
18-447

Computer Architecture

Lecture 12: Out-of-Order Execution

(Dynamic Instruction Scheduling)

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2015, 2/13/2015

Agenda for Today & Next Few Lectures

 Single-cycle Microarchitectures

 Multi-cycle and Microprogrammed Microarchitectures

 Pipelining

 Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

 Out-of-Order Execution

 Issues in OoO Execution: Load-Store Handling, …

 Alternative Approaches to Instruction Level Parallelism

2

Reminder: Announcements

 Lab 3 due next Friday (Feb 20)

 Pipelined MIPS

 Competition for high performance

 You can optimize both cycle time and CPI

 Document and clearly describe what you do during check-off

 Homework 3 due Feb 25

 A lot of questions that enable you to learn the concepts via
hands-on exercise

 Remember this is all for your benefit (to learn and prepare for
exams)

 HWs have very little contribution to overall grade

 Solutions to almost all questions are online anyway

3

Readings Specifically for Today

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

4

Recap of Last Lecture

 Issues with Multi-Cycle Execution

 Exceptions vs. Interrupts

 Precise Exceptions/Interrupts

 Why Do We Want Precise Exceptions?

 How Do We Ensure Precise Exceptions?

 Reorder buffer

 History buffer

 Future register file (best of both worlds)

 Checkpointing

 Register renaming with a reorder buffer

 How to Handle Exceptions

 How to Handle Branch Mispredictions

 Speed of State Recovery: Recovery and Interrupt Latency

 Checkpointing

 Registers vs. Memory

5

Important: Register Renaming with a Reorder Buffer

 Output and anti dependencies are not true dependencies

 WHY? The same register refers to values that have nothing to
do with each other

 They exist due to lack of register ID’s (i.e. names) in
the ISA

 The register ID is renamed to the reorder buffer entry that
will hold the register’s value

 Register ID ROB entry ID

 Architectural register ID Physical register ID

 After renaming, ROB entry ID used to refer to the register

 This eliminates anti- and output- dependencies

 Gives the illusion that there are a large number of registers

6

Review: Register Renaming Examples

7

Boggs et al., “The Microarchitecture of the Pentium 4 Processor,”
Intel Technology Journal, 2001.

Review: Checkpointing Idea

 Goal: Restore the frontend state (future file) such that the
correct next instruction after the branch can execute right
away after the branch misprediction is resolved

 Idea: Checkpoint the frontend register state/map at the
time a branch is decoded and keep the checkpointed state
updated with results of instructions older than the branch

 Upon branch misprediction, restore the checkpoint associated
with the branch

 Hwu and Patt, “Checkpoint Repair for Out-of-order
Execution Machines,” ISCA 1987.

8

Review: Checkpointing

 When a branch is decoded

 Make a copy of the future file/map and associate it with the
branch

 When an instruction produces a register value

 All future file/map checkpoints that are younger than the
instruction are updated with the value

 When a branch misprediction is detected

 Restore the checkpointed future file/map for the mispredicted
branch when the branch misprediction is resolved

 Flush instructions in pipeline younger than the branch

 Deallocate checkpoints younger than the branch

9

Review: Registers versus Memory

 So far, we considered mainly registers as part of state

 What about memory?

 What are the fundamental differences between registers
and memory?

 Register dependences known statically – memory
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a
shared memory multiprocessor)

10

Maintaining Speculative Memory State: Stores

 Handling out-of-order completion of memory operations

 UNDOing a memory write more difficult than UNDOing a
register write. Why?

 One idea: Keep store address/data in reorder buffer

 How does a load instruction find its data?

 Store/write buffer: Similar to reorder buffer, but used only for
store instructions

 Program-order list of un-committed store operations

 When store is decoded: Allocate a store buffer entry

 When store address and data become available: Record in store
buffer entry

 When the store is the oldest instruction in the pipeline: Update
the memory address (i.e. cache) with store data

 We will get back to this after today!

11

Remember:

Static vs. Dynamic Scheduling

12

Remember: Questions to Ponder

 What is the role of the hardware vs. the software in the
order in which instructions are executed in the pipeline?

 Software based instruction scheduling static scheduling

 Hardware based instruction scheduling dynamic scheduling

 What information does the compiler not know that makes
static scheduling difficult?

 Answer: Anything that is determined at run time

 Variable-length operation latency, memory addr, branch direction

13

Dynamic Instruction Scheduling

 Hardware has knowledge of dynamic events on a per-
instruction basis (i.e., at a very fine granularity)

 Cache misses

 Branch mispredictions

 Load/store addresses

 Wouldn’t it be nice if hardware did the scheduling of
instructions?

14

Out-of-Order Execution

(Dynamic Instruction Scheduling)

An In-order Pipeline

 Problem: A true data dependency stalls dispatch of younger
instructions into functional (execution) units

 Dispatch: Act of sending an instruction to a functional unit

16

F D

E

R

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Cache miss

W

Can We Do Better?

 What do the following two pieces of code have in common
(with respect to execution in the previous design)?

 Answer: First ADD stalls the whole pipeline!

 ADD cannot dispatch because its source registers unavailable

 Later independent instructions cannot get executed

 How are the above code portions different?

 Answer: Load latency is variable (unknown until runtime)

 What does this affect? Think compiler vs. microarchitecture

17

IMUL R3 R1, R2

ADD R3 R3, R1

ADD R1 R6, R7

IMUL R5 R6, R8

ADD R7 R9, R9

LD R3 R1 (0)

ADD R3 R3, R1

ADD R1 R6, R7

IMUL R5 R6, R8

ADD R7 R9, R9

Preventing Dispatch Stalls

 Multiple ways of doing it

 You have already seen at least THREE:

 1. Fine-grained multithreading

 2. Value prediction

 3. Compile-time instruction scheduling/reordering

 What are the disadvantages of the above three?

 Any other way to prevent dispatch stalls?

 Actually, you have briefly seen the basic idea before

 Dataflow: fetch and “fire” an instruction when its inputs are
ready

 Problem: in-order dispatch (scheduling, or execution)

 Solution: out-of-order dispatch (scheduling, or execution)

18

Out-of-order Execution (Dynamic Scheduling)

 Idea: Move the dependent instructions out of the way of
independent ones (s.t. independent ones can execute)

 Rest areas for dependent instructions: Reservation stations

 Monitor the source “values” of each instruction in the
resting area

 When all source “values” of an instruction are available,
“fire” (i.e. dispatch) the instruction

 Instructions dispatched in dataflow (not control-flow) order

 Benefit:

 Latency tolerance: Allows independent instructions to execute
and complete in the presence of a long latency operation

19

In-order vs. Out-of-order Dispatch

 In order dispatch + precise exceptions:

 Out-of-order dispatch + precise exceptions:

 16 vs. 12 cycles
20

F D WE E E E R

F D E R W

F

IMUL R3 R1, R2

ADD R3 R3, R1

ADD R1 R6, R7

IMUL R5 R6, R8

ADD R7 R3, R5
D E R W

F D E R W

F D E R W

F D WE E E E R

F D

STALL

STALL

E R W

F D

E E E E

STALL

E R

F D E E E E R W

F D E R W

WAIT

WAIT

W

This slide is actually correct

Enabling OoO Execution

1. Need to link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value

2. Need to buffer instructions until they are ready to execute

 Insert instruction into reservation stations after renaming

3. Instructions need to keep track of readiness of source values

 Broadcast the “tag” when the value is produced

 Instructions compare their “source tags” to the broadcast tag
 if match, source value becomes ready

4. When all source values of an instruction are ready, need to
dispatch the instruction to its functional unit (FU)

 Instruction wakes up if all sources are ready

 If multiple instructions are awake, need to select one per FU

21

Tomasulo’s Algorithm

 OoO with register renaming invented by Robert Tomasulo

 Used in IBM 360/91 Floating Point Units

 Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

 What is the major difference today?

 Precise exceptions: IBM 360/91 did NOT have this

 Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

 Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

 Variants are used in most high-performance processors

 Initially in Intel Pentium Pro, AMD K5
 Alpha 21264, MIPS R10000, IBM POWER5, IBM z196, Oracle UltraSPARC T4, ARM Cortex A15

22

Two Humps in a Modern Pipeline

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

23

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

E

O

R

D

E

R

S

C

H

E

D

U

L

E

TAG and VALUE Broadcast Bus

in order out of order in order

General Organization of an OOO Processor

 Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.
1995.

24

Tomasulo’s Machine: IBM 360/91

25

FP FU FP FU

from memory

load

buffers

from instruction unit
FP registers

store buffers

to memory

operation bus

reservation

stations

Common data bus

Register Renaming

 Output and anti dependencies are not true dependencies

 WHY? The same register refers to values that have nothing to
do with each other

 They exist because not enough register ID’s (i.e.
names) in the ISA

 The register ID is renamed to the reservation station entry
that will hold the register’s value

 Register ID RS entry ID

 Architectural register ID Physical register ID

 After renaming, RS entry ID used to refer to the register

 This eliminates anti- and output- dependencies

 Approximates the performance effect of a large number of
registers even though ISA has a small number

26

 Register rename table (register alias table)

Tomasulo’s Algorithm: Renaming

27

R0

R1

R2

R3

tag value valid?

R4

R5

R6

R7

R8

R9

1

1

1

1

1

1

1

1

1

1

Tomasulo’s Algorithm
 If reservation station available before renaming

 Instruction + renamed operands (source value/tag) inserted into the
reservation station

 Only rename if reservation station is available

 Else stall
 While in reservation station, each instruction:

 Watches common data bus (CDB) for tag of its sources
 When tag seen, grab value for the source and keep it in the reservation station
 When both operands available, instruction ready to be dispatched

 Dispatch instruction to the Functional Unit when instruction is ready
 After instruction finishes in the Functional Unit

 Arbitrate for CDB
 Put tagged value onto CDB (tag broadcast)
 Register file is connected to the CDB

 Register contains a tag indicating the latest writer to the register
 If the tag in the register file matches the broadcast tag, write broadcast value

into register (and set valid bit)

 Reclaim rename tag
 no valid copy of tag in system!

28

An Exercise

 Assume ADD (4 cycle execute), MUL (6 cycle execute)

 Assume one adder and one multiplier

 How many cycles

 in a non-pipelined machine

 in an in-order-dispatch pipelined machine with imprecise
exceptions (no forwarding and full forwarding)

 in an out-of-order dispatch pipelined machine imprecise
exceptions (full forwarding)

29

MUL R3 R1, R2

ADD R5 R3, R4

ADD R7 R2, R6

ADD R10 R8, R9

MUL R11 R7, R10

ADD R5 R5, R11

F D E W

Exercise Continued

30

Exercise Continued

31

Exercise Continued

32

MUL R3 R1, R2

ADD R5 R3, R4

ADD R7 R2, R6

ADD R10 R8, R9

MUL R11 R7, R10

ADD R5 R5, R11

How It Works

33

Cycle 0

34

Cycle 2

35

36

Cycle 3

Cycle 4

37

Cycle 7

38

Cycle 8

39

Some Questions

 What is needed in hardware to perform tag broadcast and
value capture?

 make a value valid

 wake up an instruction

 Does the tag have to be the ID of the Reservation Station
Entry?

 What can potentially become the critical path?

 Tag broadcast value capture instruction wake up

 How can you reduce the potential critical paths?

40

An Exercise, with Precise Exceptions

 Assume ADD (4 cycle execute), MUL (6 cycle execute)

 Assume one adder and one multiplier

 How many cycles

 in a non-pipelined machine

 in an in-order-dispatch pipelined machine with reorder buffer
(no forwarding and full forwarding)

 in an out-of-order dispatch pipelined machine with reorder
buffer (full forwarding)

41

MUL R3 R1, R2

ADD R5 R3, R4

ADD R7 R2, R6

ADD R10 R8, R9

MUL R11 R7, R10

ADD R5 R5, R11

F D E R W

Out-of-Order Execution with Precise Exceptions

 Idea: Use a reorder buffer to reorder instructions before
committing them to architectural state

 An instruction updates the register alias table (essentially a
future file) when it completes execution

 An instruction updates the architectural register file when it is
the oldest in the machine and has completed execution

42

Out-of-Order Execution with Precise Exceptions

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

43

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

E

O

R

D

E

R

S

C

H

E

D

U

L

E

TAG and VALUE Broadcast Bus

in order out of order in order

Modern OoO Execution w/ Precise Exceptions

 Most modern processors use

 Reorder buffer to support in-order retirement of instructions

 A single register file to store registers (speculative and
architectural) – INT and FP are still separate

 Future register map used for renaming

 Architectural register map used for state recovery

44

An Example from Modern Processors

45

Boggs et al., “The Microarchitecture of the Pentium 4 Processor,”
Intel Technology Journal, 2001.

Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready

 Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction

 Broadcast the “tag” when the value is produced

 Instructions compare their “source tags” to the broadcast tag
 if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

 Wakeup and select/schedule the instruction

46

Summary of OOO Execution Concepts

 Register renaming eliminates false dependencies, enables
linking of producer to consumers

 Buffering enables the pipeline to move for independent ops

 Tag broadcast enables communication (of readiness of
produced value) between instructions

 Wakeup and select enables out-of-order dispatch

47

OOO Execution: Restricted Dataflow

 An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

 which piece?

 The dataflow graph is limited to the instruction window

 Instruction window: all decoded but not yet retired
instructions

 Can we do it for the whole program?

 Why would we like to?

 In other words, how can we have a large instruction
window?

 Can we do it efficiently with Tomasulo’s algorithm?

48

Dataflow Graph for Our Example

49

MUL R3 R1, R2

ADD R5 R3, R4

ADD R7 R2, R6

ADD R10 R8, R9

MUL R11 R7, R10

ADD R5 R5, R11

State of RAT and RS in Cycle 7

50

Dataflow Graph

51

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Restricted Data Flow

 An out-of-order machine is a “restricted data flow” machine

 Dataflow-based execution is restricted to the microarchitecture
level

 ISA is still based on von Neumann model (sequential
execution)

 Remember the data flow model (at the ISA level):

 Dataflow model: An instruction is fetched and executed in
data flow order

 i.e., when its operands are ready

 i.e., there is no instruction pointer

 Instruction ordering specified by data flow dependence

 Each instruction specifies “who” should receive the result

 An instruction can “fire” whenever all operands are received
53

Questions to Ponder

 Why is OoO execution beneficial?

 What if all operations take single cycle?

 Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

 What if an instruction takes 500 cycles?

 How large of an instruction window do we need to continue
decoding?

 How many cycles of latency can OoO tolerate?

 What limits the latency tolerance scalability of Tomasulo’s
algorithm?

 Active/instruction window size: determined by both scheduling
window and reorder buffer size

54

