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Abstract
For manyapplications,branch mispredictionsandcachemisses

limit a processor’s performanceto a level well below its peak
instruction throughput. A small fraction of static instructions,
whose behavior cannot be anticipated using current branch
predictors and caches, contribute a large fraction of such
performancedegrading events.This paper analyzesthe dynamic
instruction stream leading up to theseperformancedegrading
instructionsto identify the operations necessaryto executethem
early. Thebackward slice(thesubsetof theprogramthat relatesto
the instruction) of theseperformancedegrading instructions, if
small compared to the wholedynamicinstructionstream,can be
pre-executed to hide the instruction’s latency. To overcome
conservativedependenceassumptionsthat result in large slices,
speculation can be used, resulting in speculative slices.

Thispaperprovidesan initial characterizationof thebackward
slices of L2 data cache missesand branch mispredictions,and
shows the effectiveness of techniques, including memory
dependencepredictionandcontrol independence, for reducingthe
size of theseslices.Through the use of thesetechniques,many
slicescan be reducedto lessthan one tenth of the full dynamic
instruction streamwhenconsideringthe 512 instructionsbefore
the performance degrading instruction.

1  Introduction
Programperformanceis difficult to characterize.Programsdo

not performuniformly well or uniformly poorly. Ratherthey have
stretchesof goodperformancepunctuatedby performancedegrad-
ing events.The overall observed performanceof a given program
dependson the frequency of theseeventsandtheir relationshipto
one another and to the rest of the program.

Programperformanceis measuredby retirementthroughput.
Since retirement is sequential,the presenceof a long latency
instruction blocks retirement and degrades performance.The
eventswe speakof, therefore,are theselong latency, or perfor-
mancedegrading,instructions.Therearemany waysaninstruction
candegradeperformance,but branchmispredictionsand instruc-
tion anddatacachemissesaccountfor the majority. Not surpris-

ingly, microarchitecturaltechniqueshave focusedon reducingthe
frequency and observed latency of theseperformancedegrading
events.Althoughfrequency reductiontechniqueshave beeneffec-
tive, they do not comecloseto eliminatingtheeventscompletely.
At the sametime, more aggressive microarchitecturesmake the
opportunitycost(in termsof instructionretirementopportunities)
associated with an event that much greater.

A promisingsolutionto this problemis to complementthe fre-
quency reductiontechniqueswith a genericlatency tolerancetech-
nique, like pre-execution[22]. In general,pre-executionamounts
to guessingthe existence of a future performancedegrading
instructionandexecutingit (or whatwe think it will be)sometime
prior to its actualencounterin the machine,therebyat leastpar-
tially hiding its latency. In this paper, we arenot concernedwith a
particularpre-executionmechanismbut ratherwith the properties
of such instructionsand their relationshipto the program that
determine whether any pre-execution mechanism will be effective.

To beeffective with respectto a given instruction,a pre-execu-
tion techniqueneedsthreethings.First,atan initiation pointahead
of theinstruction’sexecution,thepre-executiontechniqueneedsto
know that theperformancedegradinginstructionwill beexecuted.
Second,it hasto know which other instructionscontribute to the
performancedegrading instruction. Finally, these contributing
instructionsmustnot comprisetheentireprogramup to thatpoint;
otherwise,pre-executionis tantamountto normalexecutionandno
latency hiding will be achieved.

Thekey to answeringall of thesequestionslies in thebackward
sliceof theperformancedegradinginstruction.Thebackwardslice
comprisesall of the instructionsin the programthat contribute,
eitherdirectly or indirectly, to its computation,eitherthroughval-
uesor controldecisions.Castin termsof this definition,thekey to
pre-executionis to minimize the sizeof the backward slice from
the initiation point to theperformancedegradinginstruction,with
respect to the size of the entire program over that same period.

Due to the prevalenceof ambiguouscontrol and data depen-
dences,conservative constructionof slicesleadsto slicesthat are
comparablein size to the full program.At the other extreme,a
slice canbe reducedto an arbitrarily small size,but the ability to
predict the behavior of the original program will be lost. We
exploretheregionbetweentheseextremes,usingspeculationtech-
niquesto minimize theslice’s sizewhile maximizingits ability to
accuratelypre-executean event. By observingprogrambehavior,
speculation can be applied only where it is likely to succeed.

In this paper, we focus on two issues.First, we perform an
empirical analysisto determinethe statisticalnatureof slicesof
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performancedegradinginstructions.Then,we explore techniques
for exploiting programstructureto speculatively reducethesizeof
slices that are too big to support pre-execution.

We perform this analysisby extracting the dynamicbackward
slicesfrom instructiontracesleadingup to instructionswhich fre-
quently causebranch mispredictionsor data cachemisses.We
classify the instructionsin the slice basedon the role they play:
value, address,existence,and control flow. This classificationis
described in detail in Section3.

Becauseof the differing naturesof each component,each
sub-sliceis optimized in isolation. First (Section5.1), the value
sub-sliceis shown to be small and close to the event except in
cases where recurrences (discussed in Section6.1) occur.

The size of the addresssub-slice (studied in Section5.2)
exceedsthatof thevaluesub-slicewhenbuilt conservatively, but it
canbeoptimizedeffectively by identifying stablememorydepen-
dencesandremoving addresscalculationsthroughspeculative reg-
ister allocation.Memory dependenceswhich cannotbe treatedin
this way oftenunnecessarilycontributesignificantoverheadto the
slice;in many casesthis overheadcanbeavoidedby carefulselec-
tion of where to initiate the pre-computation.

Control dependencesare found in slices for two purposes.
Thosethat dictatewhetherthe performancedegradinginstruction
will execute(which make up the existencesub-slicediscussedin
Section5.3)areinfrequentwhencontrolindependenceis exploited
andcanberemovedif thebranchis highly biased.Controldepen-
denceswhich resolve the dataflow (the control flow sub-slice
which is presentedin Section5.4) can be substantialand these
branchestendto be lessbiasedthanexistencebranches.Full opti-
mization of the control flow sub-slicerequiresanalysisto detect
equivalent paths.

In Section6, we briefly touch on someissuesrelatedto con-
structing slices as a whole before concluding in Section7.

2  Background and Related Work
Limit studies[8, 26] have shown that, in thepresenceof a per-

fect memorysystemandfully resolved control flow, theavailable
instruction level parallelism,even in integer programs,is often
many multiples of what is necessaryto saturatemodernproces-
sors.However, perfectmemorysystemsandpredictorscannotbe
realistically built, and processorsthereforetend to retire instruc-
tionsat only a fractionof their peakratedueto branchmispredic-
tionsandproblemswith instructionanddatavalueavailability. By

identifying the backward slices of instructionswhich contribute
significantlyto theCPI andpre-executingtheseslices,theperfor-
mance impact of these events can potentially be reduced.

2.1  All Instructions are not Created Equal
Performancedegradingeventsarenot distributedevenly across

staticinstructions.Previousstudies[1] have shown thata fraction
of static instructionsare responsiblefor the majority of cache
misses.Branchesdemonstratea similar behavior; particularstatic
branchesareharderto predictthanothers.Somerecentlyproposed
branch prediction mechanisms exploit this by partitioning
branchesbasedon predictability and allocatemore resourcesto
hard-to-predictbranches[7, 9]. Predictingthe particulardynamic
instancesof theseinstructionsthat degradeperformancehasbeen
shown to be possible with moderate accuracy [11, 16].

2.2  Program Slicing
Programslicing is a techniquethat wasproposedasan aid for

understandingprograms,specifically during debugging [27]. It
allows theuserto focuson theportionof theprogramresponsible
for a particularphenomenon.In this section,we briefly touchon
someof the major issuesin slicing that relateto this paper;more
details can be found in program slicing surveys [3, 24].

A sliceis expressedwith respectto acriterion, typically consist-
ing of a value(or a setof values)anda positionin theprogram.A
slicecontainsthesetof all statementswhich arerelatedto thecri-
terion.In this paper, thecriterion is alwaysa performancedegrad-
ing instruction, and the terms will be used as synonyms. The
backward slice consistsof all statementswhich could affect the
computationof thecriterion,anda forwardslicecontainsall state-
mentswhich could be affectedby the criterion.Figure1 shows a
smallexampleprogramandits backward (Figure1a)andforward
(Figure1b) slices.Pre-executionis concernedonly with backward
slices.

A static programslice containsall statementsin the program
that could affect any dynamicinstanceof the criterion. Dynamic
programslices(the focusof this paper)considera particularexe-
cution of the program(i.e., for a given input) and containonly
thosestatementsthat affect a particulardynamic instanceof the
criterion.

2.3  Pre-execution
An obvious approachto tolerating latency is to initiate long

latency operationsearly. Softwarememorypre-fetchinghasbeen
successfullypracticedfor decades,especiallyin scientificapplica-
tions. Techniquesfor pre-computingbranchoutcomes(including
prepare-to-branch,and hardware techniques[10, 20]) have like-
wisebeenproposed.Thegeneraltermpre-execution appliesto all
of these techniques,although the exact manifestationdepends
upon the particulartechnique.The compositionof the slice used
by a pre-executiontechniquedependsbothon thetechniquein use
as well as the event being pre-executed.

When using pre-executionto prefetchinstructions,the associ-
ated slice consistsof only the operationswhich resolve control
flow to theextent thatwe know whetheror not a block of instruc-

Figure 1. The backward (a) and forward (b) slices for an
example program using the value of i at statement 5 as the
criterion.

int i = 0;
int sum = 0;
while (i < 8) {
     sum += i;
      i ++;
}
print sum;

1.
2.
3.
4.
5.

6.

a) b) int i = 0;
int sum = 0;
while (i < 8) {
     sum += i;
      i ++;
}
print sum;

1.
2.
3.
4.
5.

6.



tions is going to be executed;this correspondsto the existence
sub-slicedescribedin Section3. Thesepre-fetchesarenon-bind-
ing, in that mis-speculation only causes cache pollution.

Data memoryvaluescan be similarly pre-fetched,but in this
casethe slice consistsof the operationsnecessaryto generatethe
cacheblock’s address.Thesepre-fetchescanalsobenon-binding.
The inclusionof theexistencesub-slicecanreducethenumberof
unused pre-fetches.

Pre-executionof branchesis like datamemorypre-fetchingin
thatthesliceneedsto computetheinput operandsof thebranchin
order to evaluatethe branch.Unlike the previous two cases,this
pre-executedbranch outcome(and perhapstarget) needsto be
boundto aparticulardynamicbranchinstanceto fully benefitfrom
thepre-execution.This processof bindingis non-trivial [5, 10,20,
22]. In general,it maybenecessaryto have a very accurateexist-
encesub-sliceto correctlycorrelatepre-executedbranchoutcomes
with branchesasthey arefetched.In addition,sincepre-executed
branchoutcomesoverridepredictedoutcomes,mis-speculationsin
pre-executioncan translateinto mis-predictedbranchesrequiring
the slice to be at least as accurate as the hardware predictor.

In this paper, we areconcernedwith identifying andoptimizing
thesebackwardslices.Typically, theidentificationis performedby
software, but hardware techniquesfor slice identification have

been proposedfor specific problem domains [19, 20]. Many
embodimentsof pre-executionarepossible;mostnotably, the use
of “subordinate”threads[5, 23,28] seemsto beanaturalfit. How-
ever, ratherthanfocuson a particularimplementation,we instead
studythe characteristicsof the slicesandtechniquesfor reducing
slice size which can benefit many implementations.

3  Four Components of a Slice
We find it usefulto logically breakupa sliceinto multiple com-

ponents,or sub-slices.Thiscategorizationis basedontheroleeach
instructionplays in the slice andsuggeststechniquesthat canbe
usedto reducethe size of slices.Many suchcategorizationsare
possible. Our categorization recognizes four sub-slices:

• Value (VAL)

• Address (ADR)

• Existence (EX)

• Control flow (CF)

The valuesub-sliceconsistsof the arithmeticand logic opera-
tions which directly manipulatevaluesthat areultimately usedto
computethe input operandsof thecriterion instruction.Given the
branchoutcomes(andhencethe dynamicinstructionstream)and
the resolutionof memorydependences,theseare the instructions
in the data dependence chain leading up to the criterion.

Figure 2. IllustrativeSlicingExample:Shownin high-level language source(a) andin Alphaassembly(b). Instruction13 (a frequently
mispredicted branch) servesas the criterion instruction for slicing. The dependences(D=data, A=address,C=control) between
instructionsare shownin (c); thedashedarc betweennodes12 and5 is required for possiblealiasingbetweenarraysF andG. Each
instructionis allocatedto a sub-slice(VAL=value, ADR=address,CF=control flow, EX=existence)basedon thechain of dependences
which leads from the criterion instruction to it, using the state machine shownin (d). The assemblyinstructionsare allocated to
sub-slices (e); note that, because two different paths lead to the non-memory instruction 4, it is in both the VAL and ADR sub-slices.

s8addq r10, r4, r11
ldq r12, 0(r11)
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s8addq r2, r3, r9
ldq r10, 0(r9)
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and r6, 0x18, r7
xor r7, 0x8, r7
bne r7, B:
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stq r5, 0(r4)5.
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ldq r5, 0(r4)

addq r5, 1, r5
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beq r1, A:1.

long long *F, *G;
if (condition == 0) {
    F[i] ++;
}
if ((flags & 0x18) == 0x8) {

 if (G[F[i]] != 0) {
 /* do something */

 }
}
....

beq r1, A:
s8addq r2, r3, r4
ldq r5, 0(r4)
addq r5, 1, r5
stq r5, 0(r4)
and r6, 0x18, r7
xor r7, 0x8, r7
bne r7, B:
s8addq r2, r3, r9
ldq r10, 0(r9)
s8addq r10, r4, r11
ldq r12, 0(r11)
bne r12, B:

# if (condition != 0) goto A:
# r4 = &F[i]
# load F[i] into r5
# increment r5
# store r5 into F[i]
# r7 = flags & 0x18
# r7 = (flags & 0x18) == 0x8
# if ((flags & 0x18) == 0x8) goto B:
# r9 = &F[i]
# load F[i] into r10
# r11 = &G[F[i]]
# load G[F[i]] into r12
# if (G[F[i]] == 0) goto B:

A:

....
B: ....
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B:
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Theaddresssub-sliceis thesetof instructionsinvolvedin calcu-
lating memoryaddressesfor the value sub-slice.We include the
loads and stores themselves with their address calculations
becauseof their immediateoffset.By computingtheseaddresses,
weidentify memorydependences(load/storepairs)whichcommu-
nicate values.

Branchinstructionsin slicescanplay two roles:existenceand
controlflow. An existencebranchdetermineswhetherthecriterion
instructionis going to be executed(i.e., thereexist pathsstarting
from that branchwhich include the criterion andthosewhich do
not include it). More precisely, existence branchesare not
post-dominated [17] by the criterion.

A control flowbranchhasmultiplepathswhich leadto thecrite-
rion instruction,but thosepathscontribute differently to the data
dependenceof theslice;hencethebranchmustberesolvedto cor-
rectly generate the inputs to the criterion instruction.

This categorization of a branchis specific to a criterion; the
samestaticbranchmay play different roles in differentslices,or
playno rolewhatsoever. If abranchdoesplayoneof theseroles,it
andtheinstructionsin its backwardsliceareput in theexistenceor
control flow sub-slices,accordingly. An indirect branchthat has
threeor more targetscould conceivably play both existenceand
control flow roles, simultaneously.

We allocate instructionsto sub-slicesbasedon the chain of
dependencesthatconnectsthemto thecriterioninstruction.Gener-
ally, two classesof dependencesarerecognized:dataandcontrol.
Datadependencesexist betweenaninstructionthatcreatesavalue
andaninstructionthatusesthevalue.A control dependenceexists
betweenan instructionanda branchif the outcomeof the branch
determineswhetheror not the instructiongetsexecuted.Our clas-
sification further sub-divides the classof datadependences.If a
datadependenceto a memory instructioncontributes to address
generation, we classify it as anaddress dependence.

Thesedependencesaredemonstratedin Figure2. Our example
program is shown both in high-level language(Figure2a) and
Alpha assembly(Figure2b) formats.In this example,the if state-
mentin line 6 (assemblystatement13) is a hardto predictbranch
which we would like to pre-execute,andhenceit becomesour cri-
terion instruction.Figure2c graphically shows the dependences
between the assemblyinstructions. Note that the dashedarc
betweeninstructions12 and5 mustbe conservatively includedif
we cannotprove thatarraysA andB do not overlap.Instructions2
through5 and9 through13arecontroldependenton theoutcomes
of branchinstructions1 and8, respectively. Dependenceswhose
sourceswereexecutedbeforeinstruction1 (i.e., sourcesof r1, r2,
r3, r6 and memory) are not shown.

A simple finite-statemachine(FSM) (shown in Figure2d) is
usedfor sub-sliceallocation.Startingat the criterion instruction
(in the “criterion” state),the type of dependenceedgetraversed
dictatesa transitionin the statemachine.Eachinstructionis allo-
catedto the sub-slicebasedon the stateof the FSM. The one
exception is that loads and stores are allocated to the same
sub-sliceastheiraddressdependencesdueto theimmediateoffset.

An instructioncanbepartof multiplesub-slicesif multipledepen-
dence paths exist between it and the criterion instruction.

Thesub-sliceallocationfor our exampleis shown in Figure2e.
Instruction4 is in both theVAL andADR sub-slices.This occurs
becausethereis a pathconsistingof only datadependencesfrom
instruction4 to the criterion,aswell asoneincluding an address
dependence.

4  Methodology
We studydynamicslicesfrom theSPEC95integerbenchmarks,

compiledfor the Alpha AXP usingCompaq’s optimizing C com-
piler andpeakflags (typically -archev6 -O4) with static linkage
(which is necessary for our simulator infrastructure).

We focuson instructionsthat causebranchmispredictionsand
cachemissesasthecriteria for theslicesgenerated.Usinga large
(64K bitsof storage)YAGSpredictor[9], a large(32K bitsof stor-
age)cascadedindirectbranchpredictor[7], anda 4-way set-asso-
ciative 1MB L2 datacache,we identified the static instructions
which causedthemostbranchmispredictionsandcachemissesin
full runsof thebenchmarks.For benchmarkswhich hadnegligible
numbersof L2 cachemisses,instructionswhich causedthe most
misses in a 2-way set-associative 64KB L1 data cache were
selected.

To keep the study manageable,only the worst behaving
branchesand memory instructions (less than 10 each) were
selected for each benchmark.These instructions account for
between7 and 60 percentof the events in the benchmarks.It
shouldbenotedthatthisselection,in many cases,biasesourslices
toward instructionswhich are in inner loops, but theseare the
instructionswhich representthe mostopportunity. For eachcrite-
rion instruction,we selecta region of 100M instructionsin length
in which thatinstructionis active (somebenchmarksrequiredmul-
tiple regions to be selected to cover different phases of execution).

At the coreof our infrastructureis a functionalsimulatorbuilt
from theAlpha AXP versionof theSimpleScalarToolkit [4]. This
simulatorgeneratestracesof theuserlevel portionsof the bench-
marks.Our simulatormakestwo passesover the instructions:the
first passcollectsstatisticsaboutthe dependencesandconstructs
and analyzescontrol-flow and control-dependency graphs.The
second pass gathers statistics about the slices.

We limit the scopeof our dynamicslicesto a window of 512
dynamicinstructionsleadingup to the criterion.We reasonthat a
pre-fetchdistanceof 512instructionsshouldenableontheorderof
a hundredcycles of latency to be hiddenwhile retiring multiple
instructions per cycle.

In the slices presented,artificial dependenceson the stack
pointerandglobal pointerareignored.For fairness,all stackand
global pointercomputationsareignoredwhencountingdistances
in thedynamicinstructionstream.Likewise,all nops(insertedby
the compiler for branchalignmentand schedulingpurposes)are
completely ignored.

Due to spacelimitations,we cannotincludeall of our data.We
have selectedspecificexamples,which we include as figures,to



demonstratetheimportantphenomena.We plot slicesshowing the
cumulative numberof instructionsin theslice (they axis)vs. dis-
tancefrom the criterion in the dynamicinstructionstream(the x
axis).For example,thepoint (512,50) on oneof theseplots indi-
catesthat only 50 of the 512 instructionsprecedingthe criterion
(or about10%) contribute to its execution.Theseplots includea
“100% line” to allow comparisonsto the full dynamicinstruction
streamup to thatpoint. In additionto explainingtheseexamplesin
thetext, we summarizedatanot includedin thefiguresto describe
general trends we have observed.

5  Results
Our analysis begins in Section5.1 with the VAL sub-slice

becausetheoperationsin thedatadependencechaindictatewhich
instructionsarefoundin theADR andCFsub-slices.Wefocusour
speculative techniqueson theADR, EX, andCF sub-slicesin Sec-
tions 5.2, 5.3, and5.4, respectively. Thesesub-slicesaccountfor
thevastmajorityof theinstructionsin aconservatively constructed
slice.

5.1  Value Sub-slices
In conservatively generatedslices,the valuesub-slicetypically

contributesthe smallestcomponentto a slice, andmany of these
instructionsare clusteredclose to the event. Figure3a shows a
VAL sub-slicefrom a singlestaticevent that is representative of
many of the slicesobserved in thesebenchmarks.Threecurves
mark the maximum,average,andminimum sizeof the sub-slice
over all dynamic instances(of a particular event-causingstatic
instruction) in the observed interval.

For thevastmajority of slicesobserved, theVAL sub-sliceis a
very small fraction(lessthan2% at a distanceof 512of thewhole
dynamic instruction stream).Typically, much, if not all, of the
sub-sliceis concentratednearthe criterion instruction(within the
first 10-20instructions).In general,thereis very little variability in
the size of the VAL sub-slice.

Figure3b shows a different static event where the maximum
slicesizeis muchlargerthaneithertheaverageor minimumsizes.
Whenthereis a lot of sizevariability in aVAL sub-slice,generally
it is dueto differentcontrol flow paths.In theabove instance,the
different behaviors are associated with different calling contexts.

In the rarecaseswhentheVAL sub-sliceis large, it is dueto a
recurrence.Figure3c shows a casewhereonefifth of our window
of 512 instructionsis in the VAL sub-slice.Recurrencesaredis-
cussed in Section6.1.

Thesmallsizeof VAL slicesis somewhatanartifactof ourdefi-
nition of the VAL sub-slice,but the generaltrendis supportedby
previousparallelismstudies[2, 12,26]. Becauseof thesmallsizes,
we arenot directly concernedwith furtherreducingthesizeof the
VAL sub-slice.As will be seenin the next sections,muchof the
computationin theseintegerapplicationsis presentto identify the
values on which to operate and which operations to perform.

5.2  Address Sub-slices
A loadin adynamicslicereadsavaluewhichwaseithercreated

beforetheslice began or storedby a storein the slice. In thefirst
case,the addressmust be generatedto retrieve the value from
memory; in the second,the addressis generatedto identify the
store which suppliesthe value. In many cases,it is difficult to
prove anything aboutthe communicationpatternsbetweenstores
and loads, leading to ambiguousmemory dependences.Before
dealingwith this ambiguity, we characterizethe ADR sub-slice
assumingan oracle that only includes the required loads and
stores. We call this the unambiguous ADR sub-slice.

The averagesize of thesesub-slicesis quite a bit larger than
VAL sub-slices.The slice shown in Figure4a is representative,
althoughthereis a lot of variationbetweenbenchmarksaswell as
within a benchmark.On average,unambiguousADR sub-slices
consist of 4-10% of the 512 instructions before an event.

Two othercharacteristicsaredemonstratedby Figure4a:a lot of
variability betweenmaximumand minimum slice sizes,and the
appearanceof agradualrampup(indicatinganevendistributionof
instructions from the slice). Figure4b shows a sampling of
dynamic instanceswhich make up the aggregate slice shown in
Figure4a.It canbeseenthat thespectrumbetweenminimumand
maximum is continuouslypopulatedrather than being concen-
tratedat the extremes.Also, the individual slicesare bursty (the
gradualrampshown in Figure4ais merelyanaggregatebehavior),
consistingof regionsthataffect thesliceseparatedby flat regions
which do not contribute.This is a reflectionof the fact thata pro-
gram is an interleaving of partially independent computations.

As previously mentioned,theunambiguousADR sub-slicesare
optimistic. In general,we cannotidentify which storescontribute
to the VAL sub-slicewithout computingall addresses.In fact,Figure 3. Dynamic sizes of value (VAL) sub-slices.
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withoutany information,therearetwo possiblepolicies:conserva-
tive (assumedependence)andnaive speculation(assumeindepen-
dence).The conservative policy assumesthat any storecould be
partof theslice,forcing all storeaddresscomputationsinto a con-
servatively largeADR sub-slice.Naivespeculationpredictsthatno
storeswill affect the slice, and suffers from data dependence
mis-speculation when stores should be included in the slice.

Figure4c demonstratesthe consequencesof the conservative
policy for thesamesliceconsideredin Figure4a.On average,the
ADR sub-slicehasincreasedto 30% of the full program(around
60% in the worst case),comparedto 5% for the unambiguous
ADR sub-slice.

Figure4d shows themis-speculationratefor thenaive specula-
tion (speculatealways)policy, asa functionof distancein dynamic
instructionsfrom thecriterion instruction(usingthesamesliceas
above). This rateshows the likelihoodthat at leastonestorethat
affectstheVAL slicewouldbeignored.Thisdatais somewhatpes-
simistic in that even if the storewould not changethe value in
memory (i.e., a silent store) it is marked as a mis-speculation.
Increasingthe pre-executiondistancerapidly increasesthe likeli-
hoodthat a memorycommunicationwill be requiredto compute
thecriterion.Largewindows arelikely to includeentirefunctions
andthereforeit is not uncommonfor valuesin theVAL sliceto be

savedto andrestoredfrom thestack.Therearesomesliceswhich
containnostoreswithin 512instructions,andtherearesomeslices
which are always misspeculated past a distance of 50.

5.2.1  Profiling Store Sets
Clearly, neither of thesenaive policies is sufficient. However

with some information about past behavior, the unambiguous
ADR sub-slice can be approximatedby a speculative ADR
sub-slice.Although memoryallows any storeto potentiallycom-
municatewith any load, in practicethe active dependencesare
only asmallsubsetof all possiblecommunicationarcs.Duringany
programexecution,a majority of static loadsare fed by a single
staticstore[6, 13,14]; therestarefedby asmallsetof stores.This
behavior seemsto be inherentto theprogram’s structure,because
the samedependencesare exercisedacrossdifferent datainputs.
Thissuggeststhatprofiling canbeusedto identify memorydepen-
dences with high accuracy, as proposed by Reinman, et al. [18].

Using theseprofiles,we canreducethe sizeof the ambiguous
ADR sub-slice.Storesin the dynamicinstructionstreamthat are
not in the store sets of any of the loads already in the ADR
sub-slicecanbeignored.Only whentheprofile is inaccuratedoes
a mis-speculation occur.

For mostbenchmarks,memorydependenceprofilesreducethe
size of the ADR sub-sliceto close to that of the unambiguous

Figure 4.Dynamic sizes of address (ADR) sub-slices.
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ADR sub-slice.On average,the ADR sub-slicesare lessthan10
instructionslarger than the unambiguousversionat a distanceof
512.Thefactthatthisdisparityis sosmallindicatesthatoftenonly
onestorefrom the storesetexists in the window of 512 instruc-
tions.

Typically, whenthe disparity is large, therearemany dynamic
instancesof the samestatic store in the window (becauseof a
loop), and the store set mechanismmust generateall of their
addressesto select the correct producer. For this reason,using
speculationto remove infrequentlyusedstoresfrom the storeset
providesonly modestbenefit.Usually, suchstoresdo not contrib-
ute significantlyto the storesetbecausethey arerarely executed.
However, the inducedmis-speculationrateis alsomodest(except
in casesof recurrencesdiscussedin Section6.1), implying that,in
mostcases,it is sufficient to identify the dominantdependences;
hence a sampling technique can be used.

Overall, storeset profiling is successfulat reducingthe ADR
sub-sliceto the size of the unambiguousADR sub-slice,but the
size of the ADR sub-slice still dominates that of the VAL
sub-slice.In thenext sectionwe exploit anothercommonbehavior
of memory dependences to further reduce ADR sub-slice size.

5.2.2  Speculative Register Allocation to Remove
Unnecessary Address Calculations

Previous researchhasshown that many memorydependences
aresatisfiedby themostrecentstore from its storeset[13, 15,18,
25]. In fact,staticloadscanbecategorizedinto two groups:those
that are very likely to be satisfiedby the most recentstorefrom
their storeset,andthosethatarevery unlikely. Figure5 shows the
distribution of theselikelihoodsacrossall benchmarks,weighted
by theexecutionfrequency of theassociatedstaticload.Thedistri-
bution is distinctly bimodal,in that highly-biased(at leasta 95%
bias) static instructionsrepresentalmost 90% of dynamic loads
executed.

This behavior is not limited to loadswhosestoresetsconsistof
a singlestaticstore(Figure5b),but existsalsofor loadswith mul-
tiple storesin their storesets(Figure5c).Giventheseextremeten-
dencies,it should be easy to categorize loads into these two
groups, even with incomplete data.

Oncecontrolflow hasbeenresolvedandthestoresthatcouldbe
in the ADR sub-slicehave beenidentified,loadsthat exhibit this
“most recentstore” behavior canbe accuratelypairedwith stores
without theneedfor addressgeneration[13, 15,18,25]. If a regis-
ter canbe (speculatively) allocatedfor the communicationin the
slice, thenboth the load andstorecanbe removed with all of the
instructionsin their addresscalculations.In most of the bench-
marks, this can significantly reduce the size of the ADR sub-slice.

Someof theslicesweconsiderconsistexclusively of loadswith
“most recentstore”behavior, causingtheADR sub-sliceto disap-
pearentirely. A majority of the remainingslicesaresignificantly
reduced,often cut in half. Figure6 shows the averagesizesof a
representative ADR sub-slicewhen constructedwith the tech-
niques discussed.

When a memory dependencedoes not have a “most recent
store”behavior, wehave foundthatit is ofteninefficient to include
its storesetin theslice.Two suchcasesareprevalent.If only one
dynamicinstanceof a storefrom thestoresetappearsin thewin-
dow, it is unlikely to causea mis-speculationif we ignore it (by
definition).Theothercommoncaseis whenmultiple storesarein
thewindow becausethey arein a tight loop (asshown in theillus-
trative examplein Figure7). In this case,addressgenerationand
loopcontrol(whichwouldneedto bein thefull sliceaswell) area

Figure 6. Address(ADR)sub-sliceaverage sizeby identificationtechnique. Conservative includesall store addresscalculations,store
sets includesonly thosefrom store setsof loads in the VAL sub-slice, and unambiguous includesonly thosestoreswhich affect the
criterion. Speculative register allocation removesthe load and store addresscalculation of memorydependenceswhich exhibit the
“most recent store” behavior.
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significantportion of the loop. Inclusion of theseinstructionsin
the slice cansignificantly impact its size;a bettersolutionin this
secondcasemaybeto initiate thepre-executionimmediatelyafter
the loop completes.This moreefficient slice comesat the costof
decreased pre-execution distance.

5.3  Existence Slices
Without control independenceanalysis,all branchtargetsneed

to beresolvedto determinewhetherthecriterionwill beexecuted.
In many casesthis requiresexecuting80%of the512 instructions
before a criterion. With control independenceanalysis,the EX
sub-sliceis much smallerbut still can be substantial,even if we
only considercontrol flow arcswhich areexercisedat leastonce.
On average,the EX sub-slicesarein the rangeof 10-12%(about
50-60 instructionsat a pre-fetchdistanceof 512), but can be as
high as20-30%(100-150instructionsat a distanceof 512) when
the criterion is in a loop.

Like VAL andADR sub-slices,the EX sub-slice’s instructions
tend to be clusteredtoward the criterion. This is not surprising
giventhatthefartherthecriterionis from abranch,themorelikely
it is that there is a reconvergent point between the two.

Oftenmorethanhalf of the instructionsin theEX sub-sliceare
memorydependences(in thesamevein astheADR sub-slice).By
applying our memorydependencetechniques,we can remove a
significantportionof these.Frequently, theremainingEX memory
dependencesare alreadypresentin the ADR sub-slice.For this
reason,the memorydependencesfrom the EX sub-sliceseldom
contribute significantly to the total size of the slice.

The samecannotbe said for the non-memorydependencesin
the EX sub-slice.In general,thereis little overlapbetweenthese
instructionsandany otherslice.They tendto directly contributeto
the size of the total slice.

The impactof the EX sub-sliceon the slice asa whole canbe
reducedby ignoringhighly biasedexistencebranches.We consid-

eredremoving brancheswith biasesgreaterthan 98 percentand
found that the benefitvariedbetweenbenchmarks.By exploiting
thisstatisticalor speculativecontrolindependence,aroundhalf the
sliceswe observed werereducedto onehalf to onethird of their
sizes. The other half were for the most part untouched.

One commonexistencebranchis a null pointer test beforea
dereference.Thisbranchcanberemovedby recognizingexception
conditionsas the end of a pre-execution.However, becausethe
associatedpointer value usually occurs in one of the other
sub-slices,this optimization does not significantly reducetotal
slice size.

5.4  Control Flow Slices
In theconservativecase,theCFsub-sliceis thelargestcontribu-

tor to many of thebackwardslicesandis alsotheonewe have had
the leastsuccessoptimizing due to the limitations of our current
infrastructure.Thereis significantvariability; a numberof criteria
have non-existentCF sub-slices,but in someof thecontrol-inten-
sive benchmarksthe conservative CF sub-slicecanbe aslarge as
50 to 60 percent of the 512 instruction window we considered.

Similar to theEX caseabove,theCFsub-slicesincludememory
dependences,and their contributions can likewise be reduced
using the techniquespresentedin Section5.2. Unlike the EX
sub-slice, however, speculating that highly biased branches
(greaterthan98%bias)will alwaysfollow their biasdoesnot lead
to a substantialreductionof thesub-slicesize,in general.In many
cases,thesebranchesare lessbiased,so a larger mis-speculation
ratemustbetoleratedfor slicereduction.Also, unlike VAL, ADR,
andEX sub-sliceswhich tendto bemoreconcentratednearthecri-
terion, CF sub-slicesare more evenly distributed throughoutthe
dynamic instruction stream.

Uponcloserinspection,we determinedthatsomeof thecontrol
dependencesthat we identified were falsedependences.In these
cases,instructionsthatarecontroldependenton thebranchappear
to bepartof theslice,but all pathsfrom thebrancharesymmetric
with respectto thecriterion.A commonexampleof this is acondi-
tional functioncall (shown in Figure8) which savesandrestoresa
register value in the slice. The function call performsa net null
operationon the register, but our current infrastructurecannot
detectthis. We have identified other lesstrivial instancesof this
phenomenaby inspectingslicesby hand,but we have not been
able to quantify the effect of these false dependences.

6  Discussion
In this section,we briefly discusssomecharacteristicsof the

slices and the process of constructing slices.

Figure 8. Exampleof a falsecontrol dependence. Both paths
throughtheexampleare equivalentwith respectto A, because
the path throughfunction() has a net null effect onA.

A = ....;
if (B) {
     function();
}
if (A) {

function() {
     save A;
     .....
     restore A;
}CRITERION

Figure 7. Illustrative exampleof an inefficient slice dueto a
memorydependence(sourcecode(a) andbackward slice(b)).
Assumingj is evenly distributed between0 and (N-1), each
store in the loop has a 1/N chance of contributing to the
criterion. Including the loop in the slice impactsthe slice’s
size, but removing it entirely causesmis-speculationif a
pre-executionis initiated before (A). Initiating it at (B) avoids
this trade-off, but reduces the latency that can be tolerated.

j = ....; k = ....;

int A[N];
for (int i = 0 ; i < N ; i ++ ) {
     A[i] = i;
}
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6.1  Overlapping Slices and Recurrences
It is not uncommonfor the backward slicesof more than one

criteriato shareinstructions.In thesecases,it maybebeneficialto
merge the slicesto reducethe pre-executionoverhead.A special
caseof this is when one criterion is in the slice of a second,in
which casethe secondcriterion’s slice is often a supersetof the
first criterion’s slice.An unpredictablebranchbasedon the result
of a cache-missingload is a repeatingtheme.Sincethe latency of
thesetwo events is serialized,the initiation of the pre-execution
must be scheduled appropriately.

A specialcaseof overlappingslicesis whenmultipleslicesfrom
the samestatic criterion overlap. This occurswhen a criterion
instructionis in a tight loop. Eachiterationwill have oneor more
recurrencesthat appearin its backward slice. Theserecurrences
canbeaddress,data,or control.They canmake thebackwardslice
look deceptively large,but in sucha slicetherearemany instances
of the criterion evaluated,so the incrementalslice size is small
(less than or equal to the size of a loop iteration).

Theseincrementalslicescanonly be exploited if we enablea
pre-execution to evaluate the criterion multiple times. At this
point, thedecisionmustbemadeasto how many iterationsshould
be executed.Typically, highly biasedbranchesare speculatively
removedfrom theexistencesub-slice,but if the loop back-edgeis
removed, the pre-execution could iterate forever. To reducethe
incremental slice size, complicated existence slices can be
replacedwith simple control which executesa fixed numberof
iterations(eitherusinga loopor staticunrolling),or feedbackfrom
the main computationcan be used to throttle or terminate a
pre-execution computation.

When the incrementalbackward slice makes up a significant
portionof a loop iteration,thebenefitof latency tolerancemustbe
derived from the distancebetweenthe initiation of the pre-execu-
tion and the first iteration of the loop. If the long latency event
itself is partof therecurrence(asin pointerchasing),thentheiniti-
ationmustbescheduledto toleratetheseriallatencies.Suchtech-
niques, including root jumping, are discussed in [21].

Speculationhasto beusedvery carefullyon dependencesin the
recurrence.If an incorrect value is computedon the recurrence
path, then it will be propagated to all future iterations.

6.2  Traditional Optimizations
Oncea slice hasbeenreducedto its essentialelements,tradi-

tional compiler techniquescan be usedto further optimize it. In
addition to the speculative register allocation discussed in
Section5.2.2,we have seenopportunitiesfor loop invariantcode
motion,theremoval of registermoves,strengthreduction,andthe
conversion of indirect branchesinto direct branches.In many
instances,thesetechniquescould not be applied to the original
program due to ambiguousmemory dependences,infrequently
executed branches, or register pressure.

Similarly, dynamic compilation techniquescould be used to
generatesliceswhichexploit invariantrun-timevalues.Sincethese
pre-executioncomputationsarespeculative, it is not necessaryto
verify that these run-time values are truly constant.

6.3  Identifying Slices
The effort requiredto identify slicesdependssignificantly on

many aspectsof aprogram,not leastof which is its representation.
In thispaper, we tooka low-level approach,analyzingtheprogram
at theinstructionlevel, asaprocessormightanalyzeit. Without the
high-level informationavailable from the sourcelevel, our infra-
structureneededto rediscover someof the information that was
known to the compiler.

This processis occasionallyaggravated by the compiler; the
mostnoteworthy exampleis codereplication.Techniqueslike loop
unrolling andtraceschedulingrequirethesliceconstructionalgo-
rithm to reconcilethereplicatedblockswith eachother. Also, it is
not uncommonfor the criterion instructions to be replicated,
potentially requiring multiple slices to pre-executewhat is logi-
cally a single operation.Only when the different instancesof a
block have radically differentbehavior (with respectto the crite-
rion) doesthe slice benefit from such replication.Programmers
canlikewisebea sourceof replicationif they unroll loopsby hand
or otherwise replicate code.

The slice constructionroutine operatesmost efficiently on the
smallestrepresentationof the program.This requirementoften
conflictswith many performanceoptimizationsperformedby the
compiler.

7  Conclusion
Instructionswhosebehavior cannotbe anticipatedby branch

predictorsor cachescan significantly degradeprocessorperfor-
mance.In the future, this will be further aggravatedasprocessor
microarchitecturecontinuesthe trend to higherclock speedsand
deeperpipelines.Thisstudyfindsthat,in many cases,thebehavior
of theseinstructionscanbe representedby a reducedform of the
program,specializedto computetheoutcomeof theseinstructions.
If executedin parallelwith thewholeprogram,thesereducedpro-
gramscaninitiate long latency eventsearlysothatthey have com-
pletedby the time they are encounteredby the whole program’s
execution.

These reducedprogramsare constructedby identifying the
backwardsliceof theinstructionto bepre-executed.In many inte-
ger benchmarks,the conservative backward slice consistsof a
large fraction of the program.The key to reducingslice size is
speculation;by treatingtheresultof apre-executionasonly ahint,
infrequentandambiguousdependencescanbeignored.This spec-
ulation must be guided by profiling the application to identify
dominant paths and dependenciesand by analysis to coalesce
paths which are equivalent with respect to the slice.

By exploiting control-independence,highly biasedbranches,
andthe stablenatureof load-storedependences,we wereable to
reducemany slicesdown to lessthan 10% of the full program’s
dynamicinstructionstreamfor thewindow of 512instructionswe
considered.In almostall cases,mis-speculationratesbelow 5%
weremaintained.Thereweresomeslicesfor which thetechniques
we investigatedwere insufficient, often due to complex memory



dependencesor sliceswhich necessitatedmuchof thecontrolflow
to be resolved.

The techniquesconsideredhereareby no meansan exhaustive
list. Future work includes investigating if additional program
behaviorsandspeculationtechniquescanbeusedto furtherreduce
theseslices.Path profiles might allow further refinementof the
control flow sub-sliceby enablingdifferent instancesof the same
static branchto be treateddifferently. Also, value predictionhas
the potential to breakdata dependences,possibly removing full
computation chains from the slice.
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