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Suppression of Acoustic Noise in Speech Using
Spectral Subtraction

STEVEN F. BOLL, MEMBER, IEEE

Abstract—A stand-alone noise suppression algorithm is presented for
reducing the spectral effects of acoustically added noise in speech. Ef-
fective performance of digital speech processors operating in practical
environments may require suppression of noise from the digital wave-
form. Spectral subtraction offers a computationally efficient, processor-
independent approach to effective digital speech analysis. The method,
requiring about the same computation as high-speed convolution, sup-
presses stationary noise from speech by subtracting the spectral noise
bias calculated during nonspeech activity. Secondary procedures are
then applied to attenuate the residual noise Ieft after subtraction. Since
the algorithm resynthesizes a speech waveform, it can be used as a pre-
processor to narrow-band voice communications systems, speech recog-
nition systems, or speaker authentication systems,

1. INTRODUCTION

ACKGROUND noise acoustically added to speech can

degrade the performance of digital voice processors used
for applications such as speech compression, recognition, and
authentication [1], [2]. Digital voice systems will be used in
a variety of environments, and their performance must be
maintained at a level near that measured using noise-free input
speech, To ensure continued reliability, the effects of back-
ground noise can be reduced by using noise-cancelling micro-
phones, internal modification of the voice processor algorithms
to explicitly compensate for signal contamination, or pre-
processor noise reduction,

Noise-cancelling microphones, although essential for ex-
tremely high noise environments such as the helicopter cockpit,
offer little or no noise reduction above 1 kHz {3] (see Fig. 5).
Techniques available for voice processor modification to ac-
count for noise contamination are being developed [4], [5].
But due to the time, effort, and money spent on the design
and implementation of these voice processors [6] ~[8], there
is a reluctance to internally modify these systems.

Preprocessor noise reduction [12], [21] offersthe advantage
that noise stripping is done on the waveform itself with the
output being either digital or analog speech. Thus, existing
voice processors tuned to clean speech can continue to be
used unmodified. Also, since the output is speech, the noise
stripping becomes independent of any specific subsequent
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speech processor implementation (it could be connected to a
CCD channel vocoder or a digital LPC vocoder).

The objectives of this effort were to develop a noise sup-
pression technique, implement a computationally efficient
algorithm, and test its performance in actual noise environ-
ments. The approach used was to estimate the magnitude
frequency spectrum of the undeilying clean speech by sub-
tracting the noise magnitude spectrum from the noisy speech
spectrum, This estimator requires an estimate of the current
noise spectrum, Rather than obtain this noise estiniate from
a second microphone source [9], [10], it is approximated
using the average noise magnitude measured during nonspeech
activity. Using this approach, the spectral approximation error
is then defined, and secondary methods for reducing it are
described.

The noise suppressor is implemented using about the same
amount of computation as required in a high-speech convolu-
tion. It is tested on speech recorded in a helicopter environ-
ment. Its performance is measured using the Diagnostic Rhyme
Test (DRT) [11] and is demonstrated using isometric plots of
short-time spectra.

The paper is divided into sections which develop the spectral
estimator, describe the algorithm implementation, and demon-
strate the algorithm performance.

II. SUBTRACTIVE NOISE SUPPRESSION ANALYSIS
A. Introduction

This section describes the noise-suppressed spectral estimator.
The estimator is obtained by subtracting an estimate of the
noise spectrum from the noisy speech spectrum. Spectral in-
formation required to describe the noise spectrum is obtained
from the signal measured during nonspeech activity. After
developing the spectral estimator, the spectral error is com-
puted and four methods for reducing it are presented.

The following assumptions were used in developing the
analysis. The background noise is acoustically or digitally
added to the speech. The background noise environment
remains locally stationary to the degree that its spectral mag-
nitude expected value just prior to speech activity equals its
expected value during speech activity. If the environment
changes to a new stationary state, there exists enough time
(about 300 ms) to estimate a new background noise spectral
magnitude expected value before speech activity commences.
For the slowly varying nonstationary noise environment, the
algorithm requires a speech activity detector to signal the
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program that speech has ceased and a new noise bias can be
estimated. Finally, it is assumed that significant noise reduc-
tion is possible by removing the effect of noise from the mag-
nitude spectrum only.

Speech, suitably low-pass filtered and digitized, is analyzed
by windowing data from half-overlapped input data buffers.
The magnitude spectra of the windowed data are calculated
and the spectral noise bias calculated during nonspeech activity
is subtracted off. Resulting negative amplitudes are then
zeroed out. Secondary residual noise suppression is then
applied. A time waveform is recalculated from the modified
magnitude. This waveform is then overlap added to the previ-
ous data to generate the output speech.

B, Additive Noise Model

- Assume that a windowed noise signal #(k) has been added to
a windowed speech signal s(k), with their sum denoted by x (k).
Then

x(k) =s(k) + n(k).
Taking the Fourier transform gives
X(79)=8(e’) + N(@e/*)
where
x(k) < X (/%)

. L-1 ok
X' = kz x(k)el?
=0

xk)= L

m
J X(e'“)e’“F dew.
2 Jog

C. Spectral Subtraction Estimator

The spectral subtraction filter H(e!® ) is calculated by re-
placing the noise spectrum NV (e’*) with spectra which can be
readily measured. The magnitude |V(e/“’)| of N(e/“) is re-
placed by its average value u(e’“) taken during nonspeech
activity, and the phase On(e’®) of N(e’“) is replaced by the
phase 0,(e’“) of X(e/®). These substitutions result in the
spectral subtraction estimator S (e/“):

8(e’) = (X)) - u(e )P

or
Sy =H('*)X (')
with
on 1 u(e’*)
HE =1 Tx e

u(e’®y = EQ\N(e/)I}.

D. Spectral Error
The spectral error e(e/®) resulting from this estimator is
given by

e’y =8™) - (/) = Ne’) - we™) €.
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A number of simple modifications are available to reduce
the auditory effects of this spectral error. These include:
1) magnitude averaging; 2) half-wave rectification; 3) residual
noise reduction; and 4) additional signal attenuation during
nonspeech activity.

E. Magnitude Averaging

Since the spectral error equals the difference between the
noise spectrum N and its mean u, local averaging of spectral
magnitudes can be used to reduce the error. Replacing
1X (/)| with | X (e/*)| where

—————e 1 M_l .
|X (/) = I > 1 Xa@™)
i=0

X;(e/*) = ith time-windowed transform of x (k)
gives )
oy = T7oTou oy ,i0x(e’?)
Sq(e’) = [1X (') - u(e’)] e™™ .

The rationale behind averaging is that the spectral error be-
comes approximately

(€)= 8,(e’) - S(e’) = N -

where
e et 1 M-1 jw
V@) = 2 % Ve,
i=0

Thus, the sample mean of | N(e/*)| will converge to u(e/*) as
a longer average is taken.

The obvious problem with this modification is that the speech
is nonstationary, and therefore only limited time averaging is
allowed. DRT results show that averaging over more than
three half-overlapped windows with a total time duration of
384 ms will decrease intelligibility. Spectral examples and
DRT scores with and without averaging are given in the
“Results” section. Based upon these results, it appears that
averaging coupled with half rectification offers some improve-
ment. The major disadvantage of averaging is the risk of some
temporal smearing of short transitory sounds.

F. Hualf-Wave Rectification

For each frequency w where the noisy signal spectrum mag-
nitude |X(e/“)| is less than the average noise spectrum mag-
nitude u(e’), the output is set to zero. This modification
can be simply implemented by half-wave rectifying H(e!®),
The estimator then becomes

§(e/) = Hp(e!) X (e/*)

where

H(e') + |H(e!®)|

Hg (e/®) =
& (e7?) 5

The input-output relationship between X(e’“) and S (e’“yat
each frequency w is shown in Fig. 1.

Thus, the effect of half-wave rectification is to bias down the
magnitude spectrum at each frequency w by the noise bias
determined at that frequency. The bias value can, of course,
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x(e3) |
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Fig. 1. Input-output relation between X (ej “’) and § (ei “.

change from frequency to frequency as well as from analysis
time window to time window. The advantage of half rectifica-
tion is that the noise floor is reduced by u(e” “). Also, any
low variance coherent noise tones are essentially eliminated.
The disadvantage of half rectification can exhibit itself in the
situation where the sum of the noise plus speech at a frequency
w is less than u(e’*). Then the speech information at that
frequency is incorrectly removed, implying a possible decrease
in intelligibility. As discussed in the section on “Results,” for
the helicopter speech data base this processing did not reduce
intelligibility as measured using the DRT.

G. Residual Noise Reduction

After half-wave rectification, speech plus noise lying above
i remain. In the absence of speech activity the difference
Nz =N - pe/®n which shall be called the noise residual, will
for uncorrelated noise exhibit itself in the spectrum as ran-
domly spaced narrow bands of magnitude spikes (see Fig. 7).
This noise residual will have a magnitude between zero and a
maximum value measured during nonspeech activity. Trans-
formed back to the time domain, the noise residual will sound
like the sum of tone generators with random fundamental
frequencies which are turned on and off at a rate of about 20
ms. During speech activity the noise residual will also be per-
ceived at those frequencies which are not masked by the
speech.

The audible effects of the noise residual can be reduced by
taking advantage of its frame-to-frame randomness. Specifi-
cally, at a given frequency bin, since the noise residual will
randomly fluctuate in amplitude at each analysis frame, it
can be suppressed by replacing its current value with its
minimum value chosen from the adjacent analysis frames.
Taking the minimum value is used only when the magnitude
of S(e’ “’) is less than the maximum noise residual calculated
during nonspeech activity. The motivation behind this replace-
ment scheme is threefold: first, if the amplitude of g (€7%) lies
below the maximum noise residual, and it varies radically from
analysis frame to frame, then there is a high probability that
the spectrum at that frequency is due to noise; therefore, sup-
press it by taking the minimum; second, if S(e/*) lies below
the maximum but has a nearly constant value, there is a high

115

probability that the spectrum at that frequency is due to low
energy speech; therefore, taking the minimum will retain the
information; and third, if S (e/“’) is greater than the maximum,
there is speech present at that frequency; therefore, removing
the bias is sufficient. The amount of noise reduction using this
replacement scheme was judged equivalent to that obtained by
averaging over three frames. However, with this approach high
energy frequency bins are not averaged together. The disad-
vantage to the scheme is that more storage is required to save
the maximum noise residuals and the magnitude values for
three adjacent frames.
The residual noise reduction scheme is implemented as

8™ ) = 18ie/),  for 18,(e*)I> max |Ng (")
18;(e7)) = min {I8§;(e/)j=i-1,i,i+1},
for IS\}(ejw)l < max |Ng(e’®)|
where

Si(e™) = He (") X,(e™)
and

max |Ng(e/*)| = maximum value of noise residual

measured during nonspeech activity.

H. Additional Signal Attenuation During Nonspeech Activity

The energy content of s (€”“) relative to u(e’“) provides an
accurate indicator of the presence of speech activity thhm a
given analysis frame. If speech activity is absent, then s (e’
will consist of the noise residual which remains after half-wave
rectification and minimum value selection. Empirically, it was
determined that the average (before versus after) power ratio
was down at least 12 dB. This implied a measure for detecting
the absence of speech given by

"N j(lJ
) 4]

1 ™
=201 — f :
0Z10 [ 7 - ”(e]w)

If T was less than -~ 12 dB, the frame was classified as having
no speech activity. During the absence of speech activity there
are at least three options prior to resynthesis: do nothing, at-
tenuate the output by a fixed factor, or set the output to zero.
Having some signal present during nonspeech activity was
judged to give the higher quality result. A possible reason for
this is that noise present during speech activity is partially
masked by the speech. Its perceived magnitude should be
balanced by the presence of the same amount of noise during
nonspeech activity. Setting the buffer to zero had the effect
of amplifying the noise during speech activity. Likewise, doing
nothing had the effect of amplifying the noise during nonspeech
activity. A reasonable, though by no means optimum amount
of attenuation was found to be -30 dB. Thus, the output
spectral estimate including output attenuation during non-
speech activity is given by

a S(e’=)
joy = .
S(ei) { ()
where 20 log;o ¢ =-30 dB.

T'>-12dB
Tr<-12dB
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Fig. 2. Data segmentation and advance.

iII. ALGORITHM IMPLEMENTATION
A. Introduction

Based on the development of the last section, a complete
analysis-synthesis algorithm can be constructed. This section
presents the specifications required to implement a spectral
subtraction noise suppression system.

B. Input-Output Data Buffering and Windowing

Speech from the A-D converter is segmented and windowed
such that in the absence of spectral modifications, if the syn-
thesis speech segments are added together, the resulting overall
system reduces to an identity. The data are segmented and
windowed using the result [12] that if a sequence is separated
into half-overlapped data buffers, and each buffer is multiplied
by a Hanning window, then the sum of these windowed se-
quences adds back up to the original sequences. The window
length is chosen to be approximately twice as large as the
maximum expected pitch period for adequate frequency reso-
lution [13}. For the sampling rate of 8.00 kHz a window
length of 256 points shifted in steps of 128 points was used.
Fig. 2 shows the data segmentation and advance.

C. Frequency /@nalysis

The DFT of each data window is taken and the magnitude
is computed.

Since real data are being transformed, two data windows can
be transformed using one FFT [14]. The FFT size is set equal
to the window size of 256. Augmentation with zeros was not
incorporated. As correctly noted by Allen [15], spectral
modification followed by inverse transforming can distort the
time waveform due to temporal aliasing caused by circular
convolution with the time response of the modification.
Augmenting the input time waveform with zeros before spec-
tral modification will minimize this aliasing. Experiments
with and without augmentation using the helicopter speech
resulted in negligible differences, and therefore augmentation
was not incorporated. Finally, since real data are analyzed,
transform symmetries were taken advantage of to reduce
storage requirements essentially in haif {14].
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D. Magnitude Averaging

As was described in the previous section, the variance of the
noise spectral estimate is reduced by averaging over as many
spectral magnitude sets as possible. However, the nonstation-
arity of the speech limits the total time interval available for
local averaging. The number of averages is limited by the
number of analysis windows which can be fit into the stationary
speech time interval. The choice of window length and averag-
ing interval must compromise between conflicting require-
ments. For acceptable spectral resolution a window length
greater than twice the expected largest pitch period is required
with a 256-point window being used. For minimum noise
variance a large number of windows are required for averaging.
Finally, for acceptable time resolution a narrow analysis inter-
val is required. A reasonable compromise between variance
reduction and time resolution appears to be three averages.
This results in an effective analysis time interval of 38 ms.

E. Bias Estimation

The spectral subtraction method requires an estimate at
each frequency bin of the expected value of noise magnitude
spectrum iy :

uy =E{|N}}.

This estimate is obtained by averaging the signal magnitude
spectrum |X| during nonspeech activity. Estimating up in
this manner places certain constraints when implementing the
method. If the noise remains stationary during the subsequent
speech activity, then an initial startup or calibration period of
noise-only signal is required. During this period (on the order
of a third of a second) an estimate of uy can be computed. If
the noise environment is nonstationary, then a new estimate
of up must be calculated prior to bias removal each time the
noise spectrum changes. Since the estimate is computed using
the noise-only signal during nonspeech activity, a voice switch
is required. When the voice switch is off, an average noise
spectrum can be recomputed. If the noise magnitude spec-
trum is changing faster than an estimate of it can be com-
puted, then time averaging to estimate yy cannot be used.
Likewise, if the expected value of the noise spectrum changes
after an estimate of it has been computed, then noise reduc-
tion through bias removal will be less effective or even harm-
ful, i.e., removing speech where little noise is present.

F, Bias Removal and Half-Wave Rectification

The spectral subtraction spectral estimate § is obtained by
subtracting the expected noise magnitude spectrum u from the
magnitude signal spectrum |X'|. Thus

IS = 1X(k)| - (k)  k=0,1,--+,L-1
or

p(k)

S(k)y=Hky - X(k),H(k)=1~ X))

where L = DFT buffer length.
After subtracting, the differenced values having negative
magnitudes are set to zero (half-wave rectification). These
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negative differences represent frequencies where the sum of
speech plus local noise is less than the expected noise.

G. Residual Noise Reduction

As discussed in the previous section, the noise that remains
after the mean is removed can be suppressed or even removed
by selecting the minimum magnitude value from the three
adjacent analysis frames in each frequency bin where the
current amplitude is less than the maximum noise residual
measured during nonspeech activity. This replacement pro-
cedure follows bias removal and half-wave rectification. Since
the minimum is chosen from values on each side of the current
time frame, the modification induces a one frame delay. The
improvement in performance was judged superior to three
frame averaging in that an equivalent amount of noise sup-
pression resulted without the adverse effect of high-energy
spectral smoothing. The following section presents examples
of spectra with and without residual noise reduction.

H. Additional Noise Suppression During Nonspeech Activity

The final improvement in noise reduction is signal suppres-
sion during nonspeech activity. As was discussed, a balance
must be maintained between the magnitude and characteristics
of the noise that is perceived during speech activity and the
noise that is perceived during speech absence.

An effective speech activity detector was defined using spec-
tra generated by the spectral subtraction algorithm. This
detector required the determination of a threshold signaling
absence of speech activity. This threshold (7'=-12 dB) was
empirically determined to ensure that only signals definitely
consisting of background noise would be attenuated.

L Synthesis

After bias removal, rectification, residual noise removal, and
nonspeech signal suppression a time waveform is reconstructed
from the modified magnitude corresponding to the center win-
dow. Again, since only real data are generated, two time win-
dows are computed simultaneously using one inverse FFT.
The data windows are then overlap added to form the output
speech sequence. The overall system block diagram is given in
Fig. 3.

VI. RESULTS
A. Introduction

Examples of the performance of spectral subtraction will be
presented in two forms: isometric plots of time versus fre-
quency magnitude spectra, with and without noise cancella-
tion; and intelligibility and quality measurement obtained
from the Diagnostic Rhyme Test (DRT) [11]. The DRTisa
well-established method for evaluating speech processing
devices. Testing and scoring of the DRT data base was pro-
vided by Dynastat Inc. [12]. A limited single speaker DRT
test was used. The DRT data base consisted of 192 words
using speaker RH recorded in a helicopter environment. A
crew of 8 listeners was used.

The results are presented as follows: 1) short-time ampli-
tude spectra of helicopter speech; 2) DRT intelligibility and
quality scores on LPC vocoded speech using as input the data
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Fig. 3. System block diagram.

given in 2); and 3) short-time spectra showing additional im-
provements in noise rejection through residual noise suppres-
sion and nonspeech signal attenuation.

B. Short-Time Spectra of Helicopter Speech

Isometric plots of time versus frequency magnitude spectra
were constructed from the data by computing and displaying
magnitude spectra from 64 overlapped Hanning windows.
Each line represents a 128-point frequency analysis. Time
increases from bottom to top and frequency from left to right.

A 920 ms section of speech recorded with a noise-cancelling
microphone in a helicopter environment is presented. The
phrase “Save your” was filtered at 3.2 kHz and sampled at
6.67 kHz. Since the noise was acoustically added, no under-
lying clean speech signal is available. Fig. 4 shows the digitized
time signal. Fig. 5 shows the average noise magnitude spec-
trum computed by averaging over the first 300 ms of non-
speech activity. The short-time spectrum of the noisy signal
x is shown in Fig. 6. Note the high amplitude, narrow-band
ridges corresponding to the fundamental (1550 Hz) and first
harmonic (3100 Hz) of the helicopter engine, as well as the
ramped noise floor above 1800 Hz. Fig. 7 shows the resuit
from bias removal and rectification. Figs. 8 and 9 show the
noisy spectrum and the spectral subtraction estimate using
three frame averaging.

These figures indicate that considerable noise rejection has
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Fig. 8. Short-time spectrum of helicopter speech using three frame
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been achieved, although some noise residual remains. The
next step was to quantitatively measure the effect of spectral
subtraction on intelligibility and quality. For this task a
limited single speaker DRT was invoked to establish an anchor
point for credibility.

C. Intelligibility and Quality Results using the DRT

The DRT data base consisted of 192 words recorded in a
helicopter environment. The data base was filtered at 4 kHz
and sampled at 8 kHz. During the pause between each word,
the noise bias was updated. Six output speech files were
generated: 1) digitized original; 2) speech resulting from bias
removal and rectification without averaging; 3) speech result-
ing from bias removal and rectification using three averages;
4)an LPC vocoded version of original speech; 5) an LPC
vocoded version of 2); and 6) an LPC vocoded version of 3).
The last three experiments were conducted to measure intelli-
gibility and quality improvements resulting from the use of
spectral subtraction as a preprocessor to an LPC analysis-
synthesis device. The LPC vocoder used was a nonreal-time
floating-point implementation [17]. A ten-pole autocorrela-
tion implementation was used with a SIFT pitch tracker [18].
The channel parameters used for synthesis were not quantized.
Thus, any degradation would not be attributed to parameter
quantization, but rather to the all-pole approximation to the
spectrum and to the buzz-hiss approximation to the error
signal. In addition, a frame rate of 40 frames/s was used which
is typical of 2400 bit/s implementations. The vocoder on 3.2
kHz filtered clean speech achieved a DRT score of 88.

In addition to intelligibility, a coarse measure of quality [19]
was conducted using the same DRT data base. These quality
scores are neither quantitatively nor qualitatively equivalent
to the more rigorous quality tests such as PARM or DAM [20] .
However, they do indicate on a relative scale improvements
between data sets. Modern 2.4 kbit/s systems are expected to
range from 45 to 50 on composite acceptability; unprocessed
speech, 88-92,

The results of the tests are summarized in Tables I-IV.
Tables I and II indicate that spectral subtraction alone does
not decrease intelligibility, but does increase quality, especially
in the areas of increased pleasantness and inconspicuousness of
noise background. Tables III and IV clearly indicate that spec-
tral subtraction can be used to improve the intelligibility and
quality of speech processed through an LPC bandwidth com-
pression device.

D, Short-Time Spectra Using Residual Noise Reduction and
Nonspeech Signal Attenuation

Based on the promising results of these preliminary DRT
experiments, the algorithm was modified to incorporate resid-
ual noise reduction and nonspeech signal attenuation. Fig. 10
shows the short-time spectra using the helicopter speech data
with both modifications added. Note that now noise between
words has been reduced below the resolution of the graph, and
noise within the words has been significantly attenuated (com-
pare with Fig. 7).
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TABLE I

Di1AGNoOSTIC RHYME TEST SCORES
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Original § (No Average) s (Three Average)
Voicing 95 92 91
Nasality 82 78 77
Sustention 92 87 86
Sibilation 75 83 84
Graveness 68 70 66
Compactness 88 87 88
Total 84 83 82
TABLE II

QUALITY RATINGS

Original S (No Average} g (Three Averages)
Naturalness of 63 60 61
Signal
Inconspicuousness 36 38 42
of Background
Intelligibility 30 32 33
Pleasantness 20 k]| 25
Overall 27 33 29
Acceptability
Composite 26 32 29
Acceptabitity
TABLE III
DiagnosTIC RHYME TEST SCORES
LPC on " LPC on - LPC on
Original S without averaging S with averaging
Voicing 84 90 86
Nasality 56 63 52
Sustention 49 52 56
Sibilation 61 70 88
Graveness 61 62 59
Compactness 83 83 93
Total 66 70 72
TABLE IV
QUALITY RATINGS
LPC on ~ LPC on ~ LPC on
Original S without averaging S with averaging
Naturalness 53 49 58
of Signal
Inconspicuousness 34 36 39

of Background
Intelligibility
Pleasantness

Overall
Acceptability

Composite
Acceptability

28
15
24

23

30
28
28

29

28
20
26

25
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Fig. 10. Short-time spectrum using bias removal, half-wave rectifica-
tion, residual noise reduction, and nonspeech signal attenuation
(helicopter speech).

V. SUMMARY AND CONCLUSIONS

A preprocessing noise suppression algorithm using spectral
subtraction has been developed, implemented, and tested.
Spectral estimates for the background noise were obtained
from the input signal during nonspeech activity. The algo-
rithm can be implemented using a single microphone source
and requires about the same computation as a high-speech
convolution. Its performance was demonstrated using short-
time spectra with and without noise suppression and quantita-
tively tested for improvements in intelligibility and quality
using the Diagnostic Rhyme Test conducted by Dynastat Inc.

Results indicate overall significant improvements in quality
and intelligibility when used as a preprocessor to an LPC speech
analysis-synthesis vocoder.
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