Memory Performance Attacks:
Denial of Memory Service in Multi-Core Systems

Thomas Moscibroda Onur Mutlu

Microsoft Research
{moscitho,onuf@microsoft.com

Abstract shift away from implementing such additional enhance-
We are entering the multi-core era in computer sciencements. Instead, processor manufacturers have moved on
All major high-performance processor manufacturers have i to integrating multiple processors on the same chip in
tegrated at least two cores (processors) on the same chip - tiled fashion to increase system performance power-
and it is predicted that chips with many more cores will be- efficiently. In amulti-core chip different applications
come widespread in the near future. As cores on the same chipy 1y e executed on different processing cores concur-
share the DRAM memory system, multiple programs exeCUt'rentIy, thereby improving overall system throughput

ing on different cores can interfere with each others’ mgmor (with the hope that the execution of an application on
access requests, thereby adversely affecting one arotre¥ P . . _pp_
one core does not interfere with an application on an-

formance.
In this paper, we demonstrate that current multi-core woce Other core). Current high-performance general-purpose
sors are vulnerable to a new class of Denial of Service (DoSFomputers have at least two processors on the same chip
attacks because the memory system is “unfairly” shared gmon(€.g. Intel Pentium D and Core Duo (2 processors), Intel
multiple cores. An application can maliciously destroy the Core-2 Quad (4), Intel Montecito (2), AMD Opteron (2),
memory-related performance of another application rupoim Sun Niagara (8), IBM Power 4/5 (2)). And, the industry
the same chip. We call such an applicatiomemory perfor- trend is toward integrating many more cores on the same

mance hog (MPH)With the widespread deployment of multi- chijp. In fact, Intel has announced experimental designs
core systems in commodity desktop and laptop computers, Weith up to 80 cores on chip [16].

expect MPHs to become a prevalent security issue that could
The arrival of multi-core architectures creates signif-
affect almost all computer users.

We show that an MPH can reduce the performance of anicant challenges i|j the fields of .cgmputer' arghitecture,
other application by 2.9 times in an existing dual-coreayst ~ SOftware engineering for parallelizing applications, and
without being significantly slowed down itself; and this pro Operating systems. In this paper, we show that there are
lem will become more severe as more cores are integrated otinportant challenges beyond these areas. In particular,
the same chip. Our analysis identifies the root causes ofrtinfa we expose a new security problem that arises due to the
ness in the design of the memory system that make multi-corglesign of multi-core architectures — a Denial-of-Service
processors vulnerable to MPHs. As a solution to mitigate the(DoS) attack that was not possible in a traditional single-
performance impact of MPHs, we propose a new memory systhreaded processér.We identify the “security holes”
tem architecture that provides fairness to different aggions the hardware design of multi-core systems that make

running on the same chip. Our evaluations show that this memg, -, a1tacks possible and propose a solution that miti-
ory system architecture is able to effectively contain teg-n
gates the problem.

ative performance impact of MPHs in not only dual-core but . . .
also 4-core and 8-core systems. In a multi-core chip, the DRAM memory system is

shared among the threads concurrently executing on dif-
. ferent processing cores. The way current DRAM mem-
1 Introduction ory systems work, it is possible that a thread with a
For many decades, the performance of processors has iparticular memory access pattern can occupy shared re-
creased by hardware enhancements (increases in clogources in the memory system, preventing other threads
frequency and smarter structures) that improved singlefrom using those resources efficiently. In effect, the
thread (sequential) performance. In recent years, how-
ever, the immense Comp|exity of processors as well While this problem could also exist in SMP (symmetric shared
memory multiprocessor) and SMT (simultaneous multithiegdsys-

as limits on power-consumption has made it mcreas-tems, it will become much more prevalent in multi-core amttures

ingly difficult to fur_ther enhance single-thread perfof' which will be widespreadly deployed in commodity desktamptbp,
mance [18]. For this reason, there has been a paradigand server computers.

memory requests of some threads can be denied service

by the memory system for long periods of time. Thus,

an aggressive memory-intensive application can severely

degrade the performance of other threads with which it
is co-scheduled (often without even being significantly

slowed down itself). We call such an aggressive appli- e

cation aMemory Performance Hog (MPHJor exam-
ple, we found that on an existing dual-core Intel Pentium

D system one aggressive application can slow down an-

other co-scheduled application by 2.9X while it suffers
a slowdown of only 18% itself. In a simulated 16-core
system, the effect is significantly worse: the same ap-
plication can slow down other co-scheduled applications
by 14.6X while it slows down by only 4.4X. This shows

that, although already severe today, the problem caused
by MPHSs will become much more severe as processor
manufacturers integrate more cores on the same chip in

hardwareitself. For example, numerous sophisti-
cated software-based solutions are known to prevent
DoS and other attacks involving mobile or untrusted
code (e.g. [10, 25, 27, 5, 7]), but these are unsuited
to prevent our memory performance attacks.

Third, while an MPH can be designed intentionally, a
regular application can unintentionally behave like an
MPH and damage the memory-related performance
of co-scheduled applications, too. This is discomfort-
ing because an existing application that runs with-
out significantly affecting the performance of other
applications in a single-threaded system may deny
memory system service to co-scheduled applications
in a multi-core system. Consequently, critical appli-
cations can experience severe performance degrada-
tions if they are co-scheduled with a non-critical but
memory-intensive application.

curity threat:

the future.
. . . The fundamental reason why an MPH can deny memory
There are three discomforting aspects of this novel se- . o S w .
system service to other applications lies in the “unfair-
ness” in the design of the multi-core memory system.
e First, an MPH can maliciously destroy the memory- State-of-the-art DRAM memory systems service mem-
related performance of other programs that run orory requests on a First-Ready First-Come-First-Serve
different processors on the same chip. Such DeniafFR-FCFS) basis to maximize memory bandwidth uti-
of Service in a multi-core memory system can ulti- lization [30, 29, 23]. This scheduling approach is suit-
mately cause significant discomfort and productiv- able when a single thread is accessing the memory sys-
ity loss to the end user, and it can have unforeseefflem because it maximizes the utilization of memory
consequences. For instance, an MPH (perhaps writhandwidth and is therefore likely to ensure fast progress
ten by a competitor organization) could be used tojn the single-threaded processing core. However, when
fool computer users into believing that some othermultiple threads are accessing the memory system, ser-
applications are inherently slow, even without caus-vicing the requests in an order that ignores which thread
ing easily observable effects on system performancgjenerated the request can unfairly delay some thread’s
measures such as CPU usage. Or, an MPH can resifiemory requests while giving unfair preference to oth-
in very unfair billing procedures on grid-like com- ers. As a consequence, the progress of an application
puting systems where users are charged based afinning on one core can be significantly hindered by an
CPU hours [9F With the widespread deployment application executed on another.
of multi-core systems in commodity desktop, 1aptop, |, his paper, we identify the causes of unfaimess in

and server computers, we expect MPHs to become &, praM memory system that can result in DoS attacks
much more prevalent security issue that could aﬁec%y MPHs. We show how MPHSs can be implemented and
almost all computer users. quantify the performance loss of applications due to un-
Second, the problem of memory performance attack$ajrness in the memory system. Finally, we propose a
is radically differen.t from other, known a.ttacks ON pew memory system design that is based on a novel def-
shared resources in systems, because it cannot Bfition of DRAM fairness This design provides memory
prevented in software. The operating system or theyccess fairness across different threads in multi-core sys
compiler (or any other application) has no direct con-tems and thereby mitigates the impact caused by a mem-
trol over the way memory requests are scheduled iy performance hog.

the DRAM memory system. .For t.h'S reason, evenr, major contributions we make in this paper are:
carefully designed and otherwise highly secured sys-
tems are vulnerable to memory performance attacks,® We expose a new Denial of Service attack that
unless a solution is implemented mmemory system can significantly degrade application performance on
multi-core systems and we introduce the concept of

2In fact, in such systems, some users might be tempted toteswri Memory Performance Hogs (MPHs). An MPH is an

their programs to resemble MPHs so that they get better peaioce
for the price they are charged. This, in turn, would unfagityw down
co-scheduled programs of other users and cause other uspes/t
much higher since their programs would now take more CPUshour

application that can destroy the memory-related per-
formance of another application running on a differ-
ent processing core on the same chip.

e We demonstrate that MPHs are a real problem byl. DRAM memory is still a very expensive resource
evaluating the performance impact of DoS attacks on in modern systems. Partitioning it requires more
both real and simulated multi-core systems. DRAM chips along with a separate memory con-

o We identify the major causes in the design of the troller for each core, which significantly increases the
DRAM memory system that result in DoS attacks: cost of a commodity general-purpose system, espe-
hardware algorithms that are unfair across different cially in future systems that will incorporate tens of
threads accessing the memory system. cores on chip.

¢ We describe and evaluate a new memory system de2. In a partitioned DRAM system, a processor access-
sign that provides fairness across different threads ing a memory location needs to issue a request to the
and mitigates the large negative performance impact DRAM partition that contains the data for that loca-

of MPHs. tion. This incurs additional latency and a communi-
cation network to access another processor's DRAM
2 Background if the accessed address happens to reside in that par-
tition.

We begin by providing a brief background on multi- For these reasons, we assume in this paper that each core
core architectures and modern DRAM memory systemshas a private L2 cache but all cores share the DRAM

Throughout the section, we abstract away many detail.?nemor svstem. We now describe the desian of the
in order to give just enough information necessary to y sy i 9

understand how the design of existing memory systemsl,3 RAM memory system in state-of-the-art systems.

could lend itself to denial of service attacks by explicitly
malicious programs or real applications. Interested read-2'2 DRAM Memory Systems

ers can find more details in [30, 8, 41]. A DRAM memory system consists of three major com-
)) ponents: (1) the DRAM banks that store the actual data,
2.1 Multi-Core Architectures (2) the DRAM controller (scheduler) that schedules com-

Figure 1 shows the high-level architecture of a process[naanIS to read/write data from/to the DRAM banks, and

: . : 3) DRAM address/data/command buses that connect the
ing system with one core (single-core), two cores dual-(
9y (sing) (DRAM banks and the DRAM controller.

core) and N cores (N-core). In our terminology, a “core”
mclu_des th_e ms_tructlon_processmg p|peI|_nes (integer an 221 DRAM Banks
floating-point), instruction execution units, and the L1
instruction and data caches. Many general-purpose corA DRAM memory system is organized into multiple
puters manufactured today look like the dual-core sysbanks such that memory requests to different banks can
tem in that they have two separate but identical coresbe serviced in parallel. As shown in Figure 2 (left), each
In some systems (AMD Athlon/Turion/Opteron, Intel DRAM bank has a two-dimensional structure, consisting
Pentium-D), each core has its own private L2 cacheof multiple rows and columns. Consecutive addresses in
while in others (Intel Core Duo, IBM Power 4/5) the L2 memory are located in consecutive columns in the same
cache is shared between different cores. The choice of w2 The size of a row varies, but it is usually between
shared vs. non-shared L2 cache affects the performancde8Kbytes in commodity DRAMs. In other words, in a
of the system [19, 14] and a shared cache can be a posystem with 32-byte L2 cache blocks, a row contains 32-
sible source of vulnerability to DoS attacks. However, 256 L2 cache blocks.
this is not the focus of our paper because DoS attacks d&ach bank has onew-bufferand data can only be read
the L2 cache level can be easily prevented by providingrom this buffer. The row-buffer contains at most a sin-
a private L2 cache to each core (as already employed bgle row at any given time. Due to the existence of the
some current systems) or by providing “quotas” for eachrow-buffer, modern DRAMs are not truly random access
core in a shared L2 cache [28]. (equal access time to all locations in the memory array).
Regardless of whether or not the L2 cache is sharednstead, depending on the access pattern to a bank, a
the DRAM Memory System of current multi-core sys- DRAM access can fall into one of the three following
tems is shared among all cores. In contrast to the LZategories:

cache, assigning a private DRAM memory system 101 Row hit: The access is to the row that is already in
each core would significantly change the programming the row-buffer. The requested column can simply
model of shared-memory multiprocessing, whichis com- pe read from or written into the row-buffer (called
monly used in commercial applications. Furthermore, g column accegs This case results in the lowest

in a multi-core system, partitioning the DRAM memory |atency (typically 30-50ns round trip in commodity
system across cores (while maintaining a shared-memory

programming model) is also undesirable because: 3Note that consecutive memory rows are located in differankb.

CHIP CHIP CHIP
CORE CORE1| | COREZ2 CORE 1 COREN

i : : e

L2 CACHE L2 CACHE | |L2 CACHE L2 CACHE| L2 CACHE|

DRAM MEMORY DRAM MEMORY

CONTROLLER i ' CONTROLLER i

DRAM MEMORY

i ' i CONTROLLER

H DRAM BUS | H DRAM BUS | H DRAM BUS |
| ll | | ll | | ll 3
| DRAM Memory System i H DRAM Memory System i H DRAM Memory System i

Figure 1: High-level architecture of an example singleeceystem (left), a dual-core system (middle), and an N-core
system (right).The chip is shaded. The DRAM memory system, part of whichdhipf is encircled.

L2 Cache O L2 Cache N-1
To/From Cores Requests Requests
1%}
=3
ROW.0 © [Crossbar]
- 8 1.
5 0 ROWL: ¢ k=3 ' i Memory Request
Q —t = 1
53 1 o ! 1 Buffer
81 |2 o Lo !
Row Address «» E: g oL, BANK 0 BANK B-1 !
g —«>% S h REQUEST REQUEST
3 O 8 — BUFFER BUFFER
<
g ‘ ! |
4 ROWR‘Z L””’,””f ”””””””””” P A
[Lo " Memory Access
ROW: R+1 32 Bank 0 - Bank B-1 Scheduler
© Scheduler Scheduler :
8
R =
OW BUFFER 4 :
& DRAM Bus Scheduler
Column Address Column Decoder : :
7 7 Selected Address and DRAM Command
Address Data DRAM Address/Command Bus
To/From DRAM Banks To DRAM Banks

Figure 2: Left: Organization of a DRAM bank, Right: Orgariza of the DRAM controller

DRAM, including data transfer time, which trans- sake of completeness because in the paper, we focus
lates into 90-150 processor cycles for a core run- primarily on row hits and row conflicts, which have
ning at 3GHz clock frequency). Note that sequen- the largest impact on our results.

tial/streaming memory access patterns (e.g. acCessgse to the nature of DRAM bank organization, sequen-
to cache blocks A, A+1, A+2, ...) resultin row hits tjg| accesses to the same row in the bank have low latency
since the accessed cache blocks are in consecutivghq can be serviced at a faster rate. However, sequen-
columns in a row. Such requests can therefore bgjg| accesses to different rows in the same bank result in
handled relatively quickly. high latency. Therefore, to maximize bandwidth, current
2. Row conflict: The access is to a row different from DRAM controllers schedule accesses to the same row in
the one that is currently in the row-buffer. In this g pank before scheduling the accesses to a different row
case, the row in the row-buffer first needs to be writ- even if those were generated earlier in time. We will later
ten back into the memory array (calledav-clos§ show how this policy causes unfairness in the DRAM

because the row access had destroyed the row’s datystem and makes the system vulnerable to DoS attacks.
in the memory array. Then, eow accessis per-

formed to load the requested row into the row-buffer.2-2.2 DRAM Controller
Finally, a column access is performed. Note that thisSThe DRAM controller is the mediator between the on-
case has much higher latency than a row hit (typicallychip caches and the off-chip DRAM memory. It re-
60-100ns or 180-300 processor cycles at 3GHz). ceives read/write requests from L2 caches. The addresses
3. Row closed:There is no row in the row-buffer. Due of these requests are at the granularity of the L2 cache
to various reasons (e.g. to save energy), DRAMblock. Figure 2 (right) shows the architecture of the
memory controllers sometimes close an open row inDRAM controller. The main components of the con-
the row-buffer, leaving the row-buffer empty. In this troller are thememory request buffand thememory ac-
case, the required row needs to be first loaded into theess scheduler
row-buffer (called aow accesy Then, a column ac- The memory request buffer buffers the requests re-
cess is performed. We mention this third case for theceived for each bank. It consists of sepalzak request

buffers Each entry in a bank request buffer contains the2.3 Vulnerability of the Multi-Core DRAM

address (row and column), the type (read or write), the Memory System to DoS Attacks

timestamp, and the state of the request along with stor- .
age for the data associated with the request. As described above, current DRAM memory systems do

) i not distinguish between the requests of different threads
The memory access sched.uler'|s the brain of the memo_e_ coresy. Therefore, multi-core systems are vulnera-
ory confroller. lts main function is to select a memory ble to DoS attacks that exploit unfairness in the memory
request from the memory request bl,!ﬁer to .be sent t%ystem. Requests from a thread with a particular access
D.RA.M memory. Ij[ha_s a two-IeveI_hlerarch|caI orga- pattern can get prioritized by the memory access sched-
nization as shown in Figure 2. The first level consists ofuler over requests from other threads, thereby causing

separate per-bank schedulers. Each bank scheduler keetR% other threads to experience very long delays. We find

tI’é.le. of the state Of. the bank and selects the highes fhat there are two major reasons why one thread can deny
priority request from its bank request buffer. The secon ervice to another in current DRAM memory systems:
level consists of an across-bank scheduler that selects the

highest-priority request among all the requests selected
by the bank schedulers. When a request is scheduled by
the memory access scheduler, its state is updated in the
bank request buffer, and it is removed from the buffer
when the request is served by the bank (For simplicity,
these control paths are not shown in Figure 2).

Unfairness of row-hit-first scheduling. A thread
whose accesses result in row hits gets higher priority
compared to a thread whose accesses result in row
conflicts. We call an access pattern that mainly re-
sults in row hits as a pattern witligh row-buffer lo-
cality. Thus, an application that has a high row-buffer
locality (e.g. one that is streaming through memory)

}) can significantly delay another application with low
2.2.3 Memory Access Scheduling Algorithm row-buffer locality if they happen to be accessing the

Current memory access schedulers are designed to max- Same DRAM banks. _ _

imize the bandwidth obtained from the DRAM memory. 2. Unfairness of oldest-first scheduling Oldest-first

As shown in [30], a simple request scheduling algorithm ~ Scheduling implicitly gives higher priority to those
that serves requests based on a first-come-first-serve pol- thréads that can generate memory requests at a faster
icy is prohibitive, because it incurs a large number of ~ rate than others. Such aggressive threads can flood
row conflicts. Instead, current memory access schedulers the memory system with requests at a faster rate than
usually employ what is called a First-Ready First-Come- e memory system can service. As such, aggres-
First-Serve (FR-FCFS) algorithm to select which request ~ Sive threads canffill the memory system'’s buffers with
should be scheduled next [30, 23]. This algorithm prior- their requests, while less memory-intensive threads

itizes requests in the following order in a bank: are blocked from the memory system until all the
o)) . earlier-arriving requests from the aggressive threads
1. Row-hit-first: A bank scheduler gives higher prior- are serviced.

ity to the requests that would be serviced faster. In
other words, a request that would result irog hit
is prioritized over one that would cause@w con-
flict.

2. Oldest-within-bank-first: A bank scheduler gives

higher priority to the request that arrived earliest. 3 Motivation: Examples of Denial of Mem-
Selection from the requests chosen by the bank sched- ory Service in Existing Multi-Cores

ulers is done as follows: . .
In this section, we present measurements from real sys-

Oldest-across-banks-first The acr'oss—bank PRAM. tems to demonstrate that Denial of Memory Service at-
bus scheduler selects the request with the earliest armival 1< are possible in existing multi-core systems

time among all the requests selected by individual bank
schedulers. 3.1 Applications

In summary, this algorithm strives to maximize DRAM . o .
. . .We consider two applications to motivate the problem.
bandwidth by scheduling accesses that cause row hit . e .
ne is a modified version of the popuktreambench-

first (regardless of when these requests have arrive o
o : ark [21], an application that streams through memory
within a bank. Hence, streaming memory access patterns . .)
- L and performs operations on two one-dimensional arrays.
are prioritized within the memory system. The oldest

row-hit request has the highest priority in the memoryThe arrays irstreamare sized such that they are much

access scheduler. In contrast, the youngest row-conflict 4we assume, without loss of generality, one core can exease o
request has the lowest priority. thread.

Based on this understanding, it is possible to develop a
memory performance hog that effectively denies service
to other threads. In the next section, we describe an ex-
ample MPH and show its impact on another application.

/1l initialize arrays a, b
for (j=0; j<N, j++)
index[j] =7j; /1 stream ng index

for (j=0; j<N j+4+)

a[index[j]] = b[index[j]];
for (j=0; j<N, j++)
b[index[j]] = scalar * a[index[j]];
(a) STREAM

/1 initialize arrays a, b
for (j=0; j<N j++)
index[j] =rand(); // random# in [0, N

for (j=0; j<N, j++)

a[index[j]] = b[index[j]];
for (j=0; j<N j++)
b[index[j]] = scalar * a[index[j]];

(b) RDARRAY

Figure 3: Major loops of thetream(a) andrdarray (b) programs

larger than the L2 cache on a core. Each array consists dfie systems were unloaded as much as possible. To ac-
2.5M 128-byte elemenfs Stream(Figure 3(a)) has very count for possible variability due to system state, each
high row-buffer locality since consecutive cache missegun was repeated 10 times and the execution time results
almost always access the same row (limited only by thevere averaged (error bars show the variance across the
size of the row-buffer). Even though we cannot directly repeated runs). Each application’s main loop consists of
measure the row-buffer hit rate in our real experimentalN = 2.5 - 106 iterations and was repeated 1000 times in
system (because hardware does not directly provide thithe measurements.
information), our simulations show that 96% of all mem- Figure 4(a) shows the normalized execution time of
ory requests irstreamresult in row-hits. streamwhen run (1) alone, (2) concurrently with another
The other application, calledlarray, is almost the ex- copy ofstream and (3) concurrently witidarray. Fig-
act opposite oftreamin terms of its row-buffer locality. ure 4(b) shows the normalized execution timedzrray
Its pseudo-code is shown in Figure 3(b). Although it per-when run (1) alone, (2) concurrently with another copy
forms the same operations on two very large arrays (eacbf rdarray, and (3) concurrently witlstream
consisting of 2.5M 128-byte elementsjarray accesses Whenstreamandrdarray execute concurrently on the
the arrays in a pseudo-random fashion. The array indicesvo different coresstreamis slowed down by only 18%.
accessed in each iteration of the benchmark’s main loopn contrast,rdarray experiences a dramatic slowdown:
are determined using a pseudo-random number generdés execution time increases by up to 190%. Hence,
tor. Consequently, this benchmark has very low row-stream effectively denies memory service talarray
buffer locality; the likelihood that any two outstanding without being significantly slowed down itself.
L2 cache misses in the memory request buffer are to the We hypothesize that this behavior is due to the row-
same row in a bank is low due to the pseudo-random gerhit-first scheduling policy in the DRAM memory con-
eration of array indices. Our simulations show that 97%troller. As most ofstreans memory requests hit in
of all requests indarray result in row-conflicts. the row-buffer, they are prioritized ovedarray's re-
quests, most of which result in row conflicts. Conse-
3.2 Measurements quently, rdarray is denied access to the DRAM banks

We ran the two applications alone and together on twdhat are being accessed byyeamuntil the streampro-

existing multi-core systems and one simulated futuredram’s access pattern moves on to another bank. With

multi-core system. a row size of 8KB and a cache line size of 64B, 128
(=8KB/64B) of strean's memory requests can be ser-

3.2.1 ADual-core System viced by a DRAM bank beforedarray is allowed to ac-

The first system we examine is an Intel Pentium DC€SS that bank! Thus, due to the thread-unfair imple-

930 [17] based dual-core system with 2GB SDRAM. mentation of the DRAM memory systeistreamcan act

In this system each core has an L2 cache size of 2MBas an MPH againstarray.

Only the DRAM memory system is shared between the Note that the slowdowrdarray experiences when run

two cores. The operating system is Windows XP Pro- "Note that we do not know the exact details of the DRAM mem-

fessionaP All the experiments were performed when ory controller and scheduling algorithm that is implemeritethe ex-
isting systems. These details are not made public in eititei's or

5Even though the elements are 128-byte, each iteration ohtie AMD’s documentation. Therefore, we hypothesize about theses of
loop operates on only one 4-byte integer in the 128-byte efeniNe the behavior based on public information available on DRAKhmory
use 128-byte elements to ensure that consecutive accessemrthe systems - and later support our hypotheses with our sinonlatifras-
cache and exercise the DRAM memory system. tructure (see Section 6). It could be possible that existirggems have

6We also repeated the same experiments in (1) the same syittem w a threshold up to which younger requests can be ordered dder o
the RedHat Fedora Core 6 operating system and (2) an Intel Qoo requests as described in a patent [33], but even so our exgets
based dual-core system running RedHat Fedora Core 6. We fben suggest that memory performance attacks are still posisitdgisting
results to be almost exactly the same as those reported. multi-core systems.

© STREAM o RDARRAY =
£ £
c c
220 £ 20 —
3 3
] % |~ =
515 g 15 —
=l = =}
210 810 —
< [
£ E
g 0.5 S 0.5 —
0.0 : ! : : 0.0 : - ‘ _‘
stream alone with another stream with rdarray rdarray alone with another rdarray with stream

Figure 4: Normalized execution time of (styeamand (b)rdarray when run alone/together on a dual-core system

with stream(2.90X) is much greater than the slowdown 3.2.3 A Simulated 16-core System
it experiences when run with another copyrdérray

. While th I f MPHs i i
(1.71X). Because neither copy mfarray has good row- lle the problem o S Is severe even In current

buffer locality. another copy aflarray cannot denv ser- dual- or dual-dual-core systems, it will be significantly
Y, by y y aggravated in future multi-core systems consisting of

vice to rdar_ray by holding on to a row-buffer for a Iong_ many more cores. To demonstrate the severity of the
time. In this case, the performance loss comes from in-

. S problem, Figure 6 shows the normalized execution time
creased bank conflicts and contention in the DRAM bus.Of streamand rdarray when run concurrently with 15

On the other hand, the slowdovetreamexperiences copies ofstreamor 15 copies ofrdarray, along with

when run withrdarray is significantly smaller than the {heir normalized execution times when 8 copies of each
slowdown it experiences when run with another copy of,ppjication are run together. Note that our simulation

stream When two copies astreamrun together they are methodology and simulator parameters are described in
both able to deny access to each other because they boffyction 6.1. In a 16-core system, our memory perfor-
haye very high row-buffer locality. Because the rates aty,5nce hogstream slows dowrrdarray by 14.6X while
which bothstreans generate memory requests are theygarray slows downstreamby only 4.4X. Hencestream
same, the slowdown is not as highrdarray’s slowdown 5 an even more effective performance hog in a 16-core
with stream copies qfstrgamtake turns in denying ac- system, indicating that the problem of “memory perfor-
cess to each other (in different DRAM banks) whereasyance attacks” will become more severe in the future if

Etreekm; alwayslenies access twarray (in all DRAM he memory system is not adjusted to prevent them.
anks).

3.2.2 A Dual Dual-core System 4 Towards a Solution: Fairness in DRAM

o Memory Systems
The second system we examine is a dual dual-core AMD y =y

Opteron 275 [1] system with 4GB SDRAM. In this sys- The fundamental unifying cause of the attacks demon-
tem, only the DRAM memory system is shared betweerstrated in the previous sectiontsfairnessn the shared

a total of four cores. Each core has an L2 cache siz&RAM memory system. The problem is that the mem-
of 1 MB. The operating system used was RedHat Feory system cannot distinguish whether a harmful mem-
dora Core 5. Figure 5(a) shows the normalized executiomry access pattern issued by a thread is due to a malicious
time of streamwhen run (1) alone, (2) with one copy of attack, due to erroneous programming, or simply a nec-
rdarray, (3) with 2 copies ofdarray, (4) with 3 copies essary memory behavior of a specific application. There-
of rdarray, and (5) with 3 other copies atream Fig- fore, the best the DRAM memory scheduler can do is to
ure 5(b) shows the normalized execution timedzrray ~ contain and limitmemory attacks by providing fairness

in similar but “dual” setups. among different threads.

Similar to the results shown for the dual-core Intel sys- Difficulty of Defining DRAM Fairness: Butwhat ex-
tem, the performance aflarray degrades much more actly constitutes fairness in DRAM memory systems?
significantly than the performance efreamwhen the As it turns out, answering this question is non-trivial
two applications are executed together on the 4-cor@nd coming up with a reasonable definition is somewhat
AMD system. In factstreamslows down by only 48% problematic. For instance, simple algorithms that sched-
when it is executed concurrently with 3 copiesrdér- ule requests in such a way that memory latencies are
ray. In contrastrdarray slows down by 408% when run- equally distributed among different threads disregard the
ning concurrently with 3 copies stream Again, we hy- fact that different threads have different amounts of row-
pothesize that this difference in slowdowns is due to thebuffer locality. As a consequence, suehual-latency
row-hit-first policy employed in the DRAM controller. scheduling algorithmswill unduly slow down threads

© 40 o 40 I
E 551 STREAM E 5 51RDARRAY
'_ B '_ e
§ 30 &30 T
225 =325
X X
2.0 —w 2.0 z -
° ° T
815 = — 815 —
g 10 & 10 -
2 051 —2 0.5 —
stream alone with rdarray with 2 rdarrays with 3 rdarrays with 3 streamso'o rdarrdy alone with stream with'2 streams with 3 streams with 3 rdarrays
Figure 5: Slowdown of (a3treamand (b)rdarray when run alone/together on a dual dual-core system

|~ |~
o %Z STREAM o %Z RDARRAY
£13 £13 -
=12 =12 -
c11 c11 -
210 210 A
o 9 o 9 —
£ 8 o 8 -
w 7 w 7 I
e} e} I
g2 g2 —
T © —
£ 3 S —
[=} 2 [=} 2
Z1 Z1

0 \ [0 \ [

stream alone with 7 streams + 8 rdarrays with 15 rdarrays rdarrdy alone with 7 rdarfays + 8 streams with 15 streams

Figure 6: Slowdown of (a3treamand (b)rdarray when run alone and together on a simulated 16-core system

that have high row-buffer locality and prioritize threads that each thread runs at the same speed as if it ran by
that have poor row-buffer locality. Whereas the standardtself on a system at half the speed. On the other hand,
FR-FCFS scheduling algorithm can starve threads withrequests from two threads that consistently access differ-
poor row-buffer locality (Section 2.3), any algorithm ent banks could (almost) entirely be scheduled in parallel
seeking egalitarian memory fairness would unfairly pun-and there is no reason why the memory scheduler should
ish “well-behaving” threads with good row-buffer local- be allowed to slow these threads down by a factar. of

ity. Neither of the two options therefore rules out unfair- |5 symmary, in the context of memory systems, no-
ness and the possibility of memory attacks. tions of fairness—such as network fair queuing—that at-

Another challenge is that DRAM memory systems €mpt to equalize the latencies experienced by different
have a notion ofstate (consisting of the currently threads are unsuitable. In a DRAM memory system, it
buffered rows in each bank). For this reason, well-iS neither possible to achieve such a fairness nor would
studied notions of fairness that deal with stateless sysachieving it significantly reduce the risk of memory per-
tems cannot be applied in our setting. natwork fair formance attacks. In Section 4.1, we will present a novel
queuing24, 40, 3], for example, the idea is thaf¥fpro- definition of DRAM fairness that takes into account the

cesses share a common channel with bandwijtivery inherent row-buffer locality of threads and attempts to
process should achieve exactly the same performance &lance the “relative slowdowns”.

if it had a single channel of bandwidf/N. When map- The Idleness Problem: In addition to the above ob-
ping the same notion of fairness onto a DRAM memoryservations, it is important to observe that any scheme
system (as done in [23]), however, the memory schedthat tries to balance latencies between threads runs into
uler would need to schedule requests in such a way athe risk of what we call thédleness problem Threads

to guarantee the followingtn a multi-core system with that are temporarily idle (not issuing many memory re-
N threads, no thread should run slower than the sameguests, for instance due to a computation-intensive pro-
thread on a single-core system with a DRAM memorygram phase) will be slowed down when returning to a
system that runs at/Nth of the speedUnfortunately, more memory intensive access pattern. On the other
because memory banks have state and row conflicts incuvand, in certain solutions based on network fair queu-
a higher latency than row hit accesses, this notion of fairing [23], a memory hog could intentionally issue no or
ness is ill-defined. Consider for instance two threads inffew memory requests for a period of time. During that
a dual-core system that constantly access the same batikne, other threads could “move ahead” at a proportion-
but different rows. While each of these threads by itselfally lower latency, such that, when the malicious thread
has perfect row-buffer locality, running them togetherreturns to an intensive access pattern, it is temporarily
will inevitably result in row-buffer conflicts. Hence, it prioritized and normal threads are blocked. The idleness
is impossible to schedule these threads in such a wagroblem therefore poses a severe security risk: By ex-

ploiting it, an attacking memory hog could temporarily ~ The motivation for this formulation of; , is best seen

slow down or even block time-critical applications with when considering latencies on the level of individual

high performance stability requirements from memory. memory requests. Consider a thréachd IetRﬁb denote
the kth memory request of threadhat accesses bamk

4.1 Fair Memory Scheduling: A Model Each such rgque.st]:s assoc!ated with th.ree specific
) .) . times: Its arrival timez;’, when it is entered into the re-

Az_dls;:u_ssed, st_andarg t:lOtIOﬂS of fa_lrnesr? fail in p_ro'quest buffer; its finish tim@‘i’fb, when it is completely

viding fair execution and hence, security, when mappingsa . iceq by the bank and sent to processocache: and

them onto shared memory systen_15. Thg crucial 'ns'ghﬁnally, the requestactivation time

that leads to a better notion of fairness is that we need

to dissectthe memory latency experienced by a thread Sf,b := max{ f{l, af’,b}-

into two parts: First, the latency that is inherent to the__

thread itself (depending on its row-buffer locality) and This is the earliest time when reque@ﬁb could be

second, the latency that is caused by contention Witr§cheduled by the bank scheduler. It is the larger of its

other threads in the shared DRAM memory system Aarrival time and the finish time of the previous request

fair memory system should—unlike the approaches SQgib ' that was |’ssue'd by th? same thread tq th.e same
far—schedule requests in such a way thatdbeonda- ank. A.requestks gctlvatlon t'|me marks the p_omt intime
tency component is fairly distributed, while the first com- from which onk; is responsible for the en_sumg latency
ponent remains untouched. With this, it is clear why our©f threadi; beforesy, the request was either not sent
novel notion ofDRAM shared memory faireisbased to the memory system or an earlier r'equest to the same
on the following intuition: In a multi-core system with Pank by the same thread was generating the latency. With
N threads, no thread should suffer more relative perfor-these definitions, thamortized latency’}, of request
mance slowdown—compared to the performance it getg%f; , is the difference between its finish time and its acti-
if it used the same memory system by itself—than anyationtime, i.e./¥, = /% —s¥,. By the definition of the
other thread. Because each thread’s slowdown is thusactivation times®,, it is clear that at any point in time,
measured against its own baseline performance (singlgre amortized latency of exactly one outstanding request
execution on the same system), this notion of fairnesss increasing (if there is at least one in the request buffer)
successfully dissects the two components of latency angience, when describing time in terms of executed mem-
takes into account the inherent characteristics of eaclry cycles, our definition of cumulated bank-laterigy,
thread. corresponds exactly to the sum over all amortized laten-
In more technical terms, we consider a measyrr cies to this bank, i.eL;, = >, ¢¥,.
each currently executed threa®l This measure captures In order to compute the experienced slowdown of each
the price (in terms of relative additional latency) a threadthread, we compare the actual experienced cumulated la-
i pays because the shared memory system is used by mukncy L; of each thread to an imaginaryjdeal single-
tiple threads in parallel in a multi-core architecture. In core cumulated latencl; that serves as a baseline. This
order to provide fairness and contain the risk of denial of|atencyfi is the minimal cumulated latency that thread
memory service attacks, the memory controller should; would have accrued if it had run as the only thread in
schedule outstanding requests in the buffer in such a washe system using the same DRAM memory; it captures
that they; values are as balanced as possible. Such ghe latency component df; that is inherent to the thread
scheduling will ensure that each thread only suffers a faiitself and not caused by contention with other threads.
amount of additional latency that is caused by the paralleHence, threads with good and bad row-buffer locality
usage of the shared memory system. have small and largé,;, respectively. The measurg
Formal Definition: Our definition of the measurg; that captures the relative slowdown of thréazhused by
is based on the notion afumulated bank-latency,;; = multi-core parallelism can now be defined as follows.

that we define as follows. Definition 4.2. For a threadi, theDRAM memory slow-

down indexy; is the ratio between its cumulated latency

Definition 4.1. For each thread and bankb, thecumu- o : =9
L; and its ideal single-core cumulated latenky.

lated bank-latency.; ; is the number of memory cycles
during which there exists an outstanding memory request °Notice that our definitions do not take into account the seraind
by threadi for bankb in the memory request buffer. The Waiting times of the shared DRAM bus and across-bank schregul

o o Both our definition of fairness as well as our algorithm presd in
cumulated latency of a threat; = Eb Lip1s the sum Section 5 can be extended to take into account these and rativer

of all cumulated bank-latencies of thread subtle hardware issues. As the main goal of this paper peoinand
investigate potential security risks caused by DRAM umfess, our

8The DRAM memory system only keeps track of threads that aremodel abstracts away numerous aspects of secondary imperte-
currently issuing requests. cause our definition provides a good approximation.

xi == Li/L;. 5 Our Solution

Finally, we define theDRAM unfaimess ¥ of & |n this section, we propose FairMem, a new fair memory
DRAM memory system as the ratio between the maxi-scheduling algorithm that achieves good fairness accord-
mum and minimum slowdown index over all currently jnqg to the definition in Section 4 and hence, reduces the

executed threads in the system: risk of memory-related DoS attacks.
max; X
R X 5.1 Basic Idea

The “ideal” DRAM unfairness indeX = 1 is achieved
if all threads experience exactly the same slowdown; the'he reason why MPHs can exist in multi-core systems
higher T, the more unbalanced is the experienced slowis the unfairness in current memory access schedulers.
down of different threads. The goal of a fair memory ac- Therefore, the idea of our new scheduling algorithm is
cess scheduling algorithm is therefore to achievethat ~ to enforce fairness by balancing the relative memory-
is as close td as possible. This ensures that no threadrelated slowdowns experienced by different threads. The
is over-proportionally slowed down due to the shared na@lgorithm schedules requests in such a way that each
ture of DRAM memory in multi-core systems. thread experiences a similar degree of memory-related

Notice that by taking into account the different row- slowdown relative to its performance when run alone.
buffer localities of different threads, our definition of In order to achieve this goal, the algorithm maintains
DRAM unfairness prevents punishing threads for hav-a value ; in our model of Section 4.1) that character-
ing either good or bad memory access behavior. Hencdzes the relative slowdown of each thread. As long as alll
a scheduling algorithm that achieves low DRAM un- threads have roughly the same slowdown, the algorithm
fairness mitigates the risk that any thread in the sysschedules requests using the regular FR-FCFS mecha-
tem, regardless of its bank and row access pattern, isism. When the slowdowns of different threads start di-
unduly bogged down by other threads. Notice furtherverging and the difference exceeds a certain threshold
that DRAM unfairness is virtually unaffected by the idle- (i.e., when¥ becomes too large), however, the algo-
ness problem, because both cumulated latentjeend rithm switches to an alternative scheduling mechanism
ideal single-core cumulated latencigsare only accrued and starts prioritizing requests issued by threads experi-
when there are requests in the memory request buffer. encing large slowdowns.

Short-Term vs. Long-Term Fairness: So far, the as-
pect of time-scale has remained unspecified in our def5.2 Fair Memory Scheduling Algorithm
|n|t_|on of DRAM-unfairness._ B(_)thLi and L; continue (FairMem)
to increase throughout the lifetime of a thread. Conse-
quently, a short-term unfair treatment of a thread wouldThe memory scheduling algorithm we propose for use
have increasingly little impact on its slowdown index in DRAM controllers for multi-core systems is defined
.. While still providing long-term fairness, threads that by means of two input parameters,and 5. These pa-
have been running for a long time could become vulneraf@meters can be used to fine-tune the involved trade-offs
ble to short-term DoS attacks even if the scheduling algobetween fairess and throughput on the one hand (
rithm enforced an upper bound on DRAM unfairndss and short-term versus long-term fairness on the other
In this way, delay-sensitive applications could be blocked(?). More concretelyq is a parameter that expresses
from DRAM memory for limited periods of time. to what extent the scheduler is allowed to optimize for

We therefore generalize all our definitions to include DPRAM throughput at the cost of fairness, i.e., how much
an additional paramet@r that denotes the time-scale for DRAM unfairness is tolerable. The parametecorre-
which the definitions apply. In particulaf,;(7") and sponds to the time-intervdl that denotes the time-scale

L;(T) are the maximum (ideal single-core) cumulateg©f the above fairness condition. In particular, the mem-
latencies over all time-intervals of duratigh during ~ ©fY controller divides time into windows of duratigh
which thread is active. Similarly,y;(T") and¥(T) are and, for each thread maintains an accurate account of
defined as the maximum values over all time-intervalsts accumulated latencids; (5) andL;(§) in the current

. .. i i 10
of lengthT". The parametef in these definitions deter- M€ window:
mines _hOW short- or long-term th_e ConSId_ered fa_‘lmess IS 10Notice that in principle, there are various possibilitiésnterpret-
In par“CUlar,_ amemory scheduling algorithm with good ing the term “current time window.” The simplest way is to quietely
long term fairness will have small(T") for largeT’, but resetL;(8) andL;(8) after each completion of a window. More so-
possibly large¥ (T") for smallerT”. In view of the se- Pphisticated techniques could include maintaining muetisayk, such

curity issues raised in this paper it is clear that a memyvindows of size3 in parallel, each shifted in time bg/k memory
! cycles. In this case, all windows are constantly updatetipbly the

ory scheduling algorithm should aim at achieving small ygest is used for the purpose of decision-making. Thiscbelp in
U(T) for both small and larg&. reducing volatility.

10

Instead of using the (FR-FCFS) algorithm described Another advantage of our scheme is that an approxi-
in Section 2.2.3, our algorithm first determines t@an- mate version of it lends itself to efficient implementation
didate requestfrom each bank, one according to each in hardware. Finally, notice that our algorithm is robust
of the following rules: with regard to thedleness problenmentioned in Sec-

e Highest FR-FCFS priority: Let Rer.rcrsbe the re- tion 4. In particular, neithek; nor L; is increased or de-
quest to bank that has the highest priority according creased if a thread has no outstanding memory requests

to the FR-FCFS scheduling policy of Section 2.2.3.in the request buffer. Hence, not issuing any requests for
That is, row hits have higher priority than row con- SOMe period of time (either intentionally or unintention-

flicts, and—given this partial ordering—the oldest re- ally) does not affect this or any other thread’s priority in
quest is served first. the buffer.

e Highest fairness-index Let i’ be the thread with .
highest current DRAM memory slowdown index 2.3 Hardware Implementations

xi () that has at least one outstanding request in therhg 41gorithm as described so far is abstract in the sense
memory request buffer to baikk Among all requests that it assumes a memory controller that always has full
tobissued byi’, let Rrair be the one with highest FR- 1 hqwledge of every active (currently-executed) thread’s
FCFS priority. L; and L;. In this section, we show how this exact
Between these two candidates, the algorithm chooses tteeheme could be implemented, and we also briefly dis-
request to be scheduled based on the following rule: cuss a more efficient practical hardware implementation.

e Faimess-oriented Selection Let y¢(3) and x(3) Exact Implementation: Theoretically, it is possible
denote largest and smallest DRAM memory slow- {0 ensure that the memory controller always keeps accu-
down index of any request in the memory request'@te information ofZ; () and L;(53). Keeping track of
buffer for a current time window of duratiofi. If L;(0) for each thread is simple. For each active thread,

it holds that a counter maintains the number of memory cycles dur-
xe®) o ing which at least one request of this thread is buffered
xs(B) — for each bank. After completion of the window (or

then Rpa is selected by bank’s scheduler and when a new thread is scheduled on a core), counters are

Rrr.FcrsOtherwise. reset. The more difficult part of maintaining an accurate

Instead of using the oldest-across-banks-first strategy &&ccOUNt ofL;(j) can be done as follows: At all times,
used in current DRAM memory schedulers selectionMmaintain for each active threadand for each bank the

from requests chosen by the bank schedulers is handid@" that would currently be in the row-buffer ifhad
as follows: been the only thread using the DRAM memory system.

Highest-DRAM-fairness-index-first across banks This can be done by simulating an FR-FCFS priority

The request with highest slowdown index(3) among scheme for each thread and bank that ignores all requests

)))
all selected bank-requests is sent on the shared DRANFSUed by threads other thanThe (7, latency of each

i,b
bus. requestR}, then corresponds to the latency this request
In principle, the algorithm is built to ensure that at no Would have caused if DRAM memory was not shared.

time DRAM unfairnesst(3) exceeds the parametar Whenever a request is served, the memory controller can

Whenever there is the risk of exceeding this threshold@dd this “ideal latency” to the corresponding (3) of
the memory controller will switch to a mode in which it that thread and—if necessary—update the simulated state

starts prioritizing threads with highey; values, which of the row—buffer accordingly. For i'nstance, assume that
decreaseg;. It also increases thg; values of threads 2 requesi?;, is served, but results in a row conflict. As-
that have had little slowdown so far. Consequently, thisSUMe further that the same request would have been a
strategy balances large and small slowdowns, which delOW hit, if threadi had run by itself, ie.Ry, " accesses
creases DRAM unfairness and—as shown in Section 6—the same row afifb In this caseL; () is increased
keeps potential memory-related DoS attacks in check. by row-hit latencyT};;, wheread.; () is increased by
Notice that this algorithm does not-in fact, cannot—the bank-conflict latenc{,,;. By thus “simulating”
guarantee that the DRAM unfairne¥sdoes stay below its own execution for each thread, the memory controller
the predetermined thresholdat all times. The impos- obtains accurate information for dll; ;(3).
sibility of this can be seen when considering the corner- The obvious problem with the above implementation
casea = 1. In this case, a violation occurs after the is that it is expensive in terms of hardware overhead.
first request regardless of which request is scheduled bt requires maintaining at least one counter for each
the algorithm. On the other hand, the algorithm alwayscorexbank pair. Similarly severe, it requires one di-
attempts to keep the necessary violations to a minimumvider per core in order to compute the valygg) =

11

Li(3)/Li(3) for the thread that is currently running on sor loosely based on the Intel Pentium M [11]. The
that core in every memory cycle. Fortunately, muchsize/bandwidth/latency/capacity of different processor
less expensive hardware implementations are possiblstructures along with the number of cores and other
because the memory controller does not need to knowtructures are parameters to the simulator. The simulator
the exact values of; ;, and L; ;, at any given moment. faithfully models the bandwidth, latency, and capacity
Instead, using reasonably accurate approximate values each buffer, bus, and structure in the memory subsys-
suffices to maintain an excellent level of fairness and setem (including the caches, memory controller, DRAM
curity. buses, and DRAM banks). The relevant parameters of
Reduce counters by samplinglUsing sampling tech- the modeled baseline processor are shown in Table 1.
niques, the number of counters that need to be mainUnless otherwise stated, all evaluations in this sectien ar
tained can be reduced from(#Banks x #Cores) to Performed on a simulated dual-core system using these
O(#Cores) with only little loss in accuracy. Briefly, the Parameters. For our measurements with the FairMem
idea is the following. For each core and its active threadSYyStem presented in Section 5, the parameters are set to
we keep two counters; and H; denoting the number of @ = 1.025 andj = 10°.
samples and sampled hits, respectively. Instead of keep- We simulate each application for 100 million x86 in-
ing track of the exact row that would be open in the row-Structions. The portions of applications that are sim-
buffer if a thread was running alone, we randomly sam- ulated are determined using the SimPoint tool [32],
p|e a Subset of requesﬁib issued by threadand Check Wh|Ch SeIeCtS Si.mu|ati0n pOintS. in the app|ica’[.i0n that
whether the next request byo the same bankaﬁl, s are representat_lve_of the application’s behavior as a
for the same row. If so, the memory controller7increase§Nh9le' Qur apphcatlons includsireamandrdarray (de-
bothS; andH;, otherwise, onlys; is increased. Requests scribed in Section 3), several Ia_rge benchmarks from the
SPEC CPU2000 benchmark suite [34], and one memory-

R?,, to different banks’ # b served betwee®”, and . :
Rz’il : 4. Fi ”7& i fth b ¢ intensive benchmark from the Olden suite [31]. These
ip are |gn9re - Finally, if none of the) reque_sts _O applications are described in Table 2.
thread: following Rﬁb go to bankb, the sample is dis- .
carded, neithes; nor H; is increased, and a new sam- 6.2 Evaluation Results
ple request is taken. With this technique, the probability6.2.1 Dual-core Systems
H;/S; that a request results in a row hit gives the memory. : L
: .Jwo microbenchmark applications - stream and

controller a reasonably accurate picture of each thread ?darra - Fiqure 7 shows the normalized execution
row-buffer locality. An approximation of; can thus be . Y- 9 S

. | . time of streamandrdarray applications when run alone
maintained by adding the expected amortized latency to . . .
. . . or together using either the baseline FR-FCFS or our
it whenever a request is served, i.e.,
_ o FairMem memory scheduling algorithms. Execution
Ly = L7 + (H;/S; - Thit + (1 — H;/Si) - Teony) - time of each application is normalized to the execution
Reuse dviders The_ideal scheme_employs (M 1) SXPeieni hen e e aon v e
O(ftCores) hardware dividers, which significantly malized results in this paper). Whetreamandrdarray

increases the memory controller's energy consumption,

Instead, a single divider can be used for all cores byare run together on the baseline systetrear—which

assigning individual threads to it in a round robin acts as an MPH—experiences a slowdown of only 1.22X

. . . 4 3 whereasrdarray slows down by 2.45X. In contrast, a
fashion. Thatis, while the slowdowrls () and L; (5) memory controller that uses our FairMem algorithm pre-

can b_e updated in every memory cycle, their qUOtIentventsstreamfrom behaving like an MPH againstarray
xi () is recomputed in intervals. o) -

— both applications experience similar slowdowns when
6 Evaluation run together. FairMem does not significantly affect per-
. formance when the applications are run alone or when
6.1 Experimental Methodology run with identical copies of themselves (i.e. when mem-
We evaluate our solution using a detailed processopry performance is not unfairly impacted). These exper-
and memory system simulator based on the Pin dyiments show that our simulated system closely matches
namic binary instrumentation tool [20]. Our in-house the behavior we observe in an existing dual-core system
instruction-level performance simulator can simulate ap{Figure 4), and that FairMem successfully provides fair-
plications compiled for the x86 instruction set architec-ness among threads. Next, we show that with real appli-
ture. We simulate the memory system in detail usingcations, the effect of an MPH can be drastic.
a model loosely based on DRAMsim [36]. Both our Effect on real applications: Figure 8 shows the normal-
processor model and the memory model mimic the deized execution time of 8 different pairs of applications
sign of a modern high-performance dual-core proceswhen run alone or together using either the baseline FR-

12

Processor pipeline 4 GHz processor, 128-entry instruction window, 12-stagelpie

Fetch/Execute width per core 3 instructions can be fetched/executed every cycle; ongnlbe a memory operation
L1 Caches 32 K-byte per-core, 4-way set associative, 32-byte blozk,<2-cycle latency

L2 Caches 512 K-byte per core, 8-way set associative, 32-byte blao, di2-cycle latency
Memory controller 128 request buffer entries, FR-FCFS baseline schedulibigypruns at 2 GHz

DRAM parameters 8 banks, 2K-byte row-buffer

DRAM latency (round-trip L2 miss latency) row-buffer hit: 50ns (200 cycles), closed: 75ns (300 cyylesnflict: 100ns (400 cycles

Table 1: Baseline processor configuration

[Benchmark [[Suite | Brief description | Base performanclel2-misses per 1K ins{.row-buffer hit rate]
stream Microbenchmark Streaming on 32-byte-element arrays| 46.30 cycles/inst 629.65 96%
rdarray Microbenchmark Random access on arrays 56.29 cycles/inst 629.18 3%
small-stream| Microbenchmark Streaming on 4-byte-element arrays | 13.86 cycles/inst 71.43 97%
art SPEC 2000 FP | Object recognition in thermal image | 7.85 cycles/inst. 70.82 88%
crafty SPEC 2000 INT| Chess game 0.64 cycles/inst. 0.35 15%
health Olden Columbian health care system simulator.24 cycles/inst. 83.45 27%
mcf SPEC 2000 INT| Single-depot vehicle scheduling 4.73 cyclesl/inst. 45.95 51%
vpr SPEC 2000 INT | FPGA circuit placement and routing | 1.71 cycles/inst. 5.08 14%

Table 2: Evaluated applications and their performanceatheristics on the baseline processor

2.5 2.5
® m—— haseline (FR-FCFS) ® m—— haseline (FR-FCFS)
= FairMem = FairMem
= 2.0 =
o e
2 STREAM 2 RDARRAY
3 3
Q Q
> >
11} L
° °
) @
N N
© ©
£ 0.5 £
[e) [e)
z 2
0.0+

stream alone with another stream with rdarray

rdarray alone with another rdarray with stream

Figure 7: Slowdown of (a3treamand (b)rdarray benchmarks using FR-FCFS and our FairMem algorithm

FCFS or FairMem. The results show that 1) an MPH carall cases, FairMem reduces the unfairness to below 1.20
severely damage the performance of another applicatiofRemember that 1.00 is the best possiblealue). In-
and 2) our FairMem algorithm is effective at preventing terestingly, in most cases, FairMem also improves over-
it. For example, whestreamandhealthare run together all throughput significantly. This is especially true when
in the baseline systensfreamacts as an MPH slowing a very memory-intensive application (estgean) is run
downhealthby 8.6X while itself being slowed down by with a much less memory-intensive application (&og.
only 1.05X. This is because it has 7 times higher L2 miss Providing fairness leads to higher overall system
rate and much higher row-buffer locality (96% vs. 27%) throughput because it enables better utilization of the
— therefore, it exploits unfairness in both row-buffer- cores (i.e. better utilization of the multi-core system).
hit first and oldest-first scheduling policies by flooding The baseline FR-FCFS algorithm significantly hinders
the memory system with its requests. When the twothe progress of a less memory-intensive application,
applications are run on our FairMem systehgalths whereas FairMem allows this application to stall less
slowdown is reduced from 8.63X to 2.28X. The figure due to the memory system, thereby enabling it to make
also shows that even regular applications with high row-fast progress through its instruction stream. Hence,
buffer locality can act as MPHs. For instance wleeh rather than wasting execution cycles due to unfairly-
andvprare runtogetherin the baseline systamactsas induced memory stalls, some cores are better utilized
an MPH slowing dowrvpr by 2.35X while itself being with FairMem! On the other hand, FairMem re-
slowed down by only 1.05X. When the two are run on duces the overall throughput by 9% when two extremely
our FairMem system, each slows down by only 1.35X;memory-intensive applicatiorsfteamand rdarray, are
thus,art is no longer a performance hog. run concurrently. In this case, enforcing fairness reduces
Effect on Throughput and Unfairness: Table 3 shows streans data throughput without significantly increas-
the overall throughput (in terms of executed instructionsing rdarray’s throughput becausearray encounters L2
per 1000 cycles) and DRAM unfairness (relative dif- cache misses as frequentlysieeam(see Table 2).

ference between the maximum and MINIMUM MEMOY="11\ o6 that the data throughput obtained from the DRAM itsedf/m
related slowdowns, defined dsin Section 4) when dif- pe and usually is reduced using FairMem. However, ovenadiigh-
ferent application combinations are executed together. Iputin terms of instructions executed per cycle usuallyeases.

13

Normalized Execution Time (base: running alone)

Normalized Execution Time (base: running alone)

w
o
w
o
w
o

— ot — Ot

= health

e health

= vpr

m—— rdarray

—pr —r

N
n
I
n
I
n

N
o
g
o
g
o

=
n
=
n

I
?

o
o
!

Normalized Execution Time (base: running alone)

Normalized Execution Time (base: running alone)
Normalized Execution Time (base: running alone)

0.0- 0- 0- 0-
baseline (FR-FCFS) FairMem baseline (FR-FCFS) FairMem baseline (FR-FCFS) FairMem baseline (FR-FCFS) FairMem
T m @
:S e— L Z:S = fream _ & Z:S = fream _ & :S == sfream
50 = ypr ;’, 8.0 === health S, 8.0 = mcf g 8.0 =—art
75 S 75 £ S 75
7.0 5 70 5 5 70
6.5 5 65 i 5 65
6.0 2 6.0 9 @ 6.0
5.5 £ 55 =) £ 55
5.0 2 50 @ @ 50
“s £ £ Eis
4.0 5 40 s 5 40
35 s 35 s E 35
bod ¢ e g g e
. - 2 b= - 2
1.5 8 15 2 £ 15
10 T 10 s T 10
05 E o5 E E o5
0 S oo 2 oo S oo
baseline (FR-FCFS) FairMem " baseline (FR-FCFS) FairMem baseline (FR-FCFS) FairMem " baseline (FR-FCFS) FairMem

Figure 8: Slowdown of different application combinatiorsing FR-FCFS and our FairMem algorithm

‘Combination [Baseline (FR-FCFS) | FairMem [[Throughput ‘ Fairness ‘

[Throughpu Unfairness Throughpuff Unfairness| improvement | improvement
stream-rdarray 24.8 2.00 22.5 1.06 0.91X 1.89X
art-vpr 401.4 2.23 513.0 1.00 1.28X 2.23X
health-vpr 463.8 1.56 508.4 1.09 1.10X 1.43X
art-health 179.3 1.62 1785 1.15 0.99X 1.41X
rdarray-art 65.9 2.24 97.1 1.06 1.47X 2.11X
stream-health 38.0 8.14 72.5 1.18 1.91X 6.90X
stream-vpr 87.2 8.73 390.6 111 4.48X 7.86X
stream-mcf 63.1 5.17 117.1 1.08 1.86X 4.79X
stream-art 51.2 4.06 98.6 1.06 1.93X 3.83X

Table 3: Effect of FairMem on overall throughput (in termsradtructions per 1000 cycles) and unfairness

6.2.2 Effect of Row-buffer Size art's ability to deny bank service tepr increases with
F he ab di . itis ol hat th loi row-buffer size. FairMem effectively contains this denial
rom the above discussions, itis clear that the exploitag, g0 jce and results in similar slowdowns for baitt

tloﬂ of rovl\:-buf;]er locf‘.“ty by the DRAM memor)l/ con;jl andvpr (1.32X to 1.41X). It is commonly assumed that
troller makes the multl-core memory system vuinera €row-buffer sizes will increase in the future to allow better

to DoS attacks. The extent to which this vulnerability Canthroughput for streaming applications [41]. As our re-

be exploited is determined by the size of the roW'bUffer'sults show, this implies that memory-related DoS attacks

In t:]r:s s;cuc;n, we exa;mne tre 'TﬁaCtlff r;)r:/v-buffer S'.iewill become a larger problem and algorithms to prevent
on the effectiveness of our algorithm. For these sensitivy, o will become more importat.

ity experiments we use two real applicatioad,andvpr,
whereart behaves as an MPH agairvglr. 6.2.3 Effect of Number of Banks

Figure 9 shows the mutual impact aft andvpr on - The number of DRAM banks is another important pa-
machines with different row-buffer sizes. Additional rameter that affects how much two threads can interfere
statistics are presented in Table 4. As row-buffer size inyyith each others’ memory accesses. Figure 10 shows
creases, the extent to whielnt becomes a memory per- the impact ofart and vpr on each other on machines
formance hog fowprincreases when FR-FCFS schedul- it different number of DRAM banks. As the num-
ing algorithm is used. In a system with very small, 512-p,6; of panks increases, the available parallelism in the
byte row-buffersypr experiences a slowdown of 1.65X
(versusart's 1.05X). In a system with very large, 64 KB 12Note that reducing the row-buffer size may at first seem like o
row-buffers,vpr experiences a slowdown of 5.50X (ver- way of reducing the impact of memory-related DoS attacksvéler,

) : _ this solution is not desirable because reducing the roiebsfze sig-
susarts 1.03X). Becausart has very hlgh row-buffer nificantly reduces the memory bandwidth (hence performjiocep-

locality, a large buffer size allows its accesses t0 OCCUPYjjications with good row-buffer locality even when they awmning
a bank much longer than a small buffer size does. Hencesjone or when they are not interfering with other appligagio

14

—art [512-byte 1KB 2KB 4 KB 8 KB 16 KB 32 KB

—vpr|

Wwa Moo
nonom

N W
no

ocorEN
cmomno

Normalized Execution Time

FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem

FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem

Figure 9: Normalized execution time aft andvpr when run together on processors with different row-buffees
Execution time is independently normalized to each maahitiedifferent row-buffer size.

| [512B] 1KB [2KB [4KB | 8KB |16 KB |32 KB| 64 KB |

art's row-buffer hit rate 56% | 67% | 87% | 91% | 92% | 93% | 95% | 98%
vprs row-buffer hit rate 13% | 15% | 17% | 19% | 23% | 28% | 38% | 41%
FairMem throughput improvemefjt1.08X | 1.16X| 1.28X| 1.44X| 1.62X]| 1.88X | 2.23X | 2.64X
FairMem fairness improvement || 1.55X| 1.75X| 2.23X| 2.42X| 2.62X| 3.14X | 3.88X | 5.13X

Table 4: Statistics foart andvpr with different row-buffer sizes

2 banks 4 banks {==—4art 8 banks 16 banks 32 banks 64 banks

CETEIE BCE

FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem

=—vpr

N W s
¢

xecution Time

d E.
=N

Normalize

1.
0.
0.

Figure 10: Slowdown cért andvpr when run together on processors with various number of DRANKB.Execution
time is independently normalized to each machine withrdifitenumber of banks.

[[[1 bank] 2 banks[4 banks] 8 banks[16 bankg 32 bankg 64 banks

art-vpr base throughput (IPTC) 122 210 304 401 507 617 707
art-vpr FairMem throughput (IPTC)] 190 287 402 513 606 690 751
FairMem throughput improvement| 1.56X | 1.37X | 1.32X | 1.28X | 1.20X 1.12X 1.06X
FairMem fairness improvement 2.67X| 257X | 2.35X | 2.23X | 1.70X 1.50X 1.18X

Table 5: Statistics foart-vpr with different number of DRAM banks (IPTC: Instructions®cycles)

memory system increases, and thusbecomes less of a is 1.89X with a 50-cycle latency versus 2.57X with a
performance hog; its memory requests conflict less withL000-cycle latency. Again, FairMem reducad’s im-
vprs requests. Regardless of the number of banks, oupact onvpr for all examined memory latencies while
mechanism significantly mitigates the performance im-also improving overall system throughput (Table 6). As
pact ofart onvpr while at the same time improving over- main DRAM latencies are expected to increase in mod-
all throughput as shown in Table 5. Current DRAMSs ern processors (in terms of processor clock cycles) [39],
usually employ 4-16 banks because a larger number adcheduling algorithms that mitigate the impact of MPHs
banks increases the cost of the DRAM system. In a syswill become more important and effective in the future.
Fem With. 4 banksart slows downvpr by 2.64X_(While 6.2.5 Effect of Number of Cores

itself being slowed down by only 1.10X). FairMem is

able to reducesprs slowdown to only 1.62X and im- Finally, this section analyzes FairMem within the con-
prove overall throughput by 32%. In fact, Table 5 showstext of 4-core and 8-core systems. Our results show that
that FairMem achieves the same throughput on only fairMem effectively mitigates the impact of MPHs while

banks as the baseline scheduling algorithm on 8 banks.improving overall system throughput in both 4-core and
8-core systems running different application mixes with

varying memory-intensiveness.

Clearly, memory latency also has an impact on the vul- Figure 12 shows the effect of FairMem on three dif-
nerability in the DRAM system. Figure 11 shows how ferent application mixes run on a 4-core system. In
different DRAM latencies influence the mutual perfor- all the mixes, streamand small-streamact as severe
mance impact ofart andvpr. We vary the round-trip MPHs when run on the baseline FR-FCFS system, slow-
latency of a request that hits in the row-buffer from 50 ing down other applications by up to 10.4X (and at least
to 1000 processor clock cycles, and scale closed/conflic3.5X) while themselves being slowed down by no more
latencies proportionally. As memory latency increasesthan 1.10X. FairMem reduces the maximum slowdown
the impact ofart onvpr also increasesvprs slowdown caused by these two hogs to at most 2.98X while also

6.2.4 Effect of Memory Latency

15

Normalized Executio

Tl—art

E 25— pr 50 cyc 100 cyc 200 cyc 300 cyc 400 cyc

1000 cyc

FR-FCFS FairMem FR-FCFS FairMem

FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem

0o FR-FCFS FairMem FR-FCFS FairMem

Figure 11: Slowdown aéirt andvprwhen run together on processors with different DRAM accatenciesExecution
time is independently normalized to each machine withrdiftenumber of banks. Row-buffer hit latency is denoted.
[[[50 cycleq] 100 cycleq 200 cycles] 300 cycleg 400 cycles 500 cycles] 1000 cycleg

art-vpr base throughput (IPTC) 1229 728 401 278 212 172 88
art-vpr FairMem throughput (IPTC)| 1459 905 513 359 276 224 114
FairMem throughput improvement|{ 1.19X 1.24X 1.28X 1.29X 1.30X 1.30X 1.30X
FairMem fairness improvement 1.69X 1.82X 2.23X 2.21X 2.25X 2.23X 2.22X

Table 6: Statistics foart-vpr with different DRAM latencies (IPTC: Instructions/100Qetes)

FairMem FR-FCFS FairMem ¢ FR-FCFS

10.5 10.5 10.5 —

100 — 100 — 100 —— -
gy Zp-MIXL stream e} ZpMIX2 — 1 stream —ey Zp-MIX3] small-streami—
= g," F—— =—=art — g — =—=art — g," — =—=art —
s I I — —] — H—5§1 — —
27 — mcf e 1 mcf ¢ | mcf —
g ¢ — =——nhealth — 8 & —=——vpr [—— ——health —
i 38 d & i 28
B 49 ® 4 ® 4
N .. N B N B}
£ 33 5 ¥ 5 33
E 33 E 3 E 33
2 2 1 2 13

0.! 0.
0.1 0.

FR-FCFS

FairMem
Figure 12: Effect of FR-FCFS and FairMem scheduling on diffe application mixes in a 4-core system

improving the overall throughput of the system (Table 7).example, [37] describes an attack in which one process
Figure 13 shows the effect of FairMem on three dif- continuously allocates virtual memory and causes other
ferent application mixes run on an 8-core system. Againprocesses on the same machine to run out of memory
in the baseline systenstreamand small-streamact as space because swap space on disk is exhausted. The
MPHSs, sometimes degrading the performance of anothéimemory performance attack” we present in this paper
application by as much as 17.6X. FairMem effectively is conceptually very different from such “memory allo-
contains the negative performance impact caused by theation attacks” because (1) it exploits vulnerabilities in
MPHSs for all three application mixes. Furthermore, it the hardware system(2) it is not amenable to software
is important to observe that FairMem is also effectivesolutions — the hardware algorithms must be modified
at isolating non-memory-intensive applications (such ago mitigate the impact of attacks, and (3) it can be caused
craftyin MIX2 and MIX3) from the performance degra- even unintentionally by well-written, non-malicious but
dation caused by the MPHs. Even though crafty rarelymemory-intensive applications.
generates a memory request (0.35 times per 1000 instruc- There are only few research papers that condided-
tions), it is slowed down by 7.85X by the baseline sys-ware security issues in computer architecture. Woo and
tem when run within MIX2! With FairMentraftys rare Lee [38] describe similar shared-resource attacks that
memory requests are not unfairly delayed due to a memwere developed concurrently with this work, but they do
ory performance hog — and its slowdown is reduced tonot show that the attacks are effective in real multi-core
only 2.28X. The same effect is also observedd@ftyin systems. In their work, a malicious thread tries to dis-
MIX3.12 We conclude that FairMem provides fairness in place the data of another thread from the shared caches or
the memory system, which improves the performance ofo saturate the on-chip or off-chip bandwidth. In contrast,
both memory-intensive and non-memory-intensive ap-our attack exploits the unfairness in the DRAM memory

plications that are unfairly delayed by an MPH. scheduling algorithms; hence their attacks and ours are
complementary.
7 Related Work Grunwald and Ghiasi [12] investigate the possibility of

The possibility of exploiting vulnerabilities in theoft- microarchitectural denial of service attacks in SMT (si-
ware systemo deny memory allocation to other appli- multaneous multithreading) processors. They show that
cations has been considered in a number of works. FOBMT processors exhibit a number of vulnerabilities that
B3Notice that 8p-MIX2 and 8p-MIX3 are much less memory inten- _COUId be exploited by malicious threads. More specif-
sive than 8p-MIX1. Due to this, their baseline overall trgbput is 1C@lly, they study a number of DoS attacks that affect
significantly higher than 8p-MIX1 as shown in Table 7. caching behavior, including one that uses self-modifying

16

Normalized Execution Time

B
~o

BRI

= siream-. = Sfream == small-sireal

NGEEY

een

1 1
64 === stream-2 E % == small-streal g % ==art |
54 8p-MIX1 m—art-1 = == rdarray = 8p-MIX3 = mcf —
==art-2 = %9 ==xart = % ==health
[|emmcf-1 212 == vpr 27 == vpr-1 |
1- mcf-2 311 mcf 311 vpr-2 —
8: [|==nhealth-1 £ 12 == health 2 12 =crafty-1 [
841 L |{=health-2 w ==crafty w g == crafty-2
71 87 27
N 6 N
© 5 ©
E E 4
S S
z z 2
0

orNwa

FR-FCFS FairMem FR-FCFS FairMem : FR-FCFS FairMem

Figure 13: Effect of FR-FCFS and FairMem scheduling on diifé application mixes in an 8-core system
| [4p-MIXT [4p-MIX2 [4p-MIX3][8p-MIX1 | 8p-MIX2 | 8p-MIX3 |

base throughput (IPTC) 107 156 163 131 625 1793
FairMem throughput (IPTC) 179 338 234 189 1233 2809
base unfairnessk) 8.05 8.71 10.98 7.89 13.56 10.11
FairMem unfairness¥) 1.09 1.32 1.21 1.18 1.34 1.32
FairMem throughput improvemefjt 1.67X 2.17X 1.44X 1.44X 1.97X 157X
FairMem fairness improvement 7.39X 6.60X 9.07X 6.69X 10.11X | 7.66X

Table 7: Throughput and fairness statistics for 4-core andr8 systems

code to cause the trace cache to be flushed. The authongtwork fair scheduling that also effectively solves the
then propose counter-measures that ensure fair pipelindleness problem was proposed in [2]. In [23], Nesbit et
utilization. The work of Hasan et al. [13] studies in asim- al. propose a fair memory scheduler that uses the def-
ulator the possibility of so-calleleat strokeattacks that inition of fairness in network queuing and is based on
repeatedly access a shared resource to create a hot spotethniques from [3, 40]. As we pointed out in Section 4,
the resource, thus slowing down the SMT pipeline. Thedirectly mapping the definitions and techniques from net-
authors propose a solution that selectively slows dowrwork fair queuing to DRAM memory scheduling is prob-
malicious threads. These two papers present involvetematic. Also, the scheduling algorithm in [23] can sig-
ways of “hacking” existing systems using sophisticatednificantly suffer from the idleness problem. Fairness in
techniques such as self-modifying code or identifyingdisk schedulinghas been studied in [4, 26]. The tech-
on-chip hardware resources that can heat up. In contrastjques used to achieve fairness in disk access are highly
our paper describes a more prevalent problem: a trivinfluenced by the physical association of data on the disk
ial type of attack that could be easily developed by any-cylinders, tracks, sectors, etc.) and can therefore not di
one who writes a program. In fact, even existing simplerectly be applied in DRAM scheduling.
applications may behave like memory performance hogs Shared hardware caches in multi-core systems have
and future multi-core systems are bound to become evebeen studied extensively in recent years, e.g. in [35, 19,
more vulnerable to MPHs. In addition, neither of the 14, 28, 9]. Suh et al. [35] and Kim et al. [19] develop
above works consider vulnerabilities in shared DRAM hardware technigues to provide thread-fairness in shared
memory in multi-core architectures. caches. Fedorova et al. [9] and Suh et al. [35] propose
The FR-FCFS scheduling algorithm implemented inmodification.s to the operating system scheduler to. allow
many current single-core and multi-core systems Wagach_thread its fair share of the cache. These solutions do
studied in [30, 29, 15, 23], and its best implementation—nOt directly apply to DRAM memory controllers. HOW'
the one we presented in Section 2—is due to RixneEVer: the solution we examine in this paper has interac-

et al [30]. This algorithm was initially developed for tions with both the operating system scheduler and the
single-threaded applications and shows good through:

fairness mechanisms used in shared caches, which we
put performance in such scenarios. As shown in [23],

intend to examine in future work.
however, it can have negative effects on fairness in chip§ Conclusion

;nultlpt)rocessor Syﬁ tczm|§. Tth € E e_rformqnc;v:_rppact of dlf'The advent of multi-core architectures has spurred a lot
erent memory scheauling techniques in ProCessorgs excitement in recent years. Itis widely regarded as the

and multiprocessors has been considered in [42, 22]. most promising direction towards increasing computer
Fairness issues in managing access to shared resourqegrformance in the current era of power-consumption-
have been studied in a variety of contexietwork fair limited processor design. In this paper, we show that this
gueuinghas been studied in order to offer guaranteed serdevelopment—besides posing numerous challenges in
vice to simultaneous flows over a shared network link,fields like computer architecture, software engineering,
e.g., [24, 40, 3], and techniques from network fair queu-or operating systems—bears important security risks.
ing have since been applied in numerous fields, e.g., CPU In particular, we have shown that due to unfairness in
scheduling [6]. The best currently known algorithm for the memory system of multi-core architectures, some ap-

17

plications can act asnemory performance hogsd de-
stroy the memory-related performance of other applica-

tions that run on different processors in the chip; with-17

[16] Intel Corporation.

out even being significantly slowed down themselves. In
order to contain the potential of such attacks, we have, g4
proposed a memory request scheduling algorithm whose
design is based on our novel definition of DRAM fair-
ness. As the number of processors integrated on a sing
chip increases, and as multi-chip architectures become
ubiquitous, the danger of memory performance hogs i
bound to aggravate in the future and more sophisticategh1]
solutions may be required. We hope that this paper helps
in raising awareness of the security issues involved in th
rapid shift towards ever-larger multi-core architectures

Acknowledgments

We especially thank Burton Smith for continued inspir-
ing discussions on this work. We also thank Hyesoo

Kim, Chris Brumme, Mark Oskin, Rich Draves, Trishul
Chilimbi, Dan Simon, John Dunagan, Yi-Min Wang, and [25]
the anonymous reviewers for their comments and sug-

gestions on earlier drafts of this paper.

References

(1]

(2]
(3]
(4]

(5]

Advanced Micro Devices. AMD Opteron.
http://ww. and. coml us- en/ Processor s/

Pr oduct | nf or mati on/ .

J. H. Anderson, A. Block, and A. Srinivasan. Quick-
release fair scheduling. RTSS$S2003.

J. C. Bennett and H. Zhang. Hierarchical packet fair
gueueing algorithms. I8IGCOMM 1996.

J. Bruno et al. Disk scheduling with quality of service
guarantees. IRroceedings of IEEE Conference on Mul-
timedia Computing and Systepi999.

A. Chander, J. C. Mitchell, and I. Shin. Mobile code se-
curity by Java bytecode instrumentation. DARPA In-
formation Survivability Conference & Expositia2001.

]
20]

(23]

{241

(26]
[27]
(28]

(29]
(30]
(31]

(32]

[6] A. Chandra, M. Adler, P. Goyal, and P. Shenoy. Surplus[33]

(7]

(8]

fair scheduling: A proportional-share CPU scheduling al-
gorithm for symmetric multiprocessors. @SDI-4 2000.

R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy.
A safety-oriented platform for web applications.|EEE
Symposium on Security and Priva@p06.

V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A per-
formance comparison of contemporary DRAM architec-
tures. INISCA-26 1999.

(34]
(35]

(36]

[9] A. Fedorova, M. Seltzer, and M. D. Smith. Cache-fair [37]

[10]

[11]

[12]

[13]
[14]

[15]

thread scheduling for multi-core processors. Technical
Report TR-17-06, Harvard University, Oct. 2006.

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A virtual machine-based platform for
trusted computing. I5OSR 2003.

S. Gochman et al. The Intel Pentium M processor: Mi-
croarchitecture and performanciatel Technology Jour-
nal, 7(2), May 2003.

D. Grunwald and S. Ghiasi. Microarchitectural denifl o
service: Insuring microarchitectural fairness.MhCRO-

35, 2002.

Intel Develops Tera-Scale Researc
Chips. http://ww.intel.conlpressroon
archi vel/ rel eases/ 20060926cor p_b. ht m

Intel Corporation. Pentium Dhtt p: //ww. i ntel .
com product s/ processor _.nunber/ chart/
pentiumd. ht m

Intel Corporation. Terascale computing. ht t p:
//wwv. i ntel.comresearch/platform
terascal e/ i ndex. ht m

S. Kim, D. Chandra, and Y. Solihin. Fair cache shar-
ing and partitioning in a chip multiprocessor architecture
PACT-13 2004.

C. K. Luk et al. Pin: building customized program analy-
sis tools with dynamic instrumentation. RLDI, 2005.

J. D. McCalpin. STREAM: Sustainable memory band-
width in high performance computerit t p: / / v,
cs.virginia.edu/ stream .

C. Natarajan, B. Christenson, and F. Briggs. A study
of performance impact of memory controller features in
multi-processor server environment. WWMPI, 2004.

K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith.
Fair queuing memory systems. MiCRO-39 2006.

A. K. Parekh A Generalized Processor Sharing Approach
to Flow Control in Integrated Service Network3hD the-
sis, MIT, 1992.

D. Peterson, M. Bishop, and R. Pandey. A flexible con-
tainment mechanism for executing untrusted code. In
11th USENIX Security Symposiud902.

T. Pradhan and J. Haritsa. Efficient fair disk scheduler
In 3rd Conference on Advanced Computi§95.

V. Prevelakis and D. Spinellis. Sandboxing applicasio

In USENIX 2001 Technical Conf.: FreeNIX Tra@001.

N. Rafique et al. Architectural support for operating
system-driven CMP cache management. PlRCT-15

2006.

S. Rixner. Memory controller optimizations for web
servers. IMMICRO-37 2004.

S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.
Owens. Memory access scheduling |8CA-27 2000.

A. Rogers, M. C. Carlisle, J. Reppy, and L. Hendren.
Supporting dynamic data structures on distributed mem-
ory machines ACM Transactions on Programming Lan-
guages and Systents7(2):233-263, Mar. 1995.

T. Sherwood et al. Automatically characterizing large
scale program behavior. lkSPLOS-X2002.

E. Sprangle and O. Mutlu. Method and apparatus to con-
trol memory accesses. U.S. Patent 6,799,257, 2004.
Standard Performance Evaluation CorporatioBPEC
CPU2000 ht t p: / / ww. spec. or g/ cpu2000/ .

G. E. Suh, S. Devadas, and L. Rudolph. A new memory
monitoring scheme for memory-aware scheduling and
partitioning. HPCA-§ 2002.

D. Wang et al. DRAMsim: A memory system simulator.
Computer Architecture New83(4):100-107, 2005.

Y.-M. Wang et al. Checkpointing and its applications. |
FTCS-251995.

] D. H. Woo and H.-H. S. Lee. Analyzing performance

(39]

[40]

J. Hasan et al. Heat stroke: power-density-based tHenigd41]

of service in SMT. IlHPCA-11, 2005.

L. R. Hsu, S. K. Reinhardt, R. lyer, and S. Makineni.
Communist, utilitarian, and capitalist cache policies on
CMPs: Caches as a shared resourcd?AGT-15 2006.

I. Hur and C. Lin. Adaptive history-based memory sched-
ulers. INMICRO-37 2004.

18

[42]

vulnerability due to resource denial of service attack on
chip multiprocessors. IWorkshop on Chip Multiproces-
sor Memory Systems and Interconne€isb. 2007.

W. Wulf and S. McKee. Hitting the memory wall: Im-
plications of the obvious.ACM Computer Architecture
News 23(1), 1995.

H. Zhang. Service disciplines for guaranteed perforoga
service in packet-switching networks. Rroceedings of
the IEEE 1995.

Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based
page interleaving scheme to reduce row-buffer conflicts
and exploit data locality. IIMICRO-33 2000.

Z. Zhu and Z. Zhang. A performance comparison of
DRAM memory system optimizations for SMT proces-
sors. InHPCA-11, 2005.

