
CMU 18-447 Introduction to Computer Architecture, Spring 2014

Lab 1: Instruction-Level ARM Simulator

Instructor: Prof. Onur Mutlu
TAs: Rachata Ausavarungnirun, Varun Kohli, Paraj Tyle, Xiaobo Zhao

Assigned: Wednesday, 1/15, 2014
Due: Friday, 1/24, 2014

Introduction

For this assignment, you will write a C program which is an instruction-level simulator for a limited subset
of the ARM instruction set. This instruction-level simulator will model the behavior of each instruction, and
will allow the user to run ARM programs and see their outputs. In later labs, you will use this simulator as
a reference to verify that your later labs execute code correctly.

The simulator will process an input file that contains a ARM program. Each line of the input file corresponds
to a single ARM instruction written as a hexadecimal string. For example, E0910003 is the hexadecimal
representation of ADDS r0, r1, r3. We will provide several input files. But you should also create additional
input files in order to test your simulator more comprehensively.

The simulator will execute the input program one instruction at a time. After each instruction, the simulator
will modify the ARM architectural state: values stored in registers and memory. The simulator is partitioned
into two main sections: the (1) shell and the (2) simulation routine. Your job is to implement the simulation
routine.

The source code for the lab are provided in /afs/ece/class/ece447/labs/lab1. In the src/ directory,
we provide two files (shell.c and shell.h) that already implement the shell. There is a third file (sim.c)
where you will implement the simulator routine – this is the only file that you are allowed to change.

The Shell

The purpose of the shell is to provide the user with commands to control the execution of the simulator.
The shell accepts one or more program files as command line arguments and loads them into the memory
image. In order to extract information from the simulator, a file named dumpsim will be created to hold
information requested from the simulator. The shell supports the following commands:

1. go: simulate the program until it indicates that the simulator should halt. (As we define below, this is
when a SWI instruction is executed with a value of 0x0A.)

2. run <n>: simulate the execution of the machine for n instructions.

3. mdump <low> <high>: dump the contents of memory, from location low to location high to the
screen and the dump file (dumpsim).

4. rdump: dump the current instruction count, the contents of R0 – R14, R15 (PC), and the CPSR to
the screen and the dump file (dumpsim).

5. input reg num reg val: set general purpose register reg num to value reg val.

6. ?: print out a list of all shell commands.

7. quit: quit the shell.

The Simulation Routine

The simulation routine carries out the instruction-level simulation of the input ARM program. During the
execution of an instruction, the simulator should take the current architectural state and modify it according
to the ISA description of the instruction in the ARM Architecture Reference Manual that is provided on the

1/4

 /afs/ece/class/ece447/labs/lab1


course website. The architectural state includes the general purpose registers, the CPSR, and the memory
image. The state is contained in the following global variables:

#define ARM_REGS 16

typedef struct CPU_State {

uint32_t REGS[MIPS_REGS]; /* register file. */

uint32_t CPSR;

} CPU_State;

CPU_State STATE_CURRENT, STATE_NEXT;

int RUN_BIT;

Furthermore, the simulator models the simulated system’s memory. You need to use the following two
functions, which we provide, to access the simulated memory:

uint32_t mem_read_32(uint32_t address);

void mem_write_32(uint32_t address, uint32_t value);

Note that in ARM, memory is byte-addressable. Furthermore, we will implement a little-endian architecture.
This means that machine words (32 bits) are stored with the least-significant byte at the lowest address, and
the most-significant byte at the highest address. To implement loads and stores of 8-bit values (bytes), you
will need to use these 32-bit memory access primitives (hint: be sure to modify only the appropriate part of
a 32-bit word!).

In particular, you should call mem read 32 and mem write 32 with only 32-bit-aligned addresses (i.e., the
bottom two bits of the address should be zero).

In addition, there are many addressing modes for memory operations in ARM. You can find them within
the reference manual, and you must only be able to process those using an immediate or register offset.

The simulator skeleton that we provide includes an empty function named process instruction() in the
file sim.c. This function is called by the shell to simulate one machine instruction. You have to write the
code for process instruction() to simulate the execution of instructions. You can also write additional
functions to make the simulation modular. (Keep in mind that you will be using the code that you write in
later labs in order to validate your work.) We suggest spending time to make your code easy to read and
understand, for your own benefit.

What You Should Do

Your job is to implement the process instruction() function in sim.c. The process instruction()

function should be able to simulate the instruction-level execution of the following ARM instructions:

ADC ADD AND B BIC BL
CMN CMP EOR LDR LDRB MLA
MOV MUL MVN ORR RSB RSC
SBC STR STRB SUB TEQ TST
SWI

For implementing these instructions, your tasks will be the following. First, implement each of these in-
structions as specified within the ARM Architecture Reference Manual accurately and completely. Each
instruction should be compatible with conditional execution as described by the ARM manual. However,
you only need to implement a subset of conditions: EQ, NE, GE, GT, LT, LE, and AL.

2/4



In addition, for the Data Processing Instructions (again defined in the reference manual), you must implement
the S suffix for the instructions. The S suffix (ADDS vs. ADD) allows the instruction to set the CPSR’s
condition flag bits upon the execution of the instruction. Although the CPSR has more functionality than
just the condition flags, you will only need to implement this functionality of the CPSR. You must also
implement both the immediate and register operations for each Data Processing instruction. Finally, you
should implement the barrel shifting and register rotating functionality defined in the reference manual as
well.

Note that for the SWI instruction, you only need to implement the following behavior: if the bottom byte
of the instruction’s value is 0x0A (decimal 10) when SWI is executed, then the go command should stop
its simulation loop and return to the simulator shell’s prompt. If the bottom byte is any other value,
the instruction should have no effect. No registers are modified in either case, except that R15 (PC) is
incremented to the next instruction as usual. The process instruction() function that you write should
cause the main simulation loop to terminate by setting the global variable RUN BIT to 0. Also of note, you
should not worry about implementing any mode changes or register switches on a SWI. Thus, you must only
worry about one set of registers.

NOTE: ARM assumes that the PC value is actually equal to PC+8 when the instruction at PC is being
executed. This is because of ARM’s pipeline which keeps three instructions in flight at once. However, we
do not ask you to keep the incremented PC value. This means that whenever you use an operation that
requires the PC value (B, BL), you must use PC+8 as the base offset.

The accuracy of your simulator is your main priority. Specifically, make sure the architectural state is
correctly updated after the execution of each instruction. We will test your simulator with many input
programs (some provided with the handout, some not) in order to ensure that each instruction is
simulated correctly.

In order to test that your simulator is working correctly, you should run the input programs we provide you
with and also write one or more programs using all of the required ARM instructions that are listed in the
table above, and execute them one instruction at a time (run 1). You can use the rdump command to verify
that the state of the machine is updated correctly after the execution of each instruction.

While the table appears to have many instructions, there are actually only a few unique instruction behaviors
with a number of minor variations. You should tackle the instructions in groups: Data Processing, Memory
Instructions, Branches, and so on. Arm Architecture Reference Manual contains the official definition for
each instruction in this table (except for SWI, for which we provide a restricted definition above). Please
implement only the 32-bit behavior of the instructions.

Finally, note that your simulator does not have to handle instructions that we do not include in the table
above, or any other invalid instructions. We will only test your simulator with valid code that uses the
instructions listed above.

Lab Files

In /afs/ece/class/ece447/labs/lab1, you will find a source code distribution with two subdirectories
src/ and inputs/. In src/, we are providing you with the simulator skeleton as described above. You can
compile the simulator with the provided Makefile. In inputs/, we have written some input files for you.
You should write more input files in order to be confident that your simulator is correct. Also in inputs/,
you can find a script that will assemble ARM code into the hexadecimal format that the simulator requires.
The README file describes how to assemble a ARM program with this script and load it into the simulator.

Resources

If you have not done so already, we recommend that you work through Homework 1 to become familiar with
the ARM ISA and the Reference assembler/simulator. The ARM instruction set architecture is defined in the
manual that we have provided on the course website. We may post additional resources (clarifications, etc.)
as required on the course website. Finally, please don’t hesitate to ask the TAs for help if you become stuck

3/4

/afs/ece/class/ece447/labs/lab1


or if something is unclear! Take advantage of the online Q&A forum (link posted on the course website),
office hours, and lab sections.

Handin

You should electronically hand in your code (all files in the src/ directory) into /afs/ece/class/ece447/

handin/lab1/andrew_id. We should have this directory set up in the next few days. Please contact the
TAs if your handin directory does not exist but others’ do exist. Your code should be readable and well-
documented. In addition, please turn in additional test cases that you used in a inputs/ subdirectory. If you
feel the need to describe any additional aspects of your design in detail, please include these in a separate
README. During the demo, we will ask you questions about your instruction simulator and test it with
a number of input programs. Please be sure to allow plenty of time to get checked off (i.e., don’t come in
the last 15 minutes of lab). Following the lab check-off, we will test your simulator extensively with a suite
of test cases so that we are confident that you have implemented all instructions correctly. This is for your
benefit in later labs!

4/4

/afs/ece/class/ece447/handin/lab1/andrew_id
/afs/ece/class/ece447/handin/lab1/andrew_id

