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Announcement 

 Lab 2 grades and feedback available tonight 

 Lab 3 due this Friday (21st Feb.) 

 HW 2 grades and feedback available tonight 

 

 Midterm 1 in two weeks (3rd Mar.) 

 

 Paper summary during this week recitations 
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Two problems with Page Table 

 Problem #1: Page table is too large  

 Page table has 1M entries  

 Each entry is 4B (because 4B ≈ 20-bit PPN)  

 Page table = 4MB (!!)  

 very expensive in the 80s  

 

 Solution: Multi-level page table 
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Two problems with Page Table 

 Problem #1: Page table is too large  

 Page table has 1M entries  

 Each entry is 4B (because 4B ≈ 20-bit PPN)  

 Page table = 4MB (!!)  

 very expensive in the 80s 

 

 

 Problem #2: Page table is in memory  

 Before every memory access, always fetch the PTE from the 
slow memory?  Large performance penalty  
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Translation Lookaside Buffer (TLB) 

 A hardware structure where PTEs are cached  

 Q: How about PDEs? Should they be cached?  

 Whenever a virtual address needs to be translated, the TLB 
is first searched: “hit” vs. “miss”  

  

 Example: 80386  

 32 entries in the TLB  

 TLB entry: tag + data  

 Tag: 20-bit VPN + 4-bit flag (valid, dirty, R/W, U/S)  

 Data: 20-bit PPN  

 Q: Why is the tag needed? 
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Context Switches 

 Assume that Process X is running 

 Process X’s VPN 5 is mapped to PPN 100 

 The TLB caches this mapping 

 VPN 5  PPN 100 

 

 Now assume a context switch to Process Y 

 Process Y’s VPN 5 is mapped to PPN 200 

 When Process Y tries to access VPN 5, it searches the TLB 

 Process Y finds an entry whose tag is 5 

 TLB hit!  

 The PPN must be 100! 

 … Are you sure? 

 

 



Context Switches (cont’d) 

 Approach #1. Flush the TLB 

 Whenever there is a context switch, flush the TLB 

 All TLB entries are invalidated 

 Example: 80836 

 Updating the value of CR3 signals a context switch 

 This automatically triggers a TLB flush 

 

 Approach #2. Associate TLB entries with processes 

 All TLB entries have an extra field in the tag ... 

 That identifies the process to which it belongs 

 Invalidate only the entries belonging to the old process 

 Example: Modern x86, MIPS 

 

 



Handling TLB Misses 

 The TLB is small; it cannot hold all PTEs 

 Some translations will inevitably miss in the TLB 

 Must access memory to find the appropriate PTE 

 Called walking the page directory/table 

 Large performance penalty 

 

 Who handles TLB misses? 

1. Hardware-Managed TLB 

2. Software-Managed TLB 
 

 



Handling TLB Misses (cont’d) 

 Approach #1. Hardware-Managed (e.g., x86) 

 The hardware does the page walk 

 The hardware fetches the PTE and inserts it into the TLB 

 If the TLB is full, the entry replaces another entry 

 All of this is done transparently 

 

 Approach #2. Software-Managed (e.g., MIPS) 

 The hardware raises an exception 

 The operating system does the page walk 

 The operating system fetches the PTE 

 The operating system inserts/evicts entries in the TLB 

 



Handling TLB Misses (cont’d) 

 Hardware-Managed TLB 

 Pro: No exceptions. Instruction just stalls 

 Pro: Independent instructions may continue 

 Pro: Small footprint (no extra instructions/data) 

 Con: Page directory/table organization is etched in stone 

 

 Software-Managed TLB 

 Pro: The OS can design the page directory/table 

 Pro: More advanced TLB replacement policy 

 Con: Flushes pipeline 

 Con: Performance overhead 



Protection with Virtual Memory 

 A normal user process should not be able to: 

 Read/write another process’ memory 

 Write into shared library data 

 How does virtual memory help? 

 Address space isolation 

 Protection information in page table 

 Efficient clearing of data on newly allocated pages 
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Protection: Leaked Information 

 Example (with the virtual memory we’ve discussed so far): 

 Process A writes “my password = ...” to virtual address 2 

 OS maps virtual address 2 to physical page 4 in page table 

 Process A no longer needs virtual address 2 

 OS unmaps virtual address 2 from physical page 4 in page 
table 

 Attack vector: 

 Sneaky Process B continually allocates pages and searches for 
“my password = <string>” 
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Page-Level Access Control (Protection) 

 Not every process is allowed to access every page 

 E.g., may need supervisor level privilege to access system 
pages 

 

 Idea: Store access control information on a page basis in 
the process’s page table 

 

 Enforce access control at the same time as translation 

 

 Virtual memory system serves two functions today 

     Address translation (for illusion of large physical memory) 

     Access control (protection) 
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Page Table is Per Process 

 Each process has its own virtual address space 

 Full address space for each program 

 Simplifies memory allocation, sharing, linking and loading. 

 

 

14 

Virtual 

Address 

Space for 

Process 1: 

Physical Address  

Space (DRAM) VP 1 
VP 2 

PP 2 Address 

Translation 

0 

0 

N-1 

0 

N-1 M-1 

VP 1 
VP 2 

PP 7 

PP 10 

(e.g., read/only 

library code) 

... 

... 

Virtual 

Address 

Space for 

Process 2: 



VM as a Tool for Memory Access Protection 
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Page Tables 
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 Extend Page Table Entries (PTEs) with permission bits 

 Page fault handler checks these before remapping 

 If violated, generate exception (Access Protection exception) 



Privilege Levels in x86 
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x86: Privilege Level (Review) 

 Four privilege levels in x86 (referred to as rings) 

 Ring 0: Highest privilege (operating system) 

 Ring 1: Not widely used 

 Ring 2: Not widely used 

 Ring 3: Lowest privilege (user applications) 

 

 Current Privilege Level (CPL) determined by: 

 Address of the instruction that you are executing 

 Specifically, the Descriptor Privilege Level (DPL) of the 
code segment 

“Supervisor” 

“User” 



x86: A Closer Look at the PDE/PTE 

 PDE: Page Directory Entry (32 bits) 

 PTE:  Page Table Entry (32 bits) 

PPN PTE Flags 

&PT PDE Flags 



Protection: PDE’s Flags 

 Protects all 1024 pages in a page table 



Protection: PTE’s Flags 

 Protects one page at a time 



Protection: PDE + PTE = ??? 



Protection: Segmentation + Paging 
 Paging provides protection 

 Flags in the PDE/PTE (x86) 
 Read/Write 

 User/Supervisor 

 Executable (x86-64) 

 Segmentation also provides protection 

 Flags in the Segment Descriptor (x86) 

 Read/Write 

 Descriptor Privilege Level 

 Executable 



Aside: Protection w/o Virtual Memory 

 Question: Do we need virtual memory for protection 

 

 Answer: No 

 

 Other ways of providing memory protection 

 Base and bound registers 

 Segmentation 

 

 None of these are as elegant as page-based access control 

 They run into complexities as we need more protection 
capabilites 

 Virtual memory integrates 
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Overview of Segmentation 

 Divide the physical address space into segments 

 The segments may overlap 
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Segmentation in Intel 8086 

 Intel 8086 (Late 70s) 

 16-bit processor 

 4 segment registers that store the base 
address 

 

 



Intel 8086: Specifying a Segment 

 There can be many segments 

 

 But only 4 of them are  
addressable at once 

 

 Which 4 depends on  
the 4 segment registers 

 The programmer sets 
the segment register value 

 

 Each segment is 64KB in size 

 Because 8086 is 16-bit 

1MB?

? 



Intel 8086: Translation 

 8086 is a 16-bit processor ... 

 How can it address up to 0xFFFFF (1MB)? 
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Intel 8086: Which Segment Register? 

 Q: For a memory access, how does the machine know 
which of the 4 segment register to use? 

 A: Depends on the type of memory access 

 

 

 

 

 
 

 Can be overridden: mov %AX,(%ES:0x1234) 

 x86 

Instruction 



Segmentation in Intel 80286 

 Intel 80286 (Early 80s) 

 Still a 16-bit processor 

 Still has 4 segment registers that ... 

 stores the index into a table of base addresses 

 not the base address itself 

 

Segment Descriptor 2 

Segment Descriptor 0 

Segment Descriptor 1 

Segment Descriptor N-1 

··
 

Segment Register (CS) 

Segment Register (DS) 

Segment Register (SS) 

Segment Register (ES) 

“Segment Selectors” “Segment Descriptor Table” 
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Intel 80286: Segment Descriptor 

 A segment descriptor describes a segment: 

1. BASE: Base address 

2. LIMIT: The size of the segment 

3. DPL: Descriptor Privilege Level (!!) 

4. Etc. 

0 63 

Segment Descriptor  



Issues with Segmentation 

 Segmented addressing creates fragmentation problems: 

 a system may have plenty of unallocated memory locations 

 they are useless if they do not form a contiguous region of a 
sufficient size 

 

 Page-based virtual memory solves these issues 

 By ensuring the address space is divided into fixed size 
“pages” 

 And virtual address space of each process is contiguous 

 The key is the use of indirection to give each process the 
illusion of a contiguous address space 
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Page-based Address Space 
 

 In a Paged Memory System: 

 PA space is divided into fixed size “segments” (e.g., 4kbyte),   
 more commonly known as “page frames” 

 VA is interpreted as page number and page offset 
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Fast Forward to Today (2014) 

 Modern x86 Machines 

 32-bit x86: Segmentation is similar to 80286 

 64-bit x86: Segmentation is not supported per se 
 Forces the BASE=0x0000000000000000 

 Forces the LIMIT=0xFFFFFFFFFFFFFFFF 

 But DPL is still supported 

 Side Note: Linux & 32-bit x86 

 Linux does not use segmentation per se 
 For all segments, Linux sets BASE=0x00000000 

 For all segments, Linux sets LIMIT=0xFFFFFFFF 

 Instead, Linux uses segments for privilege levels 

 For segments used by the kernel, Linux sets DPL = 0 

 For segments used by the applications, Linux sets DPL = 3 



Other Issues 

 When do we do the address translation? 

 Before or after accessing the L1 cache? 

 

 In other words, is the cache virtually addressed or 
physically addressed? 

 Virtual versus physical cache 

 

 What are the issues with a virtually addressed cache? 

 

 Synonym problem: 

 Two different virtual addresses can map to the same physical 
address  same physical address can be present in multiple 
locations in the cache  can lead to inconsistency in data 
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