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Abstract

For manyapplications branc mispedictionsand cache misses
limit a processors performanceto a level well below its peak
instruction throughput. A small fraction of static instructions,
whose behavior cannot be anticipated using current branch
predictors and cadhes, contribute a large fraction of sud
performancedegrading events.This paper analyzesthe dynamic
instruction stream leading up to these performancedegrading
instructionsto identify the operations necessaryto executethem
early. Thebadkward slice (the subsebf the programthatrelatesto
the instruction) of theseperformancedegrading instructions, if
small compaed to the whole dynamicinstruction stream,can be
pre-executed to hide the instruction’s latency To overcome
conservativedependencassumptionghat resultin large slices,
speculation can be usedsulting in speculative slices.

This paperprovidesan initial characterizationof the backward
slices of L2 data cache missesand brandh mispedictions,and
shows the effectiveness of tedniques, including memory
dependenceredictionand contol independencdor reducingthe
size of theseslices. Through the use of thesetecniques,many
slicescan be reducedto lessthan one tenth of the full dynamic
instruction streamwhen consideringthe 512 instructionsbefore
the performance dgading instruction.

1 Introduction

Programperformances difficult to characterizeProgramsdo
not performuniformly well or uniformly poorly. Ratherthey have
stretche®f goodperformanceunctuatedy performancelegrad-
ing events.The overall obsened performanceof a given program
dependn the frequeng of theseeventsandtheir relationshipto
one another and to the rest of the program.

Programperformanceis measurecby retirementthroughput.
Since retirementis sequential,the presenceof a long lateny
instruction blocks retirement and degrades performance.The
eventswe speakof, therefore,are theselong lateng, or perfor-
mancedegrading,instructions Therearemary waysaninstruction
candegradeperformanceput branchmispredictionsandinstruc-
tion and datacachemissesaccountfor the majority. Not surpris-

ingly, microarchitecturatechniqueshave focusedon reducingthe
frequeny and obsenred lateny of theseperformancedegrading
events.Although frequeng reductiontechniquesave beeneffec-
tive, they do not comecloseto eliminatingthe eventscompletely
At the sametime, more aggressie microarchitecturesnake the
opportunitycost(in termsof instructionretirementopportunities)
associated with arvent that much greater

A promisingsolutionto this problemis to complementhe fre-
queng reductiontechniquesvith agenericlateng toleranceech-
nigue, like pre-execution[22]. In general pre-executionamounts
to guessingthe existence of a future performancedegrading
instructionandexecutingit (or whatwe think it will be)sometime
prior to its actualencounterin the machine therebyat leastpar-
tially hiding its lateng. In this paper we arenot concernedvith a
particularpre-executionmechanisbut ratherwith the properties
of suchinstructionsand their relationshipto the programthat
determine whether gmpre-execution mechanism will befettive.

To be effective with respecto a giveninstruction,a pre-execu-
tion techniqueneedshreethings.First, ataninitiation pointahead
of theinstructions execution the pre-executiontechniqueneedgo
know thatthe performancelegradinginstructionwill be executed.
Second,t hasto know which otherinstructionscontrikute to the
performancedegrading instruction. Finally, these contrituting
instructionsmustnot comprisethe entireprogramup to thatpoint;
otherwise pre-executionis tantamounto normalexecutionandno
lateng hiding will be achiged.

Thekey to answeringall of thesequestiondiesin the backward
sliceof the performancalegradinginstruction.Thebackwardslice
comprisesall of the instructionsin the programthat contrikute,
eitherdirectly or indirectly, to its computationgitherthroughval-
uesor controldecisionsCastin termsof this definition,thekey to
pre-executionis to minimize the size of the backward slice from
theinitiation point to the performancelegradinginstruction,with
respect to the size of the entire progrararahat same period.

Due to the prevalenceof ambiguouscontrol and data depen-
dencesgconsenrative constructionof slicesleadsto slicesthatare
comparablen sizeto the full program.At the other extreme,a
slice canbe reducedto an arbitrarily small size, but the ability to
predict the behaior of the original programwill be lost. We
exploretheregion betweertheseextremesusingspeculatiortech-
niguesto minimize the slice’s sizewhile maximizingits ability to
accuratelypre-executean event. By observingprogrambehaior,
speculation can be applied only where it iglykto succeed.

In this paper we focus on two issues.First, we perform an
empirical analysisto determinethe statisticalnatureof slices of



performancedegradinginstructions.Then,we explore techniques
for exploiting programstructureto speculatrely reducethe sizeof
slices that are too big to support pseeution.

We perform this analysisby extracting the dynamicbackward
slicesfrom instructiontracesleadingup to instructionswhich fre-
quently causebranch mispredictionsor data cachemisses.We
classify the instructionsin the slice basedon the role they play:
value, addressgxistence,and control flow. This classificationis
described in detail in Sectidh

Becauseof the differing naturesof each component,each
sub-sliceis optimizedin isolation. First (Section5.1), the value
sub-sliceis shown to be small and closeto the event exceptin
cases where recurrences (discussed in Segtigroccur

The size of the addresssub-slice (studied in Section5.2)
exceedghatof thevaluesub-slicewhenbuilt conseratively, but it
canbe optimizedeffectively by identifying stablememorydepen-
dencesandremoving addressalculationghroughspeculatie reg-
ister allocation.Memory dependencewhich cannotbe treatedin
this way often unnecessarilgontrikute significantoverheado the
slice;in mary caseghis overheaccanbe avoidedby carefulselec-
tion of where to initiate the pre-computation.

Control dependencesre found in slices for two purposes.
Thosethat dictatewhetherthe performancedegradinginstruction
will execute(which make up the existencesub-slicediscussedn
Section5.3)areinfrequentwhencontrolindependencis exploited
andcanberemovedif the branchis highly biased Controldepen-
denceswhich resohe the dataflav (the control flow sub-slice
which is presentedn Section5.4) can be substantialand these
branchegendto be lessbiasedthanexistencebranchesFull opti-
mization of the control flow sub-slicerequiresanalysisto detect
equvalent paths.

In Section6, we briefly touch on someissuesrelatedto con-
structing slices as a whole before concluding in Segtion

2 Background and Related Work

Limit studies[8, 26] have shawvn that,in the presencef a per-
fect memorysystemandfully resoled control flow, the available
instruction level parallelism,even in integer programs,is often
mary multiples of what is necessaryo saturatemodernproces-
sors.However, perfectmemorysystemsand predictorscannotbe
realistically built, and processorghereforetendto retire instruc-
tionsat only afractionof their peakratedueto branchmispredic-
tionsandproblemswith instructionanddatavalueavailability. By

a) 1. liRti=0: b) 1. inti=o:
2. intsum = 0; 2. intsum =0;
3. while (i< 8) { 3. while (i< 8) {
4, sum +=i; 4, sum +=i;
5. 5.
} }
6. print sum; 6. print sum;

Figure 1. The backward (a) and forward (b) slices for an
example program using the value of i at statement 5 as the
criterion.

identifying the backward slices of instructionswhich contritute
significantlyto the CPl and pre-executingtheseslices,the perfor-
mance impact of theseents can potentially be reduced.

2.1 All Ingtructionsare not Created Equal

Performancealegradingeventsare not distributed evenly across
staticinstructions Previous studies[1] have shovn thata fraction
of static instructionsare responsiblefor the majority of cache
misses Branchesdemonstrate similar behaior; particularstatic
branchesreharderto predictthanothers.Somerecentlyproposed
branch prediction mechanisms exploit this by partitioning
branchesbasedon predictability and allocate more resourcego
hard-to-predicbranched?7, 9]. Predictingthe particulardynamic
instance®f theseinstructionsthat degradeperformanceéhasbeen
shawn to be possible with moderate accyrficl, 16].

2.2 Program Slicing

Programslicing is a techniquethat was proposedasan aid for
understandingprograms, specifically during dehugging [27]. It
allows the userto focuson the portion of the programresponsible
for a particularphenomenonln this section,we briefly touchon
someof the majorissuesin slicing that relateto this paper;more
details can be found in program slicing sys/[3, 24].

A sliceis expressedvith respecto acriterion, typically consist-
ing of avalue(or a setof values)anda positionin the program A
slice containsthe setof all statementsvhich arerelatedto the cri-
terion. In this paper the criterionis alwaysa performancedegrad-
ing instruction, and the terms will be used as synoryms. The
backward slice consistsof all statementsvhich could affect the
computatiorof the criterion,anda forward slice containsall state-
mentswhich could be affectedby the criterion. Figurel shows a
small exampleprogramandits backward (Figurela) andforward
(Figurelb) slices.Pre-eecutionis concernednly with backward
slices.

A static programslice containsall statementsn the program
that could affect ary dynamicinstanceof the criterion. Dynamic
programslices(the focus of this paper)considera particularexe-
cution of the program(i.e., for a given input) and containonly
thosestatementghat affect a particulardynamicinstanceof the
criterion.

2.3 Pre-execution

An obvious approachto tolerating lateny is to initiate long
lateny operationsearly Software memorypre-fetchinghasbeen
successfullypracticedfor decadesgspeciallyin scientificapplica-
tions. Techniquedor pre-computingoranchoutcomes(including
prepare-to-branchand hardware techniqueq10, 20]) have like-
wise beenproposedThe generalterm pre-execution appliesto all
of thesetechniques,although the exact manifestationdepends
uponthe particulartechnique.The compositionof the slice used
by a pre-executiontechniquedepend$othon thetechniqudn use
as well as thevent being presecuted.

When using pre-executionto prefetchinstructions,the associ-
ated slice consistsof only the operationswhich resole control
flow to the extentthatwe know whetheror not a block of instruc-



tions is going to be executed;this correspondgo the existence
sub-slicedescribedn Section3. Thesepre-fetchesare non-bind-
ing, in that mis-speculation only causes cache pollution.

Data memory valuescan be similarly pre-fetchedbut in this
casethe slice consistsof the operationsecessaryo generateghe
cacheblock’s addressThesepre-fetchesanalsobe non-binding.
Theinclusionof the existencesub-slicecanreducethe numberof
unused pre-fetches.

Pre-executionof brancheds like datamemory pre-fetchingin
thatthe slice needso computetheinput operandof the branchin
orderto evaluatethe branch.Unlike the previous two casesthis
pre-executed branch outcome (and perhapstarget) needsto be
boundto a particulardynamicbranchinstanceo fully benefitfrom
the pre-execution.This procesf bindingis non-trivial [5, 10, 20,
22]. In generaljt may be necessaryo have a very accurateexist-
encesub-sliceto correctlycorrelatepre-executedoranchoutcomes
with branchesasthey arefetched.In addition,sincepre-executed
branchoutcomesverridepredictedoutcomesmis-speculationg
pre-ecutioncantranslateinto mis-predictedbranchegequiring
the slice to be at least as accurate as the laaedpvedictar

In this paper we areconcernedvith identifying andoptimizing
thesebackwardslices.Typically, theidentificationis performecdby
software, but hardware techniquesfor slice identification have

been proposedfor specific problem domains [19, 20]. Many

embodiment®f pre-executionare possible;mostnotably the use
of “subordinate’threadq5, 23, 28] seemdo bea naturalfit. How-

ever, ratherthanfocuson a particularimplementationwe instead
studythe characteristicef the slicesandtechniquedor reducing
slice size which can benefit maimplementations.

3 Four Components of a Slice

We find it usefulto logically breakup a sliceinto multiple com-
ponentspr sub-slicesThis cateyorizationis basedntherole each
instructionplaysin the slice and suggestsechniqueghat canbe
usedto reducethe size of slices.Many such cateyorizationsare
possible. Our cagmrization recognizes four sub-slices:

* Value (\AL)

® Address (ADR)
* Existence (EX)
® Control flov (CF)

The value sub-sliceconsistsof the arithmeticandlogic opera-
tions which directly manipulatevaluesthat are ultimately usedto
computethe input operandf the criterion instruction.Giventhe
branchoutcomegand hencethe dynamicinstructionstream)and
the resolutionof memorydependencesheseare the instructions
in the data dependence chain leading up to the criterion.

a
) 1.long long *F, *G; b)

2. if (condition == 0) {
3. F[i] ++;

4.}

5. if ((flags & Ox18) == 0x8) {
6. If (G[FII]] 1= 0) {

7. /* do something */
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beqrl, A: # if (condition != 0) goto A:
s8addq r2,r3,r4  #rd = &FJi]

Idq r5, 0(r4) # load F[i] into r5

addqr5, 1, r5 # increment r5

stq r5, 0(r4)
and r6, 0x18, r7
xor r7, 0x8, r7
bne r7, B:

# stoe r5 into Fi]

#r7 = flags & Ox18

# 17 = (flags & 0x18) == 0x8

# if ((flags & 0x18) == 0x8) goto B:
s8addq r2,r3,r9 #r9 = &FJi]

.1dg r10, 0(r9) # load FI[i] into r10

. s8addq r10, r4, r11# r1l = &G[F][i]]

.ldq r12, 0(r11) # load G[F[i]] into r12

. bnerl2, B: # if (G[F[i]] == 0) goto B:

) 1. beqrl, A CF

2. sB8addqrz, r3,r4
3. ldgr5, 0(r4) ADR

[(AT8ddq TS 5 vauaor]
5. stqr5, 0(r4) ADR

6. and r6, 0x18, r7
7. Xorr7,0x8,r7

8. bner7, B:

9. s8addqgrz, r3, r9

10. Idq r10, 0(r9)

11. s8addq r10, r4, r11
12.1dgrl12, 0(r11) ADR
13. bnerl2, B:  Criterion

Figure 2. lllustrative Slicing Example:Shownin high-level language souice (a) andin Alphaassemblyb). Instruction13 (a frequently
mispedicted branch) servesas the criterion instruction for slicing. The dependence¢D=data, A=address, C=control) between
instructionsare shownin (c); the dashedarc betweemodes12 and5 is required for possiblealiasing betweerarraysF and G. Each
instructionis allocatedto a sub-slice(VAL=value, ADR=address,CF=control flow, EX=existencepasedon the chain of dependences
which leads from the criterion instruction to it, using the state madine shownin (d). The assemblyinstructionsare allocated to
sub-slices (e); note that, because twdednt paths lead to the non-memory instruction 4, it is in both Aheavid ADR sub-slices.



Theaddresssub-slices thesetof instructionsnvolvedin calcu-
lating memoryaddresse$or the value sub-slice.We include the
loads and stores themseles with their address calculations
becausef theirimmediateoffset. By computingtheseaddresses,
we identify memorydependence@oad/storgpairs)which commu-
nicate \alues.

Branchinstructionsin slicescanplay two roles: existenceand
controlflow. An existencebranchdeterminesvhetherthe criterion
instructionis going to be executed(i.e., thereexist pathsstarting
from that branchwhich include the criterion and thosewhich do
not include it). More precisely existence branchesare not
post-dominated [17] by the criterion.

A control flow branchhasmultiple pathswhich leadto the crite-
rion instruction,but thosepathscontritute differently to the data
dependencef theslice; hencethe branchmustberesohedto cor-
rectly generate the inputs to the criterion instruction.

This categorization of a branchis specificto a criterion; the
samestatic branchmay play differentrolesin differentslices,or
play norole whatsoeer. If abranchdoesplay oneof theseroles,it
andtheinstructionsn its backwardsliceareputin the existenceor
control flow sub-slices;accordingly An indirect branchthat has
three or more targets could concevably play both existenceand
control flow roles, simultaneously

We allocateinstructionsto sub-slicesbasedon the chain of
dependencethatconnectghemto thecriterioninstruction.Gener-
ally, two classe®f dependencearerecognizeddataandcontrol.
Data dependencesxist betweeraninstructionthatcreatesa value
andaninstructionthatusesthevalue.A control dependencexists
betweenan instructionanda branchif the outcomeof the branch
determinesvhetheror not the instructiongetsexecuted Our clas-
sification further sub-dvides the classof datadependencedf a
datadependencéo a memory instruction contributesto address
generation, we classify it as address dependence

Thesedependencearedemonstrateih Figure2. Our example
programis shovn both in high-level language(Figure2a) and
Alpha assemblyFigure2b) formats.In this example,theif state-
mentin line 6 (assemblystatement.3) is a hardto predictbranch
which we would lik e to pre-execute andhenceit becomeour cri-
terion instruction. Figure2c graphically shovs the dependences
betweenthe assemblyinstructions. Note that the dashedarc
betweeninstructions12 and5 mustbe conseratively includedif
we cannotprove thatarraysA andB do notoverlap.Instructions2
through5 and9 through13 arecontroldependenbn the outcomes
of branchinstructionsl and 8, respectiely. Dependenceshose
sourcesvereexecutedbeforeinstructionl (i.e., sourcef rl, r2,
r3, r6 and memory) are not sivo.

A simple finite-statemachine(FSM) (shavn in Figure2d) is
usedfor sub-sliceallocation. Starting at the criterion instruction
(in the “criterion” state),the type of dependencedgetraversed
dictatesa transitionin the statemachine Eachinstructionis allo-
catedto the sub-slicebasedon the state of the FSM. The one
exception is that loads and stores are allocatedto the same
sub-sliceastheir addresslependencedueto theimmediateoffset.

An instructioncanbe partof multiple sub-slicesf multiple depen-
dence pathsxést between it and the criterion instruction.

The sub-sliceallocationfor our exampleis shavn in Figure2e.
Instruction4 is in boththe VAL andADR sub-slicesThis occurs
becausehereis a path consistingof only datadependenceom
instruction4 to the criterion, aswell asoneincluding an address
dependence.

4 Methodology

We studydynamicslicesfrom the SPEC95ntegerbenchmarks,
compiledfor the Alpha AXP using Compags optimizing C com-
piler and peakflags (typically -archev6 -O4) with staticlinkage
(which is necessary for our simulator infrastructure).

We focus on instructionsthat causebranchmispredictionsand
cachemissesasthe criteria for the slicesgeneratedUsing a large
(64K bits of storage)YAGSpredictor[9], alarge (32K bits of stor-
age)cascadedndirect branchpredictor[7], anda 4-way set-asso-
ciative 1IMB L2 datacache,we identified the static instructions
which causedhe mostbranchmispredictionsandcachemissesn
full runsof thebenchmarksi-or benchmarksvhich hadnegligible
numbersof L2 cachemisses jnstructionswhich causedhe most
missesin a 2-way set-associate 64KB L1 data cache were
selected.

To keep the study manageable,only the worst behaing
branchesand memory instructions (less than 10 each) were
selectedfor each benchmark. These instructions account for
between7 and 60 percentof the eventsin the benchmarksit
shouldbe notedthatthis selectionjn mary casesbiaseur slices
toward instructionswhich are in inner loops, but theseare the
instructionswhich representhe mostopportunity For eachcrite-
rion instruction,we selecta region of 100M instructionsin length
in whichthatinstructionis active (somebenchmarksequiredmul-
tiple regions to be selected tovar diferent phases ofecution).

At the core of our infrastructureis a functional simulatorbuilt
from the Alpha AXP versionof the SimpleScalaioolkit [4]. This
simulatorgeneratesracesof the userlevel portionsof the bench-
marks.Our simulatormakestwo passe®ver the instructions:the
first passcollectsstatisticsaboutthe dependenceand constructs
and analyzescontrol-flov and control-dependernyc graphs. The
second passaghers statistics about the slices.

We limit the scopeof our dynamicslicesto a window of 512
dynamicinstructionsleadingup to the criterion. We reasorthata
pre-fetchdistanceof 512instructionsshouldenableon the orderof
a hundredcycles of lateny to be hiddenwhile retiring multiple
instructions perycle.

In the slices presented artificial dependence®n the stack
pointerandglobal pointerareignored.For fairnessall stackand
global pointercomputationsare ignoredwhen countingdistances
in the dynamicinstructionstream Lik ewise, all nops(insertedby
the compiler for branchalignmentand schedulingpurposesyre
completely ignored.

Dueto spacdimitations, we cannotincludeall of our data.We
have selectedspecificexamples,which we include as figures, to



demonstratéhe importantphenomenaie plot slicesshaving the
cumulatve numberof instructionsin the slice (they axis) vs. dis-

tancefrom the criterion in the dynamicinstructionstream(the x

axis). For example,the point (512, 50) on one of theseplotsindi-

catesthat only 50 of the 512 instructionsprecedingthe criterion
(or about10%) contrikute to its execution. Theseplots include a
“100% line” to allow comparisondo the full dynamicinstruction
streamupto thatpoint. In additionto explainingtheseexamplesin

thetext, we summarizedatanot includedin thefiguresto describe
general trends we t1@ obsered.

5 Resaults

Our analysis begins in Section5.1 with the VAL sub-slice
becausehe operationsn the datadependencehaindictatewhich
instructionsarefoundin the ADR andCF sub-slicesWe focusour
speculatie techniqueonthe ADR, EX, andCF sub-slicesn Sec-
tions 5.2, 5.3, and 5.4, respectiely. Thesesub-slicesaccountfor
thevastmajority of theinstructionsn a conseratively constructed
slice.

5.1 Value Sub-dlices

In conseratively generatealices,the value sub-slicetypically
contritutesthe smallestcomponento a slice, and mary of these
instructionsare clusteredclose to the event. Figure3a shavs a
VAL sub-slicefrom a single static event that is representatie of
mary of the slicesobsered in thesebenchmarksThree curves
mark the maximum,average,and minimum size of the sub-slice
over all dynamicinstances(of a particular event-causingstatic
instruction) in the obseed intenal.

| a) A representative VAL sub-slice
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Figure 3. Dynamic sizes of value (VAL) sub-dlices.

For the vastmajority of slicesobsened,the VAL sub-sliceis a
very smallfraction (lessthan2% at a distanceof 512 of the whole
dynamic instruction stream). Typically, much, if not all, of the
sub-sliceis concentratedhearthe criterion instruction(within the
first 10-20instructions)In generalthereis verylittle variability in
the size of the XL sub-slice.

Figure3b shaws a different static event where the maximum
slicesizeis muchlargerthaneitherthe averageor minimumsizes.
Whenthereis alot of sizevariability in a VAL sub-slicegenerally
it is dueto differentcontrol flow paths.In the above instancethe
different behaiors are associated with fiifent calling contes.

In therarecasesvhenthe VAL sub-sliceis large, it is dueto a
recurrenceFigure3c shavs a casewhereonefifth of our window
of 512 instructionsis in the VAL sub-slice.Recurrencesre dis-
cussed in Sectio6.1.

Thesmallsizeof VAL slicesis somevhatanartifactof our defi-
nition of the VAL sub-slice but the generaltrendis supportecoy
previousparallelismstudieq2, 12, 26]. Becausef thesmallsizes,
we arenot directly concernedvith furtherreducingthe sizeof the
VAL sub-slice.As will be seenin the next sectionsmuch of the
computationin theseinteger applicationss presento identify the
values on which to operate and which operations to perform.

5.2 Address Sub-dlices

A loadin adynamicslicereadsavaluewhich waseithercreated
beforethe slice began or storedby a storein theslice. In thefirst
case,the addressmust be generatedo retrieve the value from
memory;in the second,the addresss generatedo identify the
store which suppliesthe value. In mary casesiit is difficult to
prove arything aboutthe communicatiorpatternsbetweenstores
and loads, leading to ambiguousmemory dependencesBefore
dealingwith this ambiguity we characterizehe ADR sub-slice
assumingan oracle that only includes the required loads and
stores. W call this the unambiguous ADR sub-slice.

The averagesize of thesesub-slicesis quite a bit larger than
VAL sub-slices.The slice shawvn in Figureda is representati,
althoughthereis alot of variationbetweerbenchmarkaswell as
within a benchmark.On average,unambiguousADR sub-slices
consist of 4-10% of the 512 instructions beforesne

Two othercharacteristicaredemonstratetly Figure4a:alot of
variability betweenmaximum and minimum slice sizes,and the
appearancef agradualrampup (indicatinganevendistribution of
instructions from the slice). Figure4db shavs a sampling of
dynamicinstanceswhich make up the aggreate slice shovn in
Figureda.lt canbe seenthatthe spectrumbetweerminimumand
maximum s continuously populatedrather than being concen-
trated at the extremes.Also, the individual slicesare bursty (the
gradualrampshawn in Figure4ais merelyanaggreatebehaior),
consistingof regionsthat affect the slice separatedy flat regions
which do not contribute. This is a reflectionof the factthata pro-
gram is an interleang of partially independent computations.

As previously mentionedthe unambiguousADR sub-slicesare
optimistic. In generalwe cannotidentify which storescontritute
to the VAL sub-slicewithout computingall addressesln fact,



withoutary information,therearetwo possiblepolicies:consera-
tive (assumalependencedndnaive speculationassumendepen-
dence).The conserative policy assumeghat ary storecould be
partof theslice,forcing all storeaddressomputationsnto a con-
senatively large ADR sub-slice Naive speculatiorpredictsthatno
storeswill affect the slice, and suffers from data dependence
mis-speculation when stores should be included in the slice.

Figure4c demonstrateshe consequencesf the conserative
policy for the sameslice consideredn Figure4a.On average the
ADR sub-slicehasincreasedo 30% of the full program(around
60% in the worst case),comparedto 5% for the unambiguous
ADR sub-slice.

Figure4d shaws the mis-speculatiomatefor the naive specula-
tion (speculatalways)policy, asafunctionof distancen dynamic
instructionsfrom the criterioninstruction(usingthe sameslice as
above). This rate shaws the likelihood that at leastone storethat
affectsthe VAL slicewould beignored.This datais somevhatpes-
simistic in that even if the storewould not changethe value in
memory (i.e., a silent store) it is marked as a mis-speculation.
Increasingthe pre-ecutiondistancerapidly increaseghe likeli-
hoodthata memorycommunicatiorwill be requiredto compute
the criterion. Large windows arelikely to includeentirefunctions
andthereforeit is notuncommorfor valuesin the VAL sliceto be

savedto andrestoredrom the stack.Therearesomesliceswhich
containno storeswithin 512instructionsandtherearesomeslices
which are avays misspeculated past a distance of 50.

5.2.1 Pofiling Store Sets

Clearly, neither of thesenaive policies is sufficient. However
with some information about past behaior, the unambiguous
ADR sub-slice can be approximatedby a speculatite ADR
sub-slice.Although memoryallows ary storeto potentially com-
municatewith ary load, in practicethe active dependenceare
only asmallsubsebf all possiblecommunicatiorarcs.During ary
programexecution,a majority of static loadsare fed by a single
staticstore[6, 13, 14]; therestarefed by a smallsetof storesThis
behaior seemgo be inherentto the programs structure because
the samedependenceare exercisedacrossdifferent datainputs.
This suggestshatprofiling canbe usedto identify memorydepen-
dences with high accunacas proposed by Reinman, et al. [18].

Using theseprofiles,we canreducethe size of the ambiguous
ADR sub-slice.Storesin the dynamicinstructionstreamthat are
not in the store setsof ary of the loads alreadyin the ADR
sub-slicecanbe ignored.Only whenthe profile is inaccuratedoes
a mis-speculation occur

For mostbenchmarksmemorydependencerofilesreducethe
size of the ADR sub-sliceto closeto that of the unambiguous
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Figure 4.Dynamic sizes of address (ADR) sub-dlices.



ADR sub-slice.On average the ADR sub-slicesare lessthan 10
instructionslarger thanthe unambiguousrersionat a distanceof
512.Thefactthatthis disparityis sosmallindicateshatoftenonly
one storefrom the storesetexists in the window of 512 instruc-
tions.

Typically, whenthe disparityis large, thereare mary dynamic
instancesof the samestatic storein the window (becauseof a
loop), and the store set mechanismmust generateall of their
addressedo selectthe correct producer For this reason,using
speculatiorto remove infrequentlyusedstoresfrom the storeset
providesonly modestbenefit.Usually suchstoresdo not contrib-
ute significantlyto the storesetbecausehey arerarely executed.
However, the inducedmis-speculatiorrateis alsomodest(except
in casef recurrencesliscussedn Section6.1),implying that,in
mostcasesijt is sufficient to identify the dominantdependences;
hence a sampling technique can be used.

Overall, store set profiling is successfult reducingthe ADR
sub-sliceto the size of the unambiguousADR sub-slice,but the
size of the ADR sub-slice still dominatesthat of the VAL
sub-sliceln the next sectionwe exploit anothercommonbehavior
of memory dependences to further reduce ADR sub-slice size.
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Figure 5. Bimodaldistribution of a static load’s likelihoodto
use the mosecently staed value fom its stoe set.

5.2.2 Speculative Register Allocation to Remove
Unnecessary Address Calculations

Previous researchhas shavn that mary memory dependences
aresatisfiedoy the mostrecentstore from its storeset[13, 15, 18,
25]. In fact, staticloadscanbe categorizedinto two groups:those
that are very likely to be satisfiedby the mostrecentstorefrom
their storeset,andthosethatarevery unlikely. Figure5 showvs the
distribution of theselikelihoodsacrossall benchmarksweighted
by the executionfrequeng of theassociatedtaticload. Thedistri-
bution is distinctly bimodal,in that highly-biased(at leasta 95%
bias) static instructionsrepresentalmost 90% of dynamicloads
executed.

This behaior is notlimited to loadswhosestoresetsconsistof
asinglestaticstore(Figure5b), but exists alsofor loadswith mul-
tiple storesin their storesets(Figure5c). Giventheseextremeten-
dencies,it should be easyto catgorize loads into thesetwo
groups, gen with incomplete data.

Oncecontrolflow hasbeenresohedandthestoreshatcouldbe
in the ADR sub-slicehave beenidentified, loadsthat exhibit this
“most recentstore” behavior canbe accuratelypairedwith stores
without the needfor addresgeneratiorf13, 15, 18, 25]. If aregis-
ter canbe (speculatrely) allocatedfor the communicationin the
slice, thenboth the load and storecanbe removed with all of the
instructionsin their addresscalculations.In most of the bench-

marks, this can significantly reduce the size of the ADR sub-slice.

Someof the sliceswe considerconsistexclusively of loadswith
“most recentstore” behaior, causingthe ADR sub-sliceto disap-
pearentirely A majority of the remainingslicesare significantly
reduced often cut in half. Figure6 shavs the averagesizesof a
representatie ADR sub-slice when constructedwith the tech-
nigues discussed.

When a memory dependencaloes not have a “most recent
store”behavior, we have foundthatit is ofteninefficientto include
its storesetin the slice. Two suchcasesareprevalent.If only one
dynamicinstanceof a storefrom the storesetappearsn the win-
dow, it is unlikely to causea mis-speculatiorif we ignoreit (by
definition). The othercommoncaseis whenmultiple storesarein
thewindow becausehey arein atight loop (asshavn in theillus-
trative examplein Figure7). In this case,addresgenerationand
loop control(whichwould needto bein thefull sliceaswell) area
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Figure 6. Address(ADR) sub-sliceaverage sizeby identificationtechnique Conservative includesall store addresscalculations,store
sets includesonly thosefrom store setsof loadsin the VAL sub-slice and unambiguous includesonly thosestores which affect the
criterion. Speculative register allocation remaosesthe load and store addresscalculation of memorydependencewhich exhibit the
“most recent stog” behavior



significantportion of the loop. Inclusion of theseinstructionsin
the slice cansignificantlyimpactits size;a bettersolutionin this
seconccasemay beto initiate the pre-executionimmediatelyafter
the loop completesThis more efficient slice comesat the costof
decreased prexecution distance.

5.3 Existence Slices

Without control independencanalysis,all branchtargetsneed
to beresolhedto determinewhetherthe criterionwill be executed.
In mary caseghis requiresexecuting80% of the 512 instructions
before a criterion. With control independencenalysis,the EX
sub-sliceis much smallerbut still canbe substantialeven if we
only considercontrol flow arcswhich are exercisedat leastonce.
On average the EX sub-slicesarein the rangeof 10-12%(about
50-60instructionsat a pre-fetchdistanceof 512), but can be as
high as20-30%(100-150instructionsat a distanceof 512) when
the criterion is in a loop.

Like VAL and ADR sub-slicesthe EX sub-slices instructions
tend to be clusteredtoward the criterion. This is not surprising
giventhatthefartherthecriterionis from abranchthemorelikely
it is that there is a receargent point between the ow

Often morethanhalf of the instructionsin the EX sub-sliceare
memorydependence@n the samevein asthe ADR sub-slice) By
applying our memory dependencéechniqueswe canremove a
significantportionof these FrequentlytheremainingEX memory
dependenceare alreadypresentin the ADR sub-slice.For this
reason,the memorydependencefrom the EX sub-sliceseldom
contrikute significantly to the total size of the slice.

The samecannotbe said for the non-memorydependencei
the EX sub-slice.In generalthereis little overlap betweenthese
instructionsandary otherslice. They tendto directly contritute to
the size of the total slice.

The impactof the EX sub-sliceon the slice asa whole canbe
reducedby ignoring highly biasedexistencebranchesWe consid-
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Figure 7. lllustrative exampleof an inefficient slice dueto a
memorydependencésource code(a) andbadkward slice (b)).
Assuming is evenly distributed between0 and (N-1), each
store in the loop has a 1/N chance of contributing to the
criterion. Including the loop in the slice impactsthe slice’s
size but remawing it entirely causesmis-speculationif a
pre-executionis initiated befoe (A). Initiating it at (B) avoids
this trade-of, but reduces the latency that can be tated.

eredremoving brancheswith biasesgreaterthan 98 percentand
found that the benefitvaried betweenbenchmarksBy exploiting
this statisticalor speculatie controlindependencegroundhalf the
sliceswe obsened werereducedto one half to onethird of their
sizes. The other half were for the most part untouched.

One commonexistencebranchis a null pointer test beforea
dereferenceThis branchcanberemovedby recognizingexception
conditionsas the end of a pre-eecution. However, becausehe
associatedpointer value usually occurs in one of the other
sub-slices,this optimization does not significantly reducetotal
slice size.

5.4 Control Flow Slices

In the conserative casethe CF sub-slices thelargestcontritu-
tor to mary of thebackwardslicesandis alsothe onewe have had
the leastsuccesoptimizing dueto the limitations of our current
infrastructure Thereis significantvariability; a numberof criteria
have non-&istentCF sub-sliceshut in someof the control-inten-
sive benchmarkgshe conserative CF sub-slicecanbe aslarge as
50 to 60 percent of the 512 instruction windee considered.

Similarto the EX caseabove, the CF sub-slicesncludememory
dependencesand their contritutions can likewise be reduced
using the techniquespresentedin Section5.2. Unlike the EX
sub-slice, however, speculating that highly biased branches
(greaterthan98% bias)will alwaysfollow their biasdoesnotlead
to a substantiateductionof the sub-slicesize,in generalln mary
casesthesebranchesare lessbiased,so a larger mis-speculation
ratemustbetoleratedfor slicereduction.Also, unlike VAL, ADR,
andEX sub-slicesvhich tendto bemoreconcentratedearthecri-
terion, CF sub-slicesare more evenly distributed throughoutthe
dynamic instruction stream.

Upon closerinspectionwe determinedhatsomeof the control
dependencethat we identified were false dependencedn these
casesjnstructionsthatarecontroldependenon the branchappear
to be partof theslice, but all pathsfrom the brancharesymmetric
with respecto thecriterion.A commonexampleof thisis acondi-
tional functioncall (shavn in Figure8) which saszesandrestoresa
register value in the slice. The function call performsa net null
operationon the register but our current infrastructurecannot
detectthis. We have identified other lesstrivial instancesof this
phenomenay inspectingslices by hand, but we have not been
able to quantify the &fct of thesedlse dependences.

6 Discussion

In this section,we briefly discusssomecharacteristicof the
slices and the process of constructing slices.

A= function() {

if(B){ sae A,
function)y

) restore A,

if (A) { <«——CRITERION }

Figure 8. Exampleof a false contol dependenceBoth paths
throughthe exampleare equivalentwith respecto A, because
the path thoughfunction() has a net null ééct onA.



6.1 Overlapping Slices and Recurrences

It is not uncommonfor the backward slicesof morethanone
criteriato shareinstructionsIn thesecasesit maybe beneficialto
mege the slicesto reducethe pre-executionoverhead A special
caseof this is when one criterion is in the slice of a second,in
which casethe secondcriterion’s slice is often a supersebf the
first criterion’s slice. An unpredictablébranchbasedon the result
of acache-missindgpadis a repeatingheme.Sincethe lateng of
thesetwo eventsis serialized,the initiation of the pre-eecution
must be scheduled appropriately

A specialcaseof overlappingslicesis whenmultiple slicesfrom
the samestatic criterion overlap. This occurswhen a criterion
instructionis in atight loop. Eachiterationwill have oneor more
recurrenceghat appearin its backward slice. Theserecurrences
canbeaddressgdata,or control. They canmalke the backwardslice
look deceptvely large,but in sucha slicetherearemary instances
of the criterion evaluated,so the incrementalslice size is small
(less than or equal to the size of a loop iteration).

Theseincrementalslicescan only be exploited if we enablea
pre-eecution to evaluate the criterion multiple times. At this
point, the decisionmustbe madeasto how mary iterationsshould
be executed.Typically, highly biasedbranchesare speculatiely
removed from the existencesub-slice but if theloop back-edges
removed, the pre-execution could iterate forever. To reducethe
incremental slice size, complicated existence slices can be
replacedwith simple control which executesa fixed numberof
iterations(eitherusingaloop or staticunrolling), or feedbackrom
the main computationcan be used to throttle or terminate a
pre-&ecution computation.

When the incrementalbackward slice makes up a significant
portionof aloop iteration,the benefitof lateng tolerancemustbe
derived from the distancebetweerthe initiation of the pre-execu-
tion and the first iteration of the loop. If the long lateny event
itself is partof therecurrencgasin pointerchasing)thentheiniti-
ation mustbe scheduledo toleratethe seriallatencies Suchtech-
niques, including root jumping, are discussed in [21].

Speculatiorhasto be usedvery carefullyon dependenceis the
recurrencelf an incorrectvalue is computedon the recurrence
path, then it will be propaded to all future iterations.

6.2 Traditional Optimizations

Oncea slice hasbeenreducedto its essentiakelementstradi-
tional compilertechniquescan be usedto further optimizeit. In
addition to the speculatie register allocation discussedin
Section5.2.2,we have seenopportunitiesfor loop invariantcode
motion, the removal of registermoves,strengthreduction,andthe
corversion of indirect branchesinto direct branches.In mary
instancesthesetechniquescould not be appliedto the original
program due to ambiguousmemory dependencesinfrequently
executed branches, orgister pressure.

Similarly, dynamic compilation techniquescould be usedto
generatesliceswhich exploit invariantrun-timevalues.Sincethese
pre-executioncomputationsare speculatie, it is not necessaryo
verify that these run-timealues are truly constant.

6.3 ldentifying Slices

The effort requiredto identify slices dependssignificantly on
mary aspect®f aprogramnotleastof whichis its representation.
In this paperwe took alow-level approachanalyzingthe program
attheinstructionlevel, asa processomightanalyzeit. Withoutthe
high-level information available from the sourcelevel, our infra-
structureneededto rediscaver someof the information that was
known to the compiler

This processis occasionallyaggraated by the compiler; the
mostnotewvorthy exampleis codereplication.Techniquedik e loop
unrolling andtraceschedulingequirethe slice constructionalgo-
rithm to reconcilethe replicatedblockswith eachother Also, it is
not uncommonfor the criterion instructionsto be replicated,
potentially requiring multiple slicesto pre-eecutewhat is logi-
cally a single operation.Only when the differentinstancesof a
block have radically differentbehaior (with respectto the crite-
rion) doesthe slice benefitfrom suchreplication. Programmers
canlikewise bea sourceof replicationif they unroll loopsby hand
or otherwise replicate code.

The slice constructionroutine operatesmost efficiently on the
smallestrepresentatiorof the program. This requirementoften
conflictswith mary performanceoptimizationsperformedby the
compiler

7 Conclusion

Instructionswhose behaior cannotbe anticipatedby branch
predictorsor cachescan significantly degrade processomperfor-
mance.In the future, this will be further aggrazatedas processor
microarchitecturecontinuesthe trend to higher clock speedsand
deepepipelines.This studyfindsthat,in mary casesthebehaior
of theseinstructionscanbe representedyy a reducedform of the
program specializedo computethe outcomeof thesenstructions.
If executedin parallelwith the whole program thesereducedpro-
gramscaninitiate long latengy eventsearly sothatthey have com-
pletedby the time they are encounteredy the whole programs
execution.

Thesereducedprogramsare constructedby identifying the
backwardslice of theinstructionto be pre-executedIn mary inte-
ger benchmarksthe conserative backward slice consistsof a
large fraction of the program.The key to reducingslice size is
speculationby treatingtheresultof a pre-executionasonly a hint,
infrequentandambiguouglependencesanbeignored.This spec-
ulation must be guided by profiling the applicationto identify
dominant paths and dependenciesnd by analysisto coalesce
paths which are equalent with respect to the slice.

By exploiting control-independencehighly biased branches,
andthe stablenatureof load-storedependencesye were ableto
reducemary slicesdown to lessthan 10% of the full programs
dynamicinstructionstreamfor thewindow of 512 instructionswe
consideredIn almostall casesmis-speculatiorratesbelov 5%
weremaintained Thereweresomeslicesfor which thetechniques
we investigatedwere insuficient, often due to complex memory



dependencear sliceswhich necessitatechuchof the control flow
to be resoled.

Thetechniquesonsiderechereareby no meansan exhaustve
list. Future work includes investigating if additional program
behaiors andspeculatiortechniquesanbe usedto furtherreduce
theseslices. Path profiles might allow further refinementof the
control flow sub-sliceby enablingdifferentinstanceof the same
static branchto be treateddifferently Also, value predictionhas
the potentialto break data dependenceqossibly removing full
computation chains from the slice.
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