresponds to the power spectral subtraction rule in Eq. (10.111), and a =1
corresponds to the magnitude subtraction rule (plotted in Figure 10.27 for A = 10 dB):

8 (%) =max (20log,, (1-107"),-4) (10.118)

Another variation, called pverszubtraction, consists of multiplying the estimate of the
noise power spectral density lN (f )L in Eq. (10.104) by a constant 10#"'°, where >0,
which causes the power spectral subtraction rule in Eq. (10.114) to be transformed to an-

other function
g,,(¥) = max (10log,, (1-10"7-9"),-4) (10.119)

This causes |[Y(f)] <|[N()[ to occur more often than [Y(H| >|NH|’ for frames for which
|y( f)|2 = |N( f)[2 , and thus reduces the musical noise.

10.5.2. Frequency-Domain MMSE from Stereo Data

You have seen that several possible functions, such as Egs. (10.114), (10.118), or (10.119),
can be used to attenuate the noise, and it is not clear that any one of them is better than the
others, since each has been obtained through different assumptions. This opens the possibil-
ity of estimating the curve g(X) using a different criterion, and, thus, different approxima-
tions than those used in Section 10.5.1.

One interesting possibility occurs when we have pairs of stereo utterances that have
been recorded simultaneously in noise-free conditions in one channel and noisy conditions



