
18-447

Computer Architecture

Lecture 13: Virtual Memory II

Lecturer: Rachata Ausavarungnirun

Carnegie Mellon University

Spring 2014, 2/17/2014

(with material from Onur Mutlu, Justin Meza and Yoongu Kim)

Announcement

 Lab 2 grades and feedback available tonight

 Lab 3 due this Friday (21st Feb.)

 HW 2 grades and feedback available tonight

 Midterm 1 in two weeks (3rd Mar.)

 Paper summary during this week recitations

2

Two problems with Page Table

 Problem #1: Page table is too large

 Page table has 1M entries

 Each entry is 4B (because 4B ≈ 20-bit PPN)

 Page table = 4MB (!!)

 very expensive in the 80s

 Solution: Multi-level page table

3

Two problems with Page Table

 Problem #1: Page table is too large

 Page table has 1M entries

 Each entry is 4B (because 4B ≈ 20-bit PPN)

 Page table = 4MB (!!)

 very expensive in the 80s

 Problem #2: Page table is in memory

 Before every memory access, always fetch the PTE from the
slow memory? Large performance penalty

4

Translation Lookaside Buffer (TLB)

 A hardware structure where PTEs are cached

 Q: How about PDEs? Should they be cached?

 Whenever a virtual address needs to be translated, the TLB
is first searched: “hit” vs. “miss”

 Example: 80386

 32 entries in the TLB

 TLB entry: tag + data

 Tag: 20-bit VPN + 4-bit flag (valid, dirty, R/W, U/S)

 Data: 20-bit PPN

 Q: Why is the tag needed?

5

Context Switches

 Assume that Process X is running

 Process X’s VPN 5 is mapped to PPN 100

 The TLB caches this mapping

 VPN 5 PPN 100

 Now assume a context switch to Process Y

 Process Y’s VPN 5 is mapped to PPN 200

 When Process Y tries to access VPN 5, it searches the TLB

 Process Y finds an entry whose tag is 5

 TLB hit!

 The PPN must be 100!

 … Are you sure?

Context Switches (cont’d)

 Approach #1. Flush the TLB

 Whenever there is a context switch, flush the TLB

 All TLB entries are invalidated

 Example: 80836

 Updating the value of CR3 signals a context switch

 This automatically triggers a TLB flush

 Approach #2. Associate TLB entries with processes

 All TLB entries have an extra field in the tag ...

 That identifies the process to which it belongs

 Invalidate only the entries belonging to the old process

 Example: Modern x86, MIPS

Handling TLB Misses

 The TLB is small; it cannot hold all PTEs

 Some translations will inevitably miss in the TLB

 Must access memory to find the appropriate PTE

 Called walking the page directory/table

 Large performance penalty

 Who handles TLB misses?

1. Hardware-Managed TLB

2. Software-Managed TLB

Handling TLB Misses (cont’d)

 Approach #1. Hardware-Managed (e.g., x86)

 The hardware does the page walk

 The hardware fetches the PTE and inserts it into the TLB

 If the TLB is full, the entry replaces another entry

 All of this is done transparently

 Approach #2. Software-Managed (e.g., MIPS)

 The hardware raises an exception

 The operating system does the page walk

 The operating system fetches the PTE

 The operating system inserts/evicts entries in the TLB

Handling TLB Misses (cont’d)

 Hardware-Managed TLB

 Pro: No exceptions. Instruction just stalls

 Pro: Independent instructions may continue

 Pro: Small footprint (no extra instructions/data)

 Con: Page directory/table organization is etched in stone

 Software-Managed TLB

 Pro: The OS can design the page directory/table

 Pro: More advanced TLB replacement policy

 Con: Flushes pipeline

 Con: Performance overhead

Protection with Virtual Memory

 A normal user process should not be able to:

 Read/write another process’ memory

 Write into shared library data

 How does virtual memory help?

 Address space isolation

 Protection information in page table

 Efficient clearing of data on newly allocated pages

11

Protection: Leaked Information

 Example (with the virtual memory we’ve discussed so far):

 Process A writes “my password = ...” to virtual address 2

 OS maps virtual address 2 to physical page 4 in page table

 Process A no longer needs virtual address 2

 OS unmaps virtual address 2 from physical page 4 in page
table

 Attack vector:

 Sneaky Process B continually allocates pages and searches for
“my password = <string>”

12

Page-Level Access Control (Protection)

 Not every process is allowed to access every page

 E.g., may need supervisor level privilege to access system
pages

 Idea: Store access control information on a page basis in
the process’s page table

 Enforce access control at the same time as translation

 Virtual memory system serves two functions today

 Address translation (for illusion of large physical memory)

 Access control (protection)

13

Page Table is Per Process

 Each process has its own virtual address space

 Full address space for each program

 Simplifies memory allocation, sharing, linking and loading.

14

Virtual

Address

Space for

Process 1:

Physical Address

Space (DRAM) VP 1
VP 2

PP 2 Address

Translation

0

0

N-1

0

N-1 M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/only

library code)

...

...

Virtual

Address

Space for

Process 2:

VM as a Tool for Memory Access Protection

15

Page Tables

Process i:

Physical Addr Read? Write?

 PP 9 Yes No

 PP 4 Yes Yes

XXXXXXX No No

VP 0:

VP 1:

VP 2:
•
•
•

•
•
•

•
•
•

Process j:

PP 0

Memory

Physical Addr Read? Write?

 PP 6 Yes Yes

 PP 9 Yes No

XXXXXXX No No
•
•
•

•
•
•

•
•
•

VP 0:

VP 1:

VP 2:

PP 2

PP 4

PP 6

PP 8

PP 10

PP 12

•
•
•

 Extend Page Table Entries (PTEs) with permission bits

 Page fault handler checks these before remapping

 If violated, generate exception (Access Protection exception)

Privilege Levels in x86

16

x86: Privilege Level (Review)

 Four privilege levels in x86 (referred to as rings)

 Ring 0: Highest privilege (operating system)

 Ring 1: Not widely used

 Ring 2: Not widely used

 Ring 3: Lowest privilege (user applications)

 Current Privilege Level (CPL) determined by:

 Address of the instruction that you are executing

 Specifically, the Descriptor Privilege Level (DPL) of the
code segment

“Supervisor”

“User”

x86: A Closer Look at the PDE/PTE

 PDE: Page Directory Entry (32 bits)

 PTE: Page Table Entry (32 bits)

PPN PTE Flags

&PT PDE Flags

Protection: PDE’s Flags

 Protects all 1024 pages in a page table

Protection: PTE’s Flags

 Protects one page at a time

Protection: PDE + PTE = ???

Protection: Segmentation + Paging
 Paging provides protection

 Flags in the PDE/PTE (x86)
 Read/Write

 User/Supervisor

 Executable (x86-64)

 Segmentation also provides protection

 Flags in the Segment Descriptor (x86)

 Read/Write

 Descriptor Privilege Level

 Executable

Aside: Protection w/o Virtual Memory

 Question: Do we need virtual memory for protection

 Answer: No

 Other ways of providing memory protection

 Base and bound registers

 Segmentation

 None of these are as elegant as page-based access control

 They run into complexities as we need more protection
capabilites

 Virtual memory integrates

23

Overview of Segmentation

 Divide the physical address space into segments

 The segments may overlap

p
h
ys

ic
a
l
m

e
m

o
ry

0x2345

0x0000

0xFFFF

se
g
m

e
n
t

se
g
m

e
n
t

Base:0x8000

Base:0x0000

+ 0xA345

Virtual

Addr.

Physical

Addr.

Segmentation in Intel 8086

 Intel 8086 (Late 70s)

 16-bit processor

 4 segment registers that store the base
address

Intel 8086: Specifying a Segment

 There can be many segments

 But only 4 of them are
addressable at once

 Which 4 depends on
the 4 segment registers

 The programmer sets
the segment register value

 Each segment is 64KB in size

 Because 8086 is 16-bit

1MB?

?

Intel 8086: Translation

 8086 is a 16-bit processor ...

 How can it address up to 0xFFFFF (1MB)?

Segment

Register

Virtual

Addr.

Intel 8086: Which Segment Register?

 Q: For a memory access, how does the machine know
which of the 4 segment register to use?

 A: Depends on the type of memory access

 Can be overridden: mov %AX,(%ES:0x1234)

 x86

Instruction

Segmentation in Intel 80286

 Intel 80286 (Early 80s)

 Still a 16-bit processor

 Still has 4 segment registers that ...

 stores the index into a table of base addresses

 not the base address itself

Segment Descriptor 2

Segment Descriptor 0

Segment Descriptor 1

Segment Descriptor N-1

··

Segment Register (CS)

Segment Register (DS)

Segment Register (SS)

Segment Register (ES)

“Segment Selectors” “Segment Descriptor Table”

15 0

0 63

Intel 80286: Segment Descriptor

 A segment descriptor describes a segment:

1. BASE: Base address

2. LIMIT: The size of the segment

3. DPL: Descriptor Privilege Level (!!)

4. Etc.

0 63

Segment Descriptor

Issues with Segmentation

 Segmented addressing creates fragmentation problems:

 a system may have plenty of unallocated memory locations

 they are useless if they do not form a contiguous region of a
sufficient size

 Page-based virtual memory solves these issues

 By ensuring the address space is divided into fixed size
“pages”

 And virtual address space of each process is contiguous

 The key is the use of indirection to give each process the
illusion of a contiguous address space

31

Page-based Address Space

 In a Paged Memory System:

 PA space is divided into fixed size “segments” (e.g., 4kbyte),
 more commonly known as “page frames”

 VA is interpreted as page number and page offset

32

Page No. Page Offset

page

table
+

Frame no
&

okay?

PA

page tables
must be 1.

privileged data
structures and 2.
private/unique to

each process

Fast Forward to Today (2014)

 Modern x86 Machines

 32-bit x86: Segmentation is similar to 80286

 64-bit x86: Segmentation is not supported per se
 Forces the BASE=0x0000000000000000

 Forces the LIMIT=0xFFFFFFFFFFFFFFFF

 But DPL is still supported

 Side Note: Linux & 32-bit x86

 Linux does not use segmentation per se
 For all segments, Linux sets BASE=0x00000000

 For all segments, Linux sets LIMIT=0xFFFFFFFF

 Instead, Linux uses segments for privilege levels

 For segments used by the kernel, Linux sets DPL = 0

 For segments used by the applications, Linux sets DPL = 3

Other Issues

 When do we do the address translation?

 Before or after accessing the L1 cache?

 In other words, is the cache virtually addressed or
physically addressed?

 Virtual versus physical cache

 What are the issues with a virtually addressed cache?

 Synonym problem:

 Two different virtual addresses can map to the same physical
address same physical address can be present in multiple
locations in the cache can lead to inconsistency in data

34

