Wrong Path Events: Exploiting Unusual and Illegal Program Behavior for Early
Misprediction Detection and Recovery

David N. Armstrong Hyesoon Kim Onur Mutlu Yale N. Patt

Department of Electrical and Computer Engineering
The University of Texas at Austin
{dna,hyesoon,onur,patt } @ece.utexas.edu

Abstract

Control and data speculation are widely used to improve
processor performance. Correct speculation can reduce ex-
ecution time, but incorrect speculation can lead to increased
execution time and greater energy consumption.

This paper proposes a mechanism to leverage unexpected
program behavior, called wrong-path events, that occur
during periods of incorrect speculation. A wrong-path event
is an instance of illegal or unusual program behavior that is
more likely to occur on the wrong path than on the correct
path, such as a NULL pointer dereference. When a wrong-
path event occurs, the processor can predict that it is on the
wrong path and speculatively initiate misprediction recov-
ery. The purpose of the proposed mechanism is to improve
the effectiveness of speculative execution in a processor by
helping to insure that the processor remain “‘on the correct
path” throughout periods of speculative execution.

We describe a set of wrong-path events which can be used
as strong indicators of misprediction. We find that on aver-
age 5% of the mispredicted branches in the SPEC2000 in-
teger benchmarks produce a wrong-path event an average
of 51 cycles before the branch is executed. We show that
once a wrong-path event occurs, it is possible to accurately
predict which unresolved branch in the processor is mispre-
dicted using a simple, novel prediction mechanism. We dis-
cuss the advantages and shortcomings of wrong-path events
and propose new areas for future research.

1. Introduction

Accurate branch prediction is an important factor in
achieving high performance in modern microprocessors.
Branch predictors are used to keep the pipeline filled with
instructions, before the control flow of all the in-flight in-
structions is known. The branch misprediction penalty can
be broken down into two stages: the time it takes to discover
that a branch was mispredicted and the time it takes to be-
gin fetching instructions from the correct path. A great deal
of previous work has focused on increasing the accuracy
of branch predictors, i.e., reducing the number of branch

mispredictions by improving the branch predictor [6]. De-
spite significant breakthroughs, branch predictors remain
imperfect. Recognizing that future microprocessors will
likely have to contend with branch mispredictions, this work
proposes a mechanism to reduce the branch misprediction
penalty by decreasing the time it takes to discover that a
branch has been mispredicted.

We observe that when branches are mispredicted in an
out-of-order machine, the wrong-path instructions follow-
ing the branch may consume data values not properly initial-
ized for the wrong-path instructions. This occurs when the
mispredicted branch instruction is executed later than the
wrong-path instructions that follow the branch- a scenario
that arises when the mispredicted branch is data-flow depen-
dent on a long-latency operation but the wrong-path instruc-
tions are not. When this occurs, the wrong-path instructions
may exhibit illegal or unusual behavior. This behavior is
interpreted to mean that a branch has been mispredicted be-
fore the mispredicted branch is executed. For example, if
the instructions following a mispredicted branch consume
an integer variable containing the value 0, but interpret this
variable as a pointer, then dereferencing this variable on the
wrong path causes a NULL pointer access. Using this hint,
the processor can recognize that it has mispredicted a branch
before the branch is executed.

This paper describes events that occur on the wrong path
and that can be used to determine a branch was mispredicted
before the branch is executed. We call these events “wrong-
path events” (WPEs). We examine how these events can
be used to increase processor performance. When a wrong-
path event occurs in the processor, a recovery mechanism
is used to determine which outstanding branch was mispre-
dicted. If the recovery mechanism is unable to determine
which branch was mispredicted, the processor can either
continue on the wrong path or stop fetching wrong-path
instructions. We propose and evaluate a recovery mecha-
nism for branches that cause wrong-path events. Finally, we
discuss the shortcomings of wrong-path events and propose
topics for future research.

2. Motivation

The proposed mechanism addresses the branch resolu-
tion time. We demonstrate that focusing on this aspect of
the branch misprediction penalty has potential to improve
processor performance. Figure 1 shows the performance
difference between a normal processor and an idealized pro-
cessor running the SPEC2000 integer benchmarks. The ide-
alized processor models the scenario where every mispre-
dicted branch generates a WPE as early as possible which in
turn triggers an early branch recovery. In the idealized pro-
cessor, recovery is initiated for a mispredicted branch one
cycle after it is placed in the instruction window (Section 4
describes the processor model in detail). Figure 1 shows
that on average 11.7% IPC improvement is available.

8.6% == Basdline
== Early Resolution of All Misp. Branches

30

20

Instructions per Cycle

11.7%

0.0-

gzip vpr gee mcf crafty parser eon perlomk gap vortex bzip2 twolf hmean

Figure 1. Performance potential when all mispredicted
branches generate a WPE and resolve early.

3. Wrong Path Events

3.1. Overview

Wrong path events occur in an out-of-order machine
when the instructions following a mispredicted branch are
speculatively executed before the mispredicted branch in-
struction is executed. We evaluate wrong-path events that
are caused by invalid memory accesses, mispredicted con-
trol flow operations and exception-generating arithmetic in-
structions. Wrong path events can be further broken down
into two categories: hard and soft wrong-path events. A
hard wrong-path event is an illegal operation, one that is al-
lowed neither on the correct path nor on the wrong path. A
soft wrong-path event is not an illegal operation, but is very
unlikely to occur on the correct path of the program. Since
a soft wrong-path event is unlikely to occur on the correct
path of the program, when it does occur we guess that the
processor is on the wrong path.

3.2. Memory Instructions

Wrong path events that result from memory operations
include: dereferences of a NULL pointer, reads or writes
to an unaligned address?, writes to a read-only page, data
reads to the pages that contain the executable image, reads

1in the AlphalSA, unaligned addresses require an unaligned |oad/store
opcode.

or writes to addresses that are outside of the segment range
and reads or writes that are TLB misses. A TLB miss
is the only soft wrong-path event generated by a memory
access; all others are hard wrong-path events in the Al-
pha ISA. Since TLB misses are soft wrong-path events, we
must be careful not to mistake a TLB miss on the correct
path for a wrong-path event. In order to insure that a TLB
miss originating from correct-path code is not considered a
wrong-path event, we require that the number of outstand-
ing TLB misses surpass a threshold of three or more, before
the misses are considered a wrong-path event. Although
this threshold reduces the number of wrong-path events
caused by wrong-path TLB misses, it also prevents correct-
path TLB misses from incorrectly generating a wrong-path
event. The following two examples are taken from the
SPEC2000 integer benchmarks and illustrate how incorrect
memory accesses occur on the wrong path.

Figure 2 shows a code segment from the
nr Surf aceli st::shadowHit function in the
eon benchmark. In this example, the loop-terminating
branch is mispredicted at the end of the loop, and the loop
is incorrectly entered for an extra iteration. During the
extra iteration, the program reads past the boundary of the
sur f aces array and sets the pointer variable sPtr to a
non-pointer value, which in this case happens to be 0. A
wrong-path event, a NULL pointer access, occurs when
sPt r is dereferenced using the non-pointer value.

for (int i=0; i < length(); i++) { // nmispred the exit branch

nr Surface *sPtr=surfaces[i]; // set sPtr to O
if (sPtr->shadowHit(...)) /1 and then access sPtr
...

Figure 2. A NULL pointer access from EON.

Figure 3 shows an example based on gcc’s
nove_oper and function. The wrong-path event is
an unaligned access that occurs when a union structure,
having been initialized with an integer value, is used as
a pointer by the wrong-path code. The variable op is a
pointer to an r t x_def structure that contains an array of
unions, f1 d[1], and an integer variable, code, that indi-
cates how the union should be interpreted, i.e., keeps track
of the type of the union data. The i f statement is used to
check the type of the data value held in the op- >f | d[0]
union. When the i f statement is mispredicted, the wrong-
path code interprets op- >f1d[O] . rtx to be a pointer
and dereferences it to load a 4-byte word from memory.
The value of op->fld[0].rtx is odd and therefore
generates an unaligned access, a wrong-path event, when it
is dereferenced.

3.3. Control Flow Instructions

Control flow instructions cause wrong-path events when
successive mispredictions are resolved before the oldest
branch instruction is executed. If three branches are exe-

// this union contains
/1 both an integer
/1 and a pointer

typedef union rtunion_def {
int rtint;
struct rtx_def *rtx;
...

} rtunion;

typedef struct rtx_def {
unsigned int code; // This variable determ nes whether
I /1 fldis interpreted as ptr or int
rtunion fld[1];

}orrix;

int nove_operand (rtx op) {
...
if (op->code == LO_SUM /1 m spredict
return ((op->f1d[0].rtx)->code == REG) // wong path
return (op->fld[0].rtint < 64 & ...); Il correct path
}

Figure 3. An unaligned access from GCC.

cuted and resolved as mispredicts while there are older unre-
solved branches in the processor, we find it is almost certain
that one of the older unresolved branches was mispredicted.
Therefore, resolution of three mispredicted branches while
there are older unresolved branches in the processor is con-
sidered a wrong-path event, which we call the “branch under
branch” event. The insight behind this wrong-path event is
that branch predictor accuracy decreases significantly on the
wrong path. The average misprediction rate for the branch
predictor we use is 4.2% on the correct path and 23.5% on
the wrong path. For this reason, misprediction resolutions
on the wrong path are more likely than misprediction reso-
lutions on the correct path.

A branch under branch event is a soft wrong-path event
because branch mispredictions are not illegal operations and
successive branches could be executed and resolved as mis-
predicts while there are older unresolved branches on the
correct path as well. Therefore, branch under branch events
can also occur on the correct path. However, a threshold re-
quiring three branches to be executed and resolved as mis-
predicts while there is at least one older, unresolved branch
in the processor ensures that branch under branch events
rarely occur on the correct path?.

A call return stack (CRS) underflow is a soft wrong-
path event. We find that a 32-entry CRS underflows on the
wrong path and not on the correct path when executing the
SPEC2000 integer benchmarks. Therefore we consider the
CRS underflow condition a wrong-path event.

The Alpha ISA requires instruction addresses to be
aligned. An unaligned instruction fetch address is illegal
and therefore considered a hard wrong-path event.

3.4. Arithmetic Instructions

When arithmetic instructions consume uninitialized val-
ues, they too can cause wrong-path events. Examples of
arithmetic exceptions include division by zero or taking the
square root of a negative number.

2| ess than a combined total of 150 eventsin all benchmarks.

4. Methodology

We use an execution-driven simulator capable of cor-
rectly fetching and executing instructions on the wrong path
and correctly recovering mispredicted branches that occur
on the wrong path. The simulator models an 8-wide out-of-
order machine with an instruction window that can hold up
to 256 in-flight instructions. Because a less accurate branch
predictor would provide more opportunity for early recov-
ery from wrong-path events, a large and accurate branch
predictor is used in our experiments. The branch predic-
tor is a hybrid branch predictor composed of a 64K-entry
gshare [14] and a 64K-entry PAs [19] predictor with a 64K-
entry selector. We model a deep pipeline with a 30-cycle
branch misprediction latency. The first-level data cache
is 64KB, direct-mapped with a 2-cycle hit latency. The
second-level unified cache is 1MB, 8-way set associative
with a 15-cycle hit latency. The instruction cache is 64KB
and 4-way set associative. All caches use 64B line sizes.
On a second-level cache miss, the latency to main memory
is 500 cycles. The size of the unified TLB is 512 entries.

The experiments were run using the 12 SPEC2000 in-
teger benchmarks compiled for the Alpha ISA with the
- fast optimizations and profiling feedback enabled. The
benchmarks were run to completion with a modified test in-
put set to reduce simulation time.

5. Experimental Evaluation

5.1. Coverageand Timing

In order to have an impact on performance, wrong-path
events must occur often and they must occur early on the
wrong path. We measure both the frequency of wrong-path
events and how far onto the wrong path, in cycles, wrong-
path events occur. Figure 4 shows the percentage of mis-
predicted branches that lead to wrong-path events. At least
1.6% of the mispredicted branches in all of the benchmarks
lead to a wrong path event and the greatest percentage is
from gcc where 10.3% of mispredicted branches lead to a
wrong-path event. Figure 5 expresses the relative signifi-
cance of wrong-path events and branch mispredictions for
each of the benchmarks by showing the rate of mispredic-
tions and wrong-path events per 1000 instructions.

10.3%

=
o
o

®
o

6.0

4.0~

20+

Mispredicted Brancheswith WPEs (%)

0.0-

gzip vpr gee mcf crafty parser eon perlbmk gap vortex bzip2 twolf amean

Figure 4. Percentage of mispred. branches with a WPE.

== \WPES
== Branch Mispredictions

Per 1000 I nstructions

gzip vpr gce mcf crafty parser eon perlbmk gap vortex bzip2 twolf amean
Figure 5. Branch misprediction and WPE rate.

In order to find out when wrong-path events occur, we
measure the average recovery time of all the branches that
cause wrong-path events and the average number of wrong-
path cycles before a wrong-path event occurs. Figure 6
shows the average time it takes to generate a wrong-path
event and the average recovery time of the mispredicted
branches that lead to wrong-path events. The leftmost bar
for each benchmark in Figure 6 shows the average number
of cycles from the time a mispredicted branch is issued® into
the out-of-order window until the wrong-path event occurs;
the rightmost bar shows the average number of cycles from
the time the mispredicted branch is issued until the branch
is resolved, which is when the recovery is initiated. After a
mispredicted branch is issued into the window, the average
time it takes to generate a wrong-path event is 46 cycles and
the average time it takes to resolve the branch is 97 cycles. If
recovery can be initiated for a mispredicted branch instantly
when a wrong-path event occurs, that would yield a poten-
tial average savings of 51 cycles. The minimum potential
savings is 7 cycles for gzip and the maximum potential sav-
ings is 176 cycles for bzip2. In bzip2 and mcf, the average
time from issuing a mispredicted branch to its resolution is
very large, because these two benchmarks have many mis-
predicted branches that depend on L2 cache misses.

The potential savings shown in Figure 6 by the average
number of cycles between the wrong-path event and recov-
ery time is significant and demonstrates the merit of leverag-
ing wrong path events in a processor. However, the coverage
of mispredicted branches that lead to wrong-path events is
low as shown in Figure 5. That is, wrong-path events seem
to occur fairly early* on the wrong path but do not occur
very often. To utilize this scheme in a processor there is a
need to increase the coverage of mispredicted branches by

3In this paper, we use the term “issue” to indicate the placement of
an instruction into the instruction window, i.e. insertion of an instruction
into the reorder buffer. In our pipeline model an instruction gets fetched,
decoded/renamed, issued, scheduled (when its source operands are ready),
executed, and retired (when it is the oldest completed instruction in the
window). Fetch-to-issue latency is 28 cycles, issue-to-execute latency is
minimum 1 cycle, and the execute latency for a branch instruction is 1
cycle. Hence, the 30-cycle branch misprediction latency.

“More analysis on the time of occurrence of WPES is provided in Sec-
tion 5.2, which shows that WPESs do not occur early enough.

== |ssue to WPE
== | SsUe to Recovery

gzip vpr gee mcf crafty parser eon perlbmk gap vortex bzip2 twolf amean

Figure 6. Wrong path cycles to WPE and recovery.

discovering additional wrong-path events.

Figure 7 shows the distribution of the different types of
wrong-path events. “Branch under branch” events make up
the majority of events in all benchmarks followed by NULL
pointer accesses, unaligned accesses and accesses out of
the segment range. On average, almost 30% of wrong-path
events are generated by memory accesses. This fairly high
percentage indicates that using register tracking [3] to com-
pute load addresses early may aid in discovering wrong-path
events earlier.

&

= Br Under Br

= Out Of Seg Range

=== NULL Ptr
Unalgnd Access

== TLB Miss

Per centage of Wrong Path Events (%)

0-! T T T 7 T T T
gzp vpr gc mof cafty paser eon pelbmk gap vortex bzip2 twolf amean

Figure 7. Distribution of wrong-path events.

5.2. Performance

In order to measure the performance potential of the
available wrong-path events, we augmented the simulator
enabling it to perfectly initiate recovery for a mispredicted
branch as soon as a WPE occurs. Figure 8 shows the poten-
tial for performance improvement with the perfect recov-
ery scheme as compared with the baseline processor, which
does not recover when a wrong-path event occurs. Nine of
the twelve benchmarks show some performance improve-
ment. The maximum 1.7% IPC improvement is available
from perlbmk and an average of 0.6% IPC improvement is
observed over all the benchmarks.

The performance improvement is limited by both the low
number of mispredicted branches with WPEs and an insuffi-
cient savings in cycles when a WPE occurs. Figure 6 shows
that triggering the resolution of a mispredicted branch when
a WPE occurs does have potential to reduce the average
number of cycles on the wrong path. However, Figure 9

1.3% == Baseline
== Optimal Recovery

30

20

Instructions per Cycle

1.0% 0.8%

0.6%

0.0-

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf hmean

Figure 8. IPCs for baseline and optimal recovery.

provides additional insight for two benchmarks, mcf and
bzip2, which are similar benchmarks in that they both ex-
pose the long memory latency used in our simulations. Fig-
ure 9 shows the cumulative distribution of the number of
cycles after a WPE occurs until the associated mispredicted
branch is resolved. The longer it takes to resolve the branch
after a WPE occurs, the more potential savings there is for
a WPE initiated recovery. Note that 30% of bzip2’s mis-
predicted branches with WPEs save 425 cycles or more,
as compared with only 8% of mcf’s mispredicted branches
with WPEs. This observation is reflected in the IPC results:
bzip2 exhibits 1% IPC improvement and mcf exhibits no
IPC improvement. In order to improve performance more
significantly, additional wrong-path events must be discov-
ered and they must be uncovered earlier on the wrong path.

100%

Percentage of Mispredicted Branches with WPEs
@
=

0 50 100 150 200 250 300 350 400 450 500
Cycles

Figure 9. Cumulative distribution of the number of cycles
between the occurrence of a WPE and the resolution of
the associated mispredicted branch.

Another factor that limits the observed performance im-
provement is that some useful wrong-path prefetches are
eliminated by initiating early misprediction recovery on the
wrong path. As identified in previous work [5, 17, 16],
the prefetching benefit of wrong-path instructions can and
sometimes does result in important performance gains. We
find that it is sometimes better to stay on the wrong path a

little longer after the detection of a WPE in order to start the
access of a load request that misses in the L2 cache and is
needed later by a correct-path instruction, as opposed to ini-
tiating an early recovery and resuming execution on the cor-
rect path. This is especially true for mcf and bzip2, which
experience more L2 cache misses than other benchmarks
and also benefit considerably from prefetches generated by
wrong-path instructions.

5.3. Gating Fetch

Another use for detecting wrong-path events is to prevent
fetching new instructions once a wrong-path event occurs,
i.e., gating fetch. Manne et al. report the benefits of gating
pipeline stages when enough low confidence branches occur
in the pipeline [13]. In a similar manner, when a wrong-path
event occurs, the processor can stop fetching new wrong-
path instructions for a potential energy savings.

6. A Realistic Recovery Mechanism

When a wrong-path event is detected by the processor,
the processor needs to decide which instruction was mis-
predicted. The possible candidates for the mispredicted in-
struction are the branches (older than the WPE-generating
instruction®) that are not yet executed when the WPE oc-
curred®. If there is only a single unresolved branch in
the processor, misprediction recovery is initiated for that
branch. However, if there are multiple unresolved branches
in the processor, we need a mechanism that decides which
of these branches is mispredicted. To accomplish this, we
propose a history-based predictor. The purpose of our pro-
posal is to demonstrate that once a WPE occurs, it is possi-
ble to accurately predict which branch instruction was mis-
predicted’. We also discuss the issues involved in imple-
menting a realistic recovery mechanism.

The proposed predictor memorizes the relationships be-
tween the instruction that generates the WPE and the in-
struction that is mispredicted. The design of this predictor
is based on the following observations we make from our
simulations (We do not include supporting data for these
due to space constraints):

1. Many static instructions that cause WPES do so repeat-
edly during program execution.

2. Ifan instruction A generates a WPE due to the mispre-
diction of another instruction B that is N instructions
older, then the next time instruction A causes a WPE,
it is likely due to the misprediction of instruction B

5For the rest of the descriptions and discussion in Section 6, we only
consider those branchesthat are older than the WPE-generating instruction.

61f there are no unresolved branches that are older than the WPE-
generating instruction when a WPE occurs, then no action is taken, since
the WPE must have occurred on the correct path.

"The potential performance improvement shown in Figure 8 perhaps
does not currently justify the implementation cost of the proposed predictor
and the recovery mechanism, but we hope that the predictor will become
more important as future research increases the performance potential by
discovering additiona WPEs.

which is N instructions older. In other words, the “dis-
tance in instructions” between the WPE-generating in-
struction and the mispredicted instruction is persistent
and predictable. The concept of distance is demon-
strated in Figure 10a.

Instruction Window Distance Table

Sequence
Number Most recent n bits of the

6 | Oldest mispredicted branch branch history associated with
the WPE-generating instruction

@ V | Distance

Least significant n bits of the
PC of the WPE-generating instruction

=123

Distance

129 | WPE-generating instruction

(a) An example showing the concept of distance (b) Proposed distance predictor

Figure 10. Distance concept and distance predictor.

A simple and initial implementation of this predictor,
which we call the “distance predictor,” is shown in Fig-
ure 10b. The predictor is indexed using a hash of the
global branch history and the address of the WPE gener-
ating instruction. Each entry in the prediction table (dis-
tance table) has a valid bit and a distance field, which is a
loga(instruction — window — size)-bit value. The valid
bits are initialized to 0 when a process starts execution.
An entry is updated as follows: when the oldest mispre-
dicted branch instruction in the machine retires after being
resolved as a mispredict, the processor checks if a WPE oc-
curred on the wrong path. If no wrong-path event is de-
tected, the distance table is not updated. If there is a WPE,
the address of the oldest WPE-generating instruction and
the global branch history associated with it are used to in-
dex the distance table. The valid bit of the entry is set to
1, meaning this entry caused a WPE, and the distance be-
tween the WPE-generating instruction and the mispredicted
branch is recorded in the distance field. The distance is cal-
culated using the circular sequence numbers associated with
each instruction used in modern processors [12]. The update
of the distance table is very latency-tolerant and can take
multiple cycles. Note that this update mechanism requires
the processor to record the PC and the sequence number of
the oldest WPE-generating instruction. Although multiple
wrong-path events may occur under the same misprediction,
we only record the oldest WPE for simplicity.

When a WPE is detected, the distance table is accessed
using the PC of the instruction that generated the WPE and
the global branch history associated with that instruction. If
the valid bit of the accessed entry is not set, no prediction
is made. In this case, the processor can gate fetch to save
energy. If the valid bit is set, the processor uses the distance
field of the entry to determine which instruction was mispre-

dicted. The processor first checks the status of the instruc-
tion A that is N instructions older than the WPE-generating
instruction, where N is the value in the distance field. Two
cases are possible:

1. Instruction A is not a branch instruction, or it is a
branch instruction that is already resolved, or Instruc-
tion A already retired (Instruction A may have already
retired if predicted distance N is too large). Therefore,
the predicted distance was incorrect. No recovery can
take place, but the processor can gate fetch to save en-
ergy. We call this case Incorrect-No-Match.

2. Instruction A is an unresolved branch instruction. The
processor initiates misprediction recovery for A. There
are three distinct cases:

(@) The prediction is correct if A is the oldest mispre-
dicted branch in the processor.

(b) If A is younger than the oldest mispredicted
branch, the prediction was incorrect and the pro-
cessor initiates recovery for a branch that should
not have been executed anyway (Incorrect-
Younger-Match).

(c) If Ais older than the oldest mispredicted branch,
the prediction was incorrect and the processor
flushes instructions that are on the correct path
along with those that are on the wrong path
(Incorrect-Older-Match). Therefore, this last
case should be avoided by a good predictor.
When the distance table is updated for this case,
the valid bit of the entry that generated the pre-
diction is set to 0 so that Incorrect-Older-Matches
and possible deadlock are avoided in the future.

6.1. Evaluation of the Distance Predictor
The predictor is accessed when a WPE is detected and

if there is at least one older unresolved branch in the in-

struction window. There are seven possible outcomes of the
prediction:

1. Correct-Only-Branch (COB): There is only one unre-
solved branch in the window when the WPE is detected
and this branch is the mispredicted branch. In this case,
the output of the distance table is ignored. But the dis-
tance table is still updated when the single unresolved
branch is retired.

2. Correct-Prediction (CP): The mispredicted branch is
correctly identified by the predictor.

3. No-Prediction (NP): The predictor did not produce a
prediction, because the valid bit was 0.

4. Incorrect-No-Match (INM): Described above.

Incorrect-Younger-Match (1'YM): Described above.

6. Incorrect-Older-Match (IOM): Described above. If a
recovery is initiated when the processor is on the cor-
rect path due to the detection of a wrong-path event on
the correct path, the outcome is also considered IOM.

7. Incorrect-Only-Branch (I0B): There is only one un-
resolved branch in the window when the WPE is de-

o

tected, but this branch is not mispredicted and the pro-
cessor is not on the wrong path. This case can occur if
the detected WPE is a soft WPE® and the processor in-
correctly decides that it is on the wrong path. Although
this case is possible, we did not see an instance of it in
our simulations. Therefore, we do not discuss results
related to this case in this section.

Outcomes 1 and 2 (COB and CP) would correctly ini-
tiate early misprediction recovery. Outcomes 3 and 4 (NP
and INM) would gate fetch until the mispredicted branch is
resolved, and outcomes 5 and 6 (I'YM and I0M) would ini-
tiate recovery on the incorrect branch, with outcome 10M
being potentially the most harmful. Figure 11 shows that,
on average, we can correctly initiate recovery for 69% of
the mispredicted branches that result in WPEs. For 18% of
these branches (outcomes 3 and 4) we can gate fetch from
the time we discover the WPE until the mispredicted branch
is resolved. Only for 4% of these branches does the pre-
dictor incorrectly identify an older branch as mispredicted.
Hence, the potentially harmful mispredictions are rare. Fig-
ure 12 shows that a 1K-entry predictor achieves a correct
prediction 63% of the time, while it incorrectly identifies
an older branch only 4% of the time. Reducing the size of
the predictor reduces the occurrence of CP and increases the
occurrence of INM without significantly increasing the IOM
and I'YM outcomes. This indicates that the smaller predictor
favors gating fetch instead of correctly initiating recovery.

8

= |OM
Y M
— |NM
NP
— CP
COB

3

Per centage of Distance Predictor Outcomes (%)
8 8 &8 8

Figure 11. Accuracy of the 64K-entry predictor.

Using a 64K-entry distance predictor, the processor can
correctly initiate early recovery for 3.6% of all mispredicted
branches®, averaged over SPEC2000 integer benchmarks.
Recovery is initiated an average of 18 cycles before a mis-
predicted branch is executed. The resulting IPC improve-
ment is 1.5% for perlbmk, 1.2% for eon, and 0.5% for gcc.
IPC is not degraded for any benchmark. If instruction fetch
is gated when the predictor outcome is NP or INM, the num-
ber of fetched wrong-path instructions decreases by 1% on

80r if it is a hard WPE and the application architecturally generates
illegal behavior.

9Recovery isincorectly initiated for an ol der correctly-predicted branch
for 0.15% of the branch mispredictions (IOM outcome). We see no incor-
rect recoveriesinitiated (due to soft WPES) when there are no mi spredicted
branches in the processor.

Per centage of Distance Predictor Outcomes (%)

Figure 12. Accuracy of the 1K-entry predictor.

average compared to the baseline processor; 3% for eon, 4%
for perlbmk, 1% for gcc, mcf, vortex, gap, and bzip2.

6.2. Avoiding Deadlock

A useful recovery mechanism should guarantee forward
progress when a WPE is detected on the correct path and
recovery is incorrectly initiated for a correctly-predicted
branch. We avoid possible deadlock situations by invali-
dating the distance table entry that causes an IOM outcome.

An example deadlock situation is as follows: let’s say an
arithmetic exception occurs on the correct program path and
the distance predictor initiates recovery for a branch that is
not mispredicted. The branch eventually executes and the
processor finds out that it incorrectly initiated recovery due
to an IOM outcome from the distance predictor. The proces-
sor initiates recovery on the incorrectly-recovered branch
and resumes execution on the correct path. Eventually, it
encounters the instruction that generated the exception. As
this instruction is on the correct program path, it generates
the same exception again. If the valid bit of the entry that
caused the IOM outcome was not reset the first time, the
distance predictor would again use this entry and incorrectly
initiate recovery on the same branch. As long as the valid
bit is not reset, this situation could happen over and over and
the program could be deadlocked.

Another example deadlock situation related to fetch gat-
ing is as follows: The processor detects a WPE on the cor-
rect path and incorrectly predicts that it is on the wrong path
and gates fetch to save energy. However, because there are
no mispredicted branches in the processor, no misprediction
recovery will be initiated and instruction fetch will not be
redirected. To avoid deadlock in such a case, the processor
should un-gate fetch when all branches in the window are
resolved.

6.3. Avoiding Performance L oss

If the distance predictor outcome is IOM, the proces-
sor overturns a correct prediction on the correct program
path. Hence, our mechanism causes the processor to take
the wrong path. Another wrong-path event may occur on
this path, which may lead to another IOM outcome, which
can put the processor on the wrong path at an even earlier
point in the program. We did not see an instance of this

case in our simulations, but it can be very costly if it oc-
curs. Therefore, a good implementation should prevent it
from happening.

To avoid this case, we allow only one outstanding dis-
tance prediction at any given time. If a wrong-path event
occurs and the distance predictor decides to initiate recov-
ery on a branch, no other distance predictions are allowed
until that branch executes and verifies both the branch pre-
diction and the distance prediction.

6.4. Early Recovery for Indirect Branches

If the recovery initiated by the distance predictor is for
a direct branch (i.e. a branch with only one possible target
address), it is trivial to determine what address the program
counter will be set to on recovery. However, if the recovery
initiated by the distance predictor is for an indirect branch,
the processor needs a way of determining the new target ad-
dress to fetch from. To solve this problem, we extend the
distance table entry to record the target address of an indi-
rect branch. This entry is updated with the correct target
address when a mispredicted indirect branch that leads to a
WPE executes. When the distance predictor decides to ini-
tiate early recovery for an indirect branch using the same
distance table entry, the recorded target address is used as
the new fetch address. On average, with a 64K-entry dis-
tance predictor, this mechanism correctly predicts the target
addresses of 84% of the indirect branches for which the dis-
tance predictor initiates recovery. With a 1K-entry distance
predictor, 75% of these indirect branches are correctly pre-
dicted. Although costly in terms of area, this mechanism
may be worthwhile to implement, because our simulations
show that 25% of all branches that lead to wrong-path events
are indirect branches.

7. Discussion and Future Research Directions

This paper presented the idea of wrong-path events, eval-
uated their occurrence and performance potential for branch
prediction, and proposed a realistic recovery mechanism
that can take advantage of the idea. We have analyzed both
the advantages and shortcomings of wrong-path events in
previous sections. In this section, we propose several re-
search ideas that address the shortcomings. We also propose
other areas of research that can take advantage of wrong-
path events.

7.1. Addressing the Shortcomings of WPEs
Results and analysis discussed in Section 5 indicate that
there are three major shortcomings that limit the gains ob-
tained from a WPE-based mechanism:
1. WPEs do not occur very frequently. Hence, the per-
centage of mispredicted branches with WPEs is low.
2. WPEs do not occur early enough in the wrong path.
3. Staying on the wrong path a few more cycles is some-
times more useful than recovering early.
To address the first shortcoming, future research in
wrong-path events should focus on discovering additional

WPEs. The set of WPEs proposed in this paper provides
a starting point and is by no means definitive. To come up
with the “silver bullet set of WPEs,” a detailed analysis of
events occurring on the wrong path may be necessary. Mi-
croarchitectural behavior that is statistically more likely to
occur on the wrong path than on the correct path can be ex-
ploited as WPEs. A “branch under branch event” described
in this paper is an example of such behavior. Future research
can target finding similar behavior using a comprehensive
statistical analysis of the occurrence of various events on
the wrong path vs. on the correct path.

Another avenue of research, which we believe is promis-
ing, would leverage the compiler to increase the occurrence
of WPEs. The compiler can insert special, non-binding®
instructions into the program that would generate a wrong-
path event if an older branch is mispredicted. For example,
the compiler can insert a special, non-binding load instruc-
tion that causes a NULL pointer dereference only if it is
executed on the wrong path. If this special instruction is ex-
ecuted on the correct path, it computes a legal address and
thus does not generate a WPE. The ISA needs to be aug-
mented with these special instructions. Care must be taken
to make sure that these instructions do not cause code bloat
and do not tie up machine resources that are valuable for
other instructions.

To address the second shortcoming, future research can
focus on methods of rapidly executing wrong-path instruc-
tions. For example, using register tracking [3] to com-
pute load addresses early may aid in discovering wrong-path
events earlier. Having the compiler insert instructions that
generate WPEs on the wrong path can also reduce the time
it takes to detect a WPE on the wrong path.

Addressing the third shortcoming requires a better under-
standing of what makes a particular “wrong-path period”1!
useful for correct path execution. If the usefulness of a
wrong-path period is predictable, perhaps a WPE-based re-
covery mechanism should not be employed or should be
employed more carefully on a wrong-path period that is pre-
dicted to be useful. Previous research [17, 11, 16] focused
on identifying the general effects of wrong-path execution
on the correct-path execution, but, to the best of our knowl-
edge, there is no body of research on distinguishing useful
wrong-path periods from useless/harmful ones. We suggest
that the usefulness of a particular wrong-path period is an
important area of research in view of a WPE-based mecha-
nism that can take advantage of the results.

7.2. Other Areasof Future Research

An orthogonal area of research is the exploration of sit-
uations other than early branch recovery where wrong-path
events can be employed. We have explored the applica-
bility of WPEs to value prediction in [2]. The proposed

10A non-binding instruction does not stall instruction retirement.
11Time el apsed from the fetch of a mispredicted correct-path branch un-
til the resolution of the same branch and initiation of recovery.

idea of wrong-path events may apply to other methods of
speculation, including but not limited to cache hit specula-
tion [20], memory dependence speculation [15], and thread-
level speculation [18]. The discovery of additional WPEs
may be critical for the application of the idea of wrong-path
events to other methods of speculation. If applicable to other
forms of speculation, wrong-path events have the potential
to be a generalized feedback mechanism used for the detec-
tion of misspeculation.

8. Rdated Work

8.1. Related Schemes

Glew proposes the use of “bad memory addresses” and
illegal instructions as strong indicators of branch mispredic-
tions [8]. Glew poses the question “What fraction of branch
mispredictions lead to a bad memory address?” as a re-
search topic. We extend and generalize Glew’s notion of bad
memory addresses to various instances of unusual and ille-
gal program behavior (wrong-path events) including but not
limited to bad memory addresses. We also evaluate the fre-
quency of occurrence of these generalized set of events and
analyze when they occur on the wrong path. Glew points
out that it is not clear how to take advantage of wrong-path
events, because a recovery mechanism needs to determine
which unresolved branch in the processor is mispredicted.
We describe a recovery mechanism that can take advantage
of wrong-path events and show that a simple predictor can
accurately predict which unresolved branch in the processor
is mispredicted, once a wrong-path event is detected.

Jacobsen et al. explore branch confidence, or the like-
lihood that a branch is mispredicted, based on past pro-
gram behavior [9]. They propose and evaluate mechanisms
to determine branch confidence statically and dynamically.
Confidence mechanisms can be used to conserve processor
resources when there is little confidence that the proces-
sor is on the correct path. Manne et al. use branch confi-
dence to gate low confidence speculative instructions from
the early stages of the pipeline in order to save energy [13].
Their mechanism is called pipeline gating. The authors
report a significant energy savings with negligible perfor-
mance degradation. A low confidence branch in Manne et
al. is analogous to a highly speculative wrong-path event.
These previous mechanisms use information from past pro-
gram behavior, the branch history information, to guess that
a branch has been mispredicted. In contrast, a mechanism
based on wrong-path events monitors the results from spec-
ulative instructions and, based on this feedback, determines
whether the processor is on the correct path.

Jimenez et al. observe that access time is an important de-
sign point in a branch predictor [10]. To address this design
point, they propose an overriding predictor scheme, where
a larger, slower, and more accurate predictor overrides the
prediction from a smaller, faster, less accurate predictor.
Wrong path events provide a mechanism to override a previ-

ous prediction similar to the larger, more accurate predictor.
However, in the case of wrong-path events, the overriding
prediction is made based on program behavior exhibited af-
ter the branch is predicted, and is not based solely on branch
history information.

Falcon et al. propose the use of predictions made for
younger branches to re-evaluate the prediction made for an
older branch [7]. Initially, a branch is predicted using a
traditional branch predictor, the “prophet”, which uses past
history. Later, bits from the branch’s global history and pre-
dictions made for younger branches are together used to in-
dex an overriding “critic” predictor to generate a more ac-
curate prediction for the branch. This mechanism uses fu-
ture speculation information (predictions made for younger
branches) to refine the prediction made for an older branch.
In contrast, the mechanism we propose utilizes many pieces
of wrong-path information (called wrong-path events), in-
cluding the results of the wrong-path instructions, to iden-
tify that the processor is on the wrong path.

8.2. Schemesto Reduce the Misprediction Penalty

Bondi et al. propose a misprediction recovery cache for
deep, superscalar pipelines [4]. The misprediction recovery
cache reduces the recovery time of mispredicted branches
by caching the decoded instructions that follow the most
frequently mispredicted branches. When a misprediction
is discovered, the pipeline is flushed. While the fetch and
decode stages of the pipeline are warmed with correct-path
instructions, the execution stage of the pipeline draws de-
coded instructions from the misprediction recovery cache.
Whereas a misprediction recovery cache addresses the time
it takes to recover from a misprediction after the branch is
executed, a wrong-path event mechanism addresses the time
it takes to discover the misprediction.

Aragon et al. propose a mechanism that fetches, decodes
and renames, but does not execute instructions from the
alternative paths of low-confidence branches [1]. Once a
misprediction is detected, the instructions from the correct
path are immediately available to the execution core. This
scheme is also intended to reduce the penalty after the mis-
predicted branch is discovered. This mechanism is differ-
ent from that of a wrong-path events mechanism, which
is intended to reduce the time it takes to discover that the
branch is mispredicted. Therefore, an approach based on
wrong-path events and the schemes proposed by Bondi et
al. and Aragon et al. are orthogonal and can be combined
for greater performance gains.

9. Conclusion

In this paper, we propose and evaluate a novel mecha-
nism to resolve mispredicted branches before they are ex-
ecuted in the processor. The purpose of this mechanism is
to improve processor performance by helping to insure that
the processor remain “on the correct path” as as much of
the time as possible. We observe that wrong-path instruc-

tions can exhibit unexpected or illegal behavior. We call an
instance of this behavior a wrong-path event and use it as
a trigger to initiate a branch resolution before the mispre-
dicted branch executes. We show that wrong-path events
affect an average of 5% of the mispredicted branches in
the SPEC2000 integer benchmarks and occur an average of
51 cycles before the mispredicted branch is executed. This
mechanism has potential for performance benefit for nine
of the twelve SPEC2000 integer benchmarks, but is limited
by three factors: the coverage of mispredicted branches af-
fected by WPEs, how far onto the wrong path the WPE oc-
curs and finally by negating potentially beneficial prefetch-
ing effects generated by wrong-path instructions. In light of
these limitations, we propose new ideas to explore.

We propose a recovery mechanism that utilizes the con-
cept of distance between a wrong-path event and the mispre-
dicted branch and achieves a low misprediction rate. We
summarize the shortcomings of wrong-path events and pro-
pose future areas of research to address these shortcomings
in order to exploit the potential of the idea. Although we
have not found the “silver bullet” set of wrong-path events,
our results show that the idea of wrong-path events does
provide a significant opportunity for performance improve-
ment, which we hope will be exploited with future research.

10. Acknowledgements

We thank Andy Glew and Mike Fertig for their com-
ments on earlier drafts of this paper. We also thank members
of the HPS research group for their comments and sugges-
tions, and the fertile environment they provide.

11. References

[1] J.L. Aragon, J. Gonzalez, A. Gonzalez, and J. E. Smith. Dual
path instruction processing. In Proceedings of the 2002 Inter-
national Conference on Supercomputing, 2002.
D. N. Armstrong, H. Kim, O. Mutlu, and Y. N. Patt. Wrong
path events: Exploiting unusual and illegal program behav-
ior for early misprediction detection and recovery. Technical
Report TR-HPS-2004-002, HPS Technical Report, 2004.
M. Bekerman, A. Yoaz, F. Gabbay, S. Jourdan, M. Kalaev,
and R. Ronen. Early load address resolution via register
tracking. In Proceedings of the 27th Annual International
Symposiumon Computer Architecture, pages 306-315, 2000.
[4] J. O. Bondi, A. K. Nanda, and S. Dutta. Integrating a mis-
prediction recovery cache (MRC) into a superscalar pipeline.
In Proceedings of the 29th Annual ACM/IEEE International
Symposium on Microarchitecture, pages 14-23, Dec. 1996.
M. G. Butler. Aggressive Execution Engines for Surpass-
ing Single Basic Block Execution. PhD thesis, University of
Michigan, 1993.
M. Evers and T.-Y. Yeh. Understanding branches and design-
ing branch predictors for high-performance microprocessors.
Proceedings of the IEEE, 89(11):1610-1620, Nov. 2001.
[7] A. Falcon, J. Stark, A. Ramirez, K. Lai, and M. Valero.
Prophet-critic hybrid branch prediction. In Proceedings of

(2]

3]

[5]

(6]

10

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

the 31st Annual International Symposium on Computer Ar-
chitecture, 2004.

A. Glew. Branch and computation refinement. Unpublished
Manuscript, University of Wisconsin, Jan. 2000.

E. Jacobsen, E. Rotenberg, and J. E. Smith. Assigning con-
fidence to conditional branch predictions. In Proceedings of
the 29th Annual ACM/IEEE International Symposium on Mi-
croarchitecture, pages 142-152, 1996.

D. A. Jiménez, S. W. Keckler, and C. Lin. The impact of
delay on the design of branch predictors. In Proceedings of
the 33rd Annual ACM/IEEE Inter national Symposiumon Mi-
croarchitecture, pages 6776, 2000.

S. Jourdan, T.-H. Hsing, J. Stark, and Y. N. Patt. The effects
of mispredicted-path execution on branch prediction struc-
tures. In Proceedings of the 1996 ACM/IEEE Conference on
Parallel Architectures and Compilation Techniques, pages
58-67, 1996.

R. E. Kessler. The Alpha 21264 microprocessor. |EEE Micro,
19(2):24-36, 1999.

S. Manne, A. Klauser, and D. Grunwald. Pipeline gating:
Speculation control for energy reduction. In Proceedings of
the 25th Annual International Symposium on Computer Ar-
chitecture, pages 132-141, 1998.

S. McFarling. Combining branch predictors. Technical Re-
port TN-36, Digital Western Research Laboratory, June
1993.

A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S.
Sohi. Dynamic speculation and synchronization of data de-
pendences. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, 1997.

O. Mutlu, H. Kim, D. N. Armstrong, and Y. N. Patt. Un-
derstanding the effects of wrong-path memory references on
processor performance. In Third Workshop on Memory Per-
formance Issues, 2004.

J. Pierce and T. Mudge. The effect of speculative execution
on cache performance. In Proceedings of the International
Parallel Processing Symposium, pages 172-179, 1994.

G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar
processors. In Proceedings of the 22nd Annual International
Symposiumon Computer Architecture, pages 414-425, 1995.
T.-Y. Yehand Y. N. Patt. Alternative implementations of two-
level adaptive branch prediction. In Proceedings of the 19th
Annual International Symposium on Computer Architecture,
pages 124-134, 1992.

A. Yoaz, M. Erez, R. Ronen, and S. Jourdan. Speculation
techniques for improving load related instruction scheduling.
In Proceedings of the 26th Annual International Symposium
on Computer Architecture, pages 42-53, 1999.

