O A O Y A U

[54]

[73]

{731

[21]
[22]

[511
[52]

[58]

- [56]

US005630096A
United States Patent o 111 Patent Number: 5,630,096
Zuravleff et al. 451 Date of Patent: May 13, 1997
CONTROLLER FOR A SYNCHRONOUS FOREIGN PATENT DOCUMENTS
DRAM THAT MAXIMIZES THROUGHPUT
BY ALLOWING MEMORY REQUESTS AND 549139 6/1993 European Pat. OFF..
COMMANDS TO BE ISSUED OUT OF OTHER PUBLICATIONS
ORDER
IBM Technical Disclosure Bulletin, vol. 33, No. 6A, pp.
Inventors: William K. Zuravleff, Mountainview; 269-272, Nov. 1990.
Timothy Rebinson, Boulder Creek, IBM Technical Disclosure Bulletin, vol. 33, No. 6A, pp.
both of Calif. 265-266, Nov. 1990.
. . . . IBM Technical Disclosure Bulletin, vol. 31, No. 9, pp.
Assignee: Microunity Systems Engineering, Inc., 351-354, Feb. 1989.
Sunnyvale, Calif. IBM Technical Disclosure Bulletin, vol. 33, No. 3A, pp.
441-442, Aug. 1990.
Appl. No.: 437,975 Micron Semiconductor, Inc., Spec Sheet, MT48L.C2M8S1
Filed: May 10, 1995 S, cover page and pp. 33 and 37, 1993.
Int. CL¢ GO6F 13/00 Primary Examiner—Frank J. Asta
US. CL 395/481; 364/DIG. 1; Attorney, Agent, or Firm—Burns, Doane, Swecker & Mathis
365/233; 395/432; 395/477; 395/478; 395/485;
395/494; 395/496 571 ABSTRACT
Field of Searchoevecncene. 365/233; 395/432, A controller for a synchronous DRAM is provided for
395/471, 478, 481, 485, 494,496 maximizing throughput of memory requests to the synchro-
. nous DRAM. The controller maintains the spacing between
References Cited the commands to conform with the specifications for the
CUME synchronous DRAMs while preventing gaps from occurring
US. PATENT DO NTS in the data slots to the synchronous DRAM. Furthermore,
4,685,088 8/1987 Iannucci . the controller allows memory requests and commands to be
4,691,302 9/1987 Mattanusch . issued out of order so that the throughput may be maximized
4,734,388 3/1988 Tielert . by overlapping required operations which do not specifically
2’740’491%81 1‘21; iggg ﬁdeﬁ : involve data transfer. To achieve this maximized throughput,
5’2)919/’693 " /1391 H:rsdtemon : memory requests are tagged for indicating a sending order.
077, ee et al. . .
5.179.667 1/1993 Iyer . Thereafter, the memory requests may be arbitrated when
5,193,193 3/1993 Iyer. conﬂicth}g memory requests are queued and this :fxrbitration
5253214 10/1993 Herrmann . process is then decoded for simultaneously updating sched-
5,253,357 10/1993 Allen et al. . uling constraints. The memory requests may be further
5,276,856 1/1994 Norsworthy et al. . qualified based on the scheduling constraints and a com-
5,278,967 1/1994 Curran . mand stack of memory request is then developed for modi-
5,283,877 2/1994 Gastinel et al. . fying update queues. The controller also functions by receiv-
g%gz;% % igg: g?)l;a:‘tﬁe.t o ing a controller clock signal and generating an SDRAM
5’,311’ 433 5/1994 Takasugi . a clock signal by dividing this controller clock signal.
5,381,536 1/1995 Phelps et al. .ccercceenccccsecans 395/375
5,513,148 4/1996 Zagar 365/233 20 Claims, 6 Drawing Sheets
-100
10 20 50 /
4 [0 [
BANK
DATA PATH
N == gﬁﬁ% IRIVER SORAM
BANK
DATA PATH
RETURN DATA |~ —— 1|
W= "oata pam
CONTROLLER CONTROL
CLOCK BLOCK

U.S. Patent

[10

May 13, 1997

KZO

BANK \(
DATA PATH
N==> O L
BANK
DATA PATH
RETURN DATA
W<— Tmmmn [
70
S~
CONTROLLER CONTROL
CLOCK BLOCK

/ 210

oD | |
JPDATE

Sheet 1 of 6

50
o [

DRIVER

5,630,096

~100
/

/ 220

UNIT

BANK
QUALIFICATION

/ 230

UNIT

SORAM

/ 240

o, | B-STAE()

B [C-STATE| cousTanT | |
ARBITRATION UPDATE
AT T
‘e . L

FIG. 2

U.S. Patent

May 13, 1997

30
/ o 164 s@m
- - s
pROCESSOR A/t I
o 16 18 SORAM
-t L) A CIK
FIG. 3(a)
300 320
[L
)]?"X 16MB SORAM
NCRO- 7 DA 0K
PROCESS(R /¢ }
(K
FIG. 3(c)

Sheet 2 of 6 5,630,096
314
/‘300 " SD{
6448 SORAN
216
D 3/ 1/ D A(CLk
MCRO-
pRocessoR A -
ak 16 |68 SORAH
oD A CIK
/300 3
) %Zf—x 6448 SORAM
MICRO- =LA _GK
PROCESSOR /¢ !
CLK

FIG. 3(d)

U.S. Patent May 13, 1997 Sheet 3 of 6 5,630,096

330 30
/300 [/300 [
n, o, |08 p, g, B0
P oo g IR PO o o
pRocessop A/ L| /3 pRocessor /ST — L[s
W1 [g [rowe soray W11 {5 Joap soram
AN L) A CK
L] [334 t] /344
3 [164B SoRa 5 6B SORA
ol) oK R
BSG\L 346\L.
3 [16B SoRA 3 64B SORAN
AT) k0K
FIG. 3(6) FIG. J(f)

/ 300 / 350 / 300 / 34

6
D-:?‘—X o (1B SORAM Dlﬁﬁ‘—x g[8 SR
MICRO- F—/—0_A_COK MICRO= foagi—D A QK
PROCESSOR 4/ 352 \L[PROCESSOR 4/ 5~
L 5 (1648 SORAM ik TR
LelD A (K Lol A OK
R)

FIG. 3(g) FIG. 3(h)

5,630,096

Sheet 4 of 6

May 13, 1997

U.S. Patent

~— L
e KKK
SRR XXX}
{ xxx ooof Y ooo) XK}
[T |
| I
x 0]
[135 ¥3ISIH3 300 XXXXCKX
/ SYNVE HLOB 394YHO3Yd)
7 IR S ~—~ _\, I

dONJ1dON I} dON J[doN J) dON JY dON T} dON 1) dON)} dON
N 111 I |1 00000000
U T |
1111 |
oK KK XXXXXXKK]
| L 1 = dn ¥Mod |
| -—— — | _
_ SOV S3HOLS |
W K L A A N
_ { _ { _ 1 _ _ i _ t _ i _ 1 _ i _ } _] _ I _ ! _ } i _ ' _ I _
0000007 000000} 000005 0

(o)y 94
SSIHA0V QHOM ™

L MOY ALY

0 MOY LIV

F1dAYS

MOONIM OV

A0

(vd 0L 1ndLno

v1vd

SSTHAaY

(NVAROO

A0 WYHTS

SNE NYNL3Y YITIOYLNOD

LNV SNE NYNLIY HITIONLNOD
1S3NDFY SN NANLIY ¥ITIOULNOD
SNG LNdNI ¥3T104LNOD

AQY3Y

09 [y¥v1S3Y

1353y

X300 YITIOULNOD

5,630,096

Sheet 5 of 6

May 13, 1997

U.S. Patent

- 3L
00100 80000 $0000] 00000 XXXXX
000} XXX
XXX) 000} XXX
of & 1 R | 0
— ¥ ¥ 1 [T I oooooooof XXXXXXXX
0 Y 0 [1 ¢ T ooooooo0) v mmnnm
4441 8000} 0080 341} 8oooj 0080} ¥000) it} 0000} 4444 0000 43
dONJ 34d) JLRM] JONJ e} LOV) UMM dONY L] doN] Lov) dON

I S G S

{

A

NS se)

00000000} Jff 0ooooooo)i oooooooo)Ji oooooooo) 00000000
I I | U
N : SN SRS
XXXOOCN 0
L] | E—
_ﬁ _ I _ ,~ , f _ ! _ 1 _ I _.__ __ 1 _4 I _ ._. _ A_ _ 1 I _ 1 _ 1 _ § _ i .
000059} 0000091 0000551 0000051

(9)v -old

SSHAAY QHOM ™
| MOY¥ AAILOY

0 MOY JAILDV

J1dHYS

MOQNIM QY34

JARQ

@vd 0L LNdLNO

yLvaQ

SSIaaY

(NYANOD

A0 WYYaS

SNE NYNL3Y HITIONLNOD

INVHO SNA NYNLIY ¥ITIOULNOD
1S3n03Y SNA NINLIY YFTT0YINOD
SNE LNdNI 43TI0YINOD

AQYH

09 14V1S3y

13534

H0T0 YITIOHLNOD

SIS

5,630,096

Sheet 6 of 6

May 13, 1997

U.S. Patent

- L
00/00] #0000] 80000 ¥0000) 00000} XXXXX
Xxx 000} XXX
X 000 XXX
v rrror
i |
0
g 6 i 9 FXKOOKKfG 08000000
1 1 1 1 1 0 [oowoon] N ¢
1141J0080Y 4341 {¥000 0080) 3441)#000J0080 {8000 441 }¥000] 4431 ?i 4331f0000) 444l
dON} 3Md} dON} ?; 9;%5] Lov] e;%i Q) doN) Q¥ dONJ LOV] dON
Jjjj_lrcwrr jjjjjja
B Y ooooooo0ff gggo% 00000000
1 __ __ : :
: = __ | | 88 L EE R
X000 ¥l XN
L L L

0000061 |

_ I
oooomw__ 0000081 | 00005.

000001

()% 9l

SS34QQY G4OM

| MOY JALLDY

0 MOY ALV

J1dHYS

MOQNIM QYR

JAa

a¥d 0L L1ndLno

yLvad

SS3aaY

(INVAWOD

#0070 WVYAS

SNG NYNL3Y HITIOULNOD
INVYO SNB NANL3Y ¥3TI04LNOD
1S3N03Y SN NANLIY ¥3TIOULINOD
SNE 1NdNt Y3 TI04LNOD

AQY3Y

00 LUvISH

1353

A0 YITIOULNGD

Sav01

5,630,096

1

CONTROLLER FOR A SYNCHRONOUS
DRAM THAT MAXIMIZES THROUGHPUT
BY ALLOWING MEMORY REQUESTS AND
COMMANDS TO BE ISSUED OUT OF
ORDER

BACKGROUND

The present invention is directed to a controller for
maximizing throughput of memory requests from an exter-
nal device to a synchronous DRAM. More particularly, the
present invention is directed to a controller which prioritizes
multiple memory requests from the external device and
issues reordered memory requests to the synchronous
DRAM so that the throughput from the external device to the
synchronous DRAM is maximized.

Synchronous DRAMs are relatively new devices which
are similar to conventional DRAMs but the synchronous
DRAMSs have some important differences. The architecture
of the synchronous DRAMs is similar to conventional
DRAMEs. For instance, the synchronous DRAMSs have mul-
tiplexed address pins, control pins such as RAS, CAS, CS,
WE, and bidirectional data pins. Also, the synchronous
DRAMs activate a page as does the conventional DRAM
and then subsequent accesses to that page occur faster.
Accordingly, a precharge operation must be performed
before another page is activated.

One difference between synchronous DRAMs and con-
ventional DRAMs is that all input signals are required to
have a set-up and hold time with respect to the clock input
in synchronous DRAM:s. The hold time is referenced to the
same clock input. The outputs also have a clock to output
delay referenced to the same clock. Thereby, the synchro-
nous characteristics are provided. Furthermore, the synchro-
nous DRAMs are pipelined which means that the latency is
generally greater than one clock cycle. As a result, second
and third synchronous DRAM commands can be sent before
the data from the original write request arrives at the
synchronous DRAM. Also, the synchronous DRAMs have
two internal banks of data paths which generally correspond
to separate memory arrays sharing I/O pins. The two internal
banks of memory paths are a JEDEC standard for synchro-
nous DRAMs. An example of a known synchronous DRAM
is a 2 MEGx8 SDRAM from Micron Semiconductor, Inc.,
model no. MT48LC2ZM8SS1S.

In the synchronous DRAMs, almost all I/O timings are
referenced to the input clock. Minimum parameters such as
CAS latency remain but are transformed from electrical
timing requirements to logical requirements so that they are
an integral number of clock cycles. The synchronous
DRAM s for at least by-four and by-eight parts are a JEDEC
standard with defined pin outs and logical functions.
Because the synchronous DRAMs are internally pipelined,
the pipe stage time is less than the minimum latency so that
spare time slots can be used for other functions. For instance,
the spare time slots can be used for bursting out more data
(similar to a nibble mode) and issuing another “command”
with Himitations.

Certain problems arise when using synchronous DRAMs
which must be addressed. For instance, the clock to output
delay can equal the whole cycle. Also, because the synchro-
nous DRAMs are pipelined, a second request must be given
before the first one is complete to achieve full performance.
Furthermore, the output electrical/load/timing specifications
of synchronous DRAMs are difficult to meet. Therefore, a
controller is desired for interfacing the synchronous DRAMs
with devices which read and write, such as microprocessors,

10

15

20

25

30

35

45

50

55

65

2

and meeting JEDEC standards for synchronous DRAMs so
that versatile synchronous DRAMs may be provided and
applied in many design applications.

SUMMARY

An object of the present invention is to control a syn-
chronous DRAM by interfacing an external device, such as
a microprocessor, for reading and writing to the synchronous
DRAM.

Another object of the present invention is to provide a
controller for a synchronous DRAM which can buffer and
process multiple memory requests so that greater
throughput, or an equivalent throughput at less latency, can
be achieved by the synchronous DRAM.

A still further object of the present invention is to provide
a controller for issuing and completing requests out of order
with respect to the received or issued order so that the
throughput of the synchronous DRAM is improved by
overlapping required operations, which do not specifically
involve data transfer, with operations involving data trans-
fer.

A still further object of the present invention is to provide
a controller for a synchronous DRAM that schedules
memory request commands as closely together as possible
within the timing constraints of the synchronous DRAM so
that the throughput of the memory requests is maximized.

These objects of the present invention are fulfilled by
providing a controller for a synchronous DRAM comprising
a sorting unit for receiving memory requests and sorting said
memory requests based on their addresses and a throughput
maximizing unit for processing said memory requests to the
synchronous DRAM in response to scheduling which maxi-
mizes the use of data slots by the synchronous DRAM. The
controller is able to prioritize and issue multiple requests to
the synchronous DRAM in a different order than was
received or issued such that the out of order memory
requests improve the throughput to the synchronous DRAM.
In particular, the controller issues memory requests as
closely together as possible while maintaining the timing
constraints of the synchronous DRAM based on its speci-
fications.

The objects of the present invention are also fulfilled by
providing a method for controlling a synchronous DRAM
comprising the steps of receiving memory requests and
sorting said memory requests based on their addresses, and
maximizing throughput of said memory requests to the
synchronous DRAM so that use of data slots by the syn-
chronous DRAM is maximized. Similarly, this method con-
trols the memory requests issued to the synchronous DRAM
so that they are spaced as closely as possible while main-
taining the timing constraints of the synchronous DRAM
based on its specifications.

Further scope of applicability of the present invention will
become apparent from the detailed description given here-
inafter. However, it should be understood that the detailed
description and specific examples, while indicating pre-
ferred embodiments of the invention, are given by way of
illustration only, since various changes and modifications
within the spirit and scope of the invention will become
apparent to those skilled in the art from this detailed descrip-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully understood
from the detailed description given hereinbelow and the

5,630,096

3
accompanying drawings which are given by way of illus-
tration only, and thus are not limitative of the present
invention, wherein:

FIG. 1 illustrates a controller for a synchronous DRAM
according to an embodiment of the present invention;

FIG. 2 illustrates a block diagram for prioritizing and
issuing multiple requests to the synchronous DRAM by the
controller illustrated for am embodiment of the present
invention;

FIGS. 3(a)-3(h) illustrate part configurations of the syn-
chronous DRAM for embodiments of the present invention;
and

FIGS. 4(a)-4(c) illustrate timing diagrams for commands
to the synchronous DRAM.

DETAILED DESCRIPTION

FIG. 1 illustrates a controller for a synchronous DRAM
according to an embodiment of the present invention. In
FIG. 1, signals comresponding to memory requests and
commands from an external device, such as a microproces-
sor for example, are input to the controller at a bank sort unit
10. The bank sort unit 10 processes address, control, and
data signals and sorts the data based on the address before
sending the data to bank data paths 20 and 30. The output of
the bank data paths 20 and 30 are multiplexed by a multi-
plexer 40 and input to a pad driver 50 before being input to
the synchronous DRAM 100. The memory requests and
commands are tagged to indicate their received order. The
tags are used to indicate the order of the memory requests
and commands for achieving increased throughput or
re-ordering the memory requests and commands as will be
further described. The tags may be associated with the
memory requests and commands at the external device or
may be generated by the bank sort unit 10. A return data path
60 receives data from the bank data paths 20 and 30 and the
synchronous DRAM 100 via the pad driver 50 and is used
to process and re-order the data, if necessary, based on the
tag information.

The controller also includes a control block 70 which
receives a controller clock. The control block 70 outputs a
slower SDRAM clock which is based on the controller
clock. More specifically, the SDRAM clock is derived in the
control block 70 by dividing the controller clock with a
programmable divisor between 4 and 32, inclusive, and
applying wave shaping circuits having programmable offset
and duty cycle inputs. The SDRAM clock is then input to the
synchronous DRAM 100.

The controller may be implemented in BiCMOS technol-
ogy which includes bipolar (ECL) style logic with CMOS
pad drivers having integrated low swing differential to full
swing (LVTTL) voltage level converters in a preferred
embodiment. Because the logic is implemented in the bipo-
lar (ECL) style circuits, very high speeds are possible with
cycle times being in excess of 1 GHz. The controller is
designed to run at a clock frequency greater than the
SDRAM clock frequency. Both the SDRAM clock and
sampling point for incoming data can be controlled to the
accuracy of the controller clock so that a fully synchronous
circuit can be maintained which has a sample point resolu-
tion greater than the SDRAM clock.

The programmable sample point overcomes the problem
of the SDRAM clock to output delay being greater than or
equal to one SDRAM clock period by providing a sampling
point which can be placed at a particular controller clock
edge. In the present controller, no analog delay elements are
required or used. If analog delay elements were to be used

10

15

20

25

30

35

40

45

50

55

65

4

in a different controller, which has a single clock frequency
for the controller and the synchronous DRAM for example,
the data generally would have to be resynchronized to the
single clock after sampling. As a result, the data would be
delayed by another entire SDRAM clock period before the
data is available for use by the processor if analog delay
elements are used. In addition, the return data path 60 runs
at the same timing as the SDRAM clock but can be offset in
time from the SDRAM clock edges by a programmable
number of controller clock edges. The programmable clock
and sampling points can also be used to provide adequate
timing margins for different printed circuit board trace
lengths or different loading conditions from various part
configurations.

At the input from the external device, or within the
controller, each memory request is “tagged” or assigned an
integer to indicate the order in which the memory request
was received as part of the control stream. This tag has three
purposes. One purpose is for the tag to be passed with the
loaded data back to the external device so that loads which
are returned out of order will be indicated. A second purpose
is that the tag may be used to send the earliest request to the
synchronous DRAM when multiple pending requests may
be serviced. A third purpose is that the tag may be used to
service the earliest pending request only if the return of load
data is required to be in order such as during system
integration or debug. The controller functions to translate
memory load and store requests into synchronous DRAM
commands. For example, a simple load might be translated
to the synchronous DRAM as the following sequence of
commands: precharge, activate (for the high portion of
addresses), and read (for the low portion of addresses). The
controller also functions to enforce timing requirements and
to queue a minimum of two requests. Furthermore, the
controller functions to imterrupt normal operation for
required refresh, power on reset (load mode register), power
down, and power up. The main purpose of the controller is
to allow or provide greater throughput, or equivalent
throughput at less latency, from the synchronous DRAMs.

This controller is applicable to computer systems where
processors can request data much faster than the memory
can provide the data (generally four to fifty times faster).
Also, the controller is applicable to processors which do not
stall for an individual memory request or processors which
do not stop to wait for data where possible. The main goal
of the controller is to achieve a high throughput of the
memory requests and commands. Another important issue is
latency, but minimizing latency is secondary to maximizing
throughput in the present controller. Another goal of the
controller is to provide flexibility in timing and
configuration, but this is also secondary to maximizing
throughput.

One feature of the controller is to buffer multiple memory
requests, and in an example of the present embodiment, two
Iemory requests can be buffered per bank. Buffering up to
one request per bank allows for the opportunity of the banks
being in parallel. By buffering two requests to the same
bank, the same page address match computation and the
actual memory data transfer may be placed in parallel.
Another feature of the controller is to issue and complete
requests out of order with respect to the order received or the
order issued by the external device. Out of order issue/
completion can improve throughput by overlapping required
operations which do not specifically involve data transfer
with operations involving data transfer.

The controller for state machines implemented in digital
logic allows for out of order issue and completion by using

5,630,096

5

dynamic constraint based, maximum throughput scheduling.
In general, the memory requests are resolved into their
required sequences of precharge/bank activate/read-write
sequences and placed in a queue where one queue per bank
exists. Dynamic constraint based logic determines which
requests are ready to issue and scheduling logic chooses the
requests thereafter, but not necessarily in the order that the
requests are received. The requests are chosen according to
the requests which can be issued to the synchronous DRAM
without causing reduction in throughput. For example, bank
1 may be precharged while bank 0 is bursting out data. Also,
the scheduling and logic select requests such that the
throughput is maximized. For example, a read to a page and
bank is chosen when directly following a read to that same
page and bank.

10

6

The functions for each of the units described above do not
have to be accomplished within four pulses of the controller
clock, or a certain number of puises of the controller clock.
However, these steps must be completed within one
SDRAM clock pulse. The SDRAM clock pulse relates to the
controller clock and is determined by dividing the controller
clock with the programmable divisor. A command stack of
memory requests is developed for each bank of the data
paths. The command update unit 210 updates the per bank
command stack. An illustration of the update performed is
provided in Table 1 below for a two-deep control stack.

TABLE 1

COMMAND UPDATE

Incoming
Request TOS Next TOS Next
go rw 1op pop pnp st tr top nr onp st tr tap or onp
incoming transactions, no pop’s
1 X X o0 0 0 X X X X 1 mw op X X
1 X X o 0 i X X X X 2 tt tmp ™ mp
pop’s
0 X X 1 s} i X X X X 0 X X X X
0 X X 1 0 2 X X X X 1 ar mp X X
0o X X o0 1 1 X X X X 1 r 0 X X
0o X X 0 1 2 X X X X 2 tt 0O or nop
simultaneous incoming transactions and pops
1 X X 1 0 1 X I ™™ np X X
1 X X o 1 1 X 2 r 0 rw op
do nothing
0 X X o 0 0 X X X X 0 X X X X
0 X X o 0 1 X X X X 1 r tmp X X
6 X X o 0 2 X X X X 2 t top or oop
40

FIG. 2 further illustrates how multiple requests are pri-
oritized and issued to the synchronous DRAMs. Each of the
units illustrated in FIG. 2 are incorporated into the control-
ler. For example, a command update unit 210, a bank
qualification unit 220 and a constraint update unit 240 may
be incorporated into each of the bank data paths 20 and 30
of FIG. 1 and a bank arbitration unit 230 may be incorpo-
rated into the control block 70. There is one bank arbitration
unit 230 and a plurality (N) of other command update, bank
qualification and constraint update units 210, 220 and 240
where N=the number of banks. The bank qualification unit
220 qualifies the per bank requests with the current syn-
chronous DRAM status (active or precharged) and ongoing
scheduling constraints. The bank qualification unit 220
further interprets memory requests and commands, such as
load and store, into synchronous DRAM commands, such as
activate, read, write and precharge. The bank arbitration unit
230 is connected to the bank qualification unit 220 and
arbitrates between multiple sources of memory requests.
The constraint update unit 240 is connected to the bank
arbitration unit 230 for decoding the decision to synchro-
nous DRAM standard commands while simultaneously
updating scheduling constraints per each separate bank. The
command update unit 210 is connected to the constraint
update unit 240 for updating the per bank memory requests
queues and popping the top element off to reveal the next
request when necessary.

45

50

55

65

In Table 1, go represents the existence of a new command
from the external device, rw represents a read or write
request where rw=1 indicates a read request and rw=0
indicates a write request, np represents a new page where the
transaction is a new page (row) address, pop represents an
input transaction for popping the stack, pnp represents an
input transaction for clearing the np bit if set (this allows a
page activate to clear the np bit without popping the stack),
and st represents the number of elements in the stack. Also,
TOS indicates top of stack and next indicates the next entries
in the stack.

In all of the tables, the inputs are on the left of the vertical
bar and the outputs are to the right. An input of “X” means
“don’t care” and an output of “X” means unspecified.
Outputs may assume symbolic values representing specific
numeric values and may also assume the value of an input
where the name of the input appears in the table.

The bank qualification unit 220 qualifies the top of the
stack with constraints of the synchronous DRAM. The
constraints on the synchronous DRAM may be obtained, for
example, from the specification sheet of the device used,
such as from the Micron Semiconductor Specification Sheet
for MT48L.C2M8S18S. The memory requests and commands
are qualified per each bank of data path. Bank control inputs
(st), read (ir) and new page (tnp), are combined with bank
active signals and qualifiers (ok to read, write, activate, and
precharge) to develop a per bank command request as

5,630,096

7 8
illustrated in Table 2 below. The first three inputs of Table 2
correspond to the first three outputs in Table 1 from the
command update unit 210. The control inputs indicate that
there is a request pending (st>0), a read request is pending
when the read qualifier is active and a new page address is 5
requested when the new page qualifier is active.

TABLE 2
BANK QUALIFICATION

OKto OKto OKto OKto
Read Write Activate Prechg Precharge

TOS Bank Bank Bank Bank i B
st tr mp Active 0 0 o] [Idle State
new page
X X 1 0 X X 1 X X BAL
0 X 1 0 X X 0 X X Bl
> X 1 1 X X X 1 X BP1
X X 1 1 X X X 0 X BlL
write
X 0 0 ol X 1 X X BAlL
X 0 0 1 X 1 X X X BW1
X 0 0 0 X X 0 X X Bl1
X 0 0 1 X 0 X X X Bl
read
> 1 0 0 X X 1 X X BAl
> 1 0 1 1 X X X X BR1
X 1 0 0 X X] X X Bl1
> 1] 1 0 X X X X Bl
if no command, precharge if active, otherwise idle
0 X X ol X X X X X Bl
0 X X 1 X X X 1 1 BP1
0 X X 1 X X X 1 0 Bl
0o X X 1 X X X 0 X Bl
In Table 2, OK to Read Bank 0 is a constraint for reading TABLE 3
from bank 0 which indicates that it is possible to read in this 40 3 o
SDRAM cycle, Write Bank 0 is a constraint for writing to
bank 0 which indicates that it is possible to write in this B State B State Supervisory Current Current
SDRAM cycle, OK to Activate Bank 0 is a constraint for Bank 0 Bank 1 State Bank Bank C-State
activating bank 0 which indicates that it is possible to 45 BWI BRI1 ST X 1 Rl
activate in this SDRAM cycle and Prechg Bank 0 is a BAl BRI St X 1 R1
constraint for precharging bank ¢ which indicates that it is gg %ivll g{ § 8 ﬁi
possible to precharge in this SDRAM cycle. BR1 BP1 St X] R1
BAl BWI SI X 1 w1
so BPL BW1 ST X 1 wi
BW1 BAl St X 0 wi
Next, the bank arbitration unit 230 arbitrates between };‘;,Vll gii g § (1) ‘111
commands from different banks so that the throughput is BAl BP1 SI X 0 Al
maximized. The arbitration is performed after the qualifica- both banks want to do the same thing so preference is given to
. the least recently used bank
tion so that the data slots between the commands are used as 55
much as possible for memory requests. The arbitration is BR1 BR1 St 0 1 R1
performed between banks and between system conditions 113;\%11]];‘1;11 g (1) ? §V11
such as power up, power down, and refresh. Table 3 below BWI1 BW1 SI 1 0 Wi
illustrates that one of the conflicting memory requests or BAl BAlL SI Y 1 Al
commands is selected to maintain throughput based on 6 g‘;‘ll g‘;‘: g (1) (1) ‘;11
previous reads or writes (with read always being picked over BPI BP1 sI 1 0 P1
write) for preventing unused data slots. The first two inputs arbitrate control state when one or more banks request idle
of Table 3 correspond to the outputs from the bank qualifi- BIL BIL o . 1
. . . P Ci
cz-mon unit 220 in Table 2. In z§dd1t10n, a leas:c recently used g5 pp; BIL s X 1 R
bit (lrub) of the current bank is used as a “tie-breaker” for BW1 Bl SI X 0 w1

choosing a request.

5,630,096

TABLE 3-continued
BANK ARBITRATION
B State B State Supervisory Current Current
Bank 0 Bank 1 State Bank Bank C-State
BA1L BI1 SI X 0 Al
BP1 BI1 ST X 0 P1
BI1 BRI SI X 1 R1
BIl BW1 SI X 1 w1 10
BIl BAl SI X 1 Al
BI1 BP1 ST X 1 P1
reset sequence regeusts, if active, have precedence
X X sp X cb 41
X X SRF X cb RF1 15
X X SPD X cb PD1
X X SM X cb Ml
X X SW X cb 11
X X SIL X cb 51

20

In Table 3, B-State Bank 0 represents the bank state of
bank 0 and B-state Bank 1 represents the bank state of bank

10
1. These two inputs along with the supervisory state have
three bit wide field widths. The current bank select bit is at
the input and the next bank select bit at the output and
C-state represents the arbitrated control state.

The constraint update unit 240 is used to update con-
straints. Table 4 below illustrates how constraints are
updated in each bank in response to the C-State output from
the bank arbitration. The output counter indicates the num-
ber of SDRAM cycles one must wait before a read, write,
activate or precharge operation can be performed.

TABLE 4
CONSTRAINT UPDATE
BL tRCD OK to
(Burst Length) (R/C Delay) C State Current Bank Counter Read
X 2 Al 1 trCD-1 4]
X 3 Al 1 tRCD-1 0
X X R1 X BL-1 0
X X w1 1 BL-1 0
tAA
cAs OK to
Latency) BL tRCD C-State Current Bank Counter Write
X X 2 Al 1 tRCD-1 0
X X 3 Al 1 tRCD-1 0
X X X R1 X tAA + BL-1 0
X X X w1 X BL-1 0
tRCml tRRD tRP
(Read Cycle (Row-Row (RAS OK to
Time) Delay) Precharge) C-State Current Bank Counter Activate
X X X Mi X tRCmil 0
X X X RF1 X tRCml 0
X X 0... | 31 1 0 1
X X >1 P1 1 tRP-1 0
X 0...1 X Al 0 0 1
X >1 X Al 0 tRRD-1 0
tWR
(Write
Recovery OK to
tAA BL Time) C-State Current Bank Counter Precharge
0...1 <4 X R1 1 0 1
0...1 4 X R1 1 tAA + 2 0
>1 X X R1 1 tAA + BL-3 0
X X X w1 1 fWR + BL-2 0

5,630,096

11

FIGS. 3(a)-3(h) illustrate some examples of part configu-
rations supported by the controller. The part configurations
of FIGS. 3(a), 3(c), 3(e) and 3(g) use 16 Mbit parts to
support 4MBytes, 2MBytes, 8MBytes and 4MBytes of total
memory respectively. The part configurations of FIGS. 3(b),
¥d), 3(f) and 3(k) use 64 Mbit parts to support 16 MBytes,
8 MBytes, 32 MBytes and 16 MBytes of total memory
respectively. According to JEDEC specifications, the syn-
chronous DRAM has two banks. As a result, the maximum
number of banks is two times the number of parts used. With
more banks, a more random stream of data can be handled
faster. However, as the number of banks used increases, the
hardware complexity increases due to the larger number of
decisions which must be made at the same time.

In FIGS. 3(a)-3(#), a microprocessor 300 is connected to
synchronous DRAMs for the varions configurations. The
configurations of FIG. 3(a) and 3(b) support two 16 Mbit
synchronous DRAMSs 310 and 312 and two 64 Mbit syn-
chronous DRAMSs 314 and 316, respectively. The configu-
rations of FIGS. 3(c) and 3(d) support one 16 Mbit syn-
chronous DRAMs 320 and one 64 Mbit synchronous
DRAM:s 332, respectively. In FIGS. 3(e) and 3(f), configu-
rations of four synchronous DRAMs 330, 332, 334 and 336
and four synchronous DRAMSs 340, 342, 344 and 346 are
respectively supported. FIGS. 3(g) and 3(h) support con-
figurations of two synchronous DRAMs 350 and 352 and
two synchronous DRAMs 354 and 356, respectively.

FIG. 4(q) illustrates the timing signals to the synchronous
DRAM over a relatively large time frame. The controller
clock (the fast clock) and the slower SDRAM clock are
illustrated for the power up period and subsequent stores and
loads in addition to signal at the SDRAM npins.

FIG. 4(b) illustrates an example of the reordering of a
store request that occurs in the controller before being issued
in the synchronous DRAM. As illustrated by the controller
input bus, three writes are to be performed to bank 0 and one
write is to be performed to bank 1. Also illustrated are the
scheduled no operation periods (NOPs) which correspond to
the timing constraints of the synchronous DRAM. For the
first request on a controller input bus, bank 0 is activated and
then written into. Next, a write operation is performed to
bank 0 and no activation is necessary since bank 0 has
already been activated. A write request follows to bank 1 and
bank 1 must be activated as a result. Due to the timing
constraints, bank 1 must wait to be written into. However,
bank 0 still may be written into and since the request
immediately following the write request to bank 1 is a write
request to bank 0, the write request to bank 0 may be
performed immediately after bank 1 is activated. Thereafter,
the write to bank 1 may be performed after waiting the
required amount of time after the activation to bank 1.
Accordingly, the data slots are used as much as possible to
maximize the throughput to the synchronous DRAM for the
store operation.

FIG. 4(c) similarly illustrates a timing diagram for loads.
The first three requests are to bank 0 and after activating
bank 0, the three read operations are successively per-
formed. After the third load request to bank 9, a load request
to bank 1 is requested. Therefore, bank 1 must be activated
and the required amount of time must follow this activation.
However, immediately after the load request to bank 1, a
load request to bank 0 is requested. Accordingly, the load
request to bank 0 may be immediately performed since the
required time following the bank 1 activation must be met.
After completing the read to bank 0 and waiting the suffi-
cient amount of time for completing the activation, the read
is performed to bank 1. Thereby, throughput of the memory

12

requests to the synchronous DRAM is maximized. In con-

trast to stores, the return load data should be associated with

the correct load request. Therefore, the tagging of the

memory requests is important to ensure that returning load
5 data is associated with the correct load request.

The invention being thus described, it would be obvious
that the same may be varied in many ways. Such variations
are not to be regarded as a departure from the spirit and
scope of the invention and all such modifications that would

10 be obvious to one skilled in the art are intended to be
included within the scope of the following claims.

What is claimed is:

1. A controller for a synchronous DRAM comprising;

a sorting unit for receiving memory requests and sorting

15 said memory requests based om their addresses,
wherein said memory requests are tagged for indicating
a sending order thereof before said memory requests
are sent to said sorting unit;

" a throughput maximizing unit for processing said memory

requests to the synchronous DRAM in response to
scheduling which maximizes the use of data slots by
the synchronous DRAM. p
2. A controller according to claim 1, wherein said sorting
unit tags said requests for indicating a received order
thereof.
3. A controller for a synchronous DRAM comprising:
a sorting unit for receiving memory requests and sorting
said memory requests based on their address;
athroughput maximizing unit for processing said memory

0 requests to the synchronous DRAM in response to
scheduling which maximizes the use of data slots by
the synchronous DRAM; and

a control block for receiving a controller clock signal and

35 developing an SDRAM clock signal by dividing said

controller clock signal with a programmable divisor
value.

4. A controller according to claim 3, wherein said prede-
termined divisor value is greater than or equal to 4 and less
than or equal to 32.

5. A controller according to claim 3, wherein said
throughput maximizing unit comprises a plurality of bank
data paths for receiving said memory requests based on
addresses sorted by said sorting unit at corresponding bank
data paths.

6. A controller according to claim 5, wherein said control
block further includes,

an arbitration unit for arbitrating said memory requests

based on the previous request to the synchronous
DRAM, and when conflicting memory requests are

40

45

% queued in one of said bank data paths, and
a constraint update unit for decoding the decisions from
said arbitration unit and simultaneously updating
scheduling constraints of the synchronous DRAM.
55 7. A controller according to clain 6, wherein said

throughput maximizing unit further includes,

a qualification unit for qualifying said memory requests
based on scheduling constraints of the synchronous
DRAM, and

a command update unit for developing a command stack
of said memory requests and modifying a plurality of
update queues which each correspond to one of said
bank data paths, in response to said qualification unit.

8. A controller according to claim 1, further comprising a

return data path for detecting the order of data returning
from the synchronous DRAM with respect to said sending
order of the tagged memory request.

60

5,630,096

13

9. A controller according to claim 2, further comprising a
return data path for detecting the order of data returning
from the synchronous DRAM with respect to said received
order of the tagged memory request.

10. A system for interfacing a processing device with a
synchronous DRAM comprising:

means for developing memory requests from the process-
ing device;

means for tagging said memory requests to indicate the
order in which they are provided by the processing
device; and

a controller for maximizing throughput of said memory
requests from the processing device to the synchronous
DRAM based on scheduling constraints of the synchro-
nous DRAM and arbitrating between conflicting
memory requests so that data slots used by the syn-
chronous DRAM are maximized.

11. A method for controlling a synchronous DRAM

comprising the steps of:

(a) receiving memory requests and sorting said memory

requests based on their addresses;

(b) tagging said memory requests to indicate a sending
order thereof before said memory requests are received
at said step (a); and

(c) maximizing throughput of said memory requests to the
synchronous DRAM so that use of data slots by the
synchronous DRAM is maximized.

12. A method according to claim 11, further comprising
the step of tagging said memory requests to indicate a
received order thereof at said step (a).

13. A method for controlling a synchronous DRAM
comprising the steps of:

(a) receiving memory requests and sorting said memory

requests based on their addresses;

(b) maximizing throughput of said memory requests to the
synchronous DRAM so that use of data slots by the
synchronous DRAM is maximized; and

(c) receiving a controller clock signal and developing an
SDRAM clock signal by dividing said controller clock
signal with a programmable divisor value.

14. A method according to claim 13, wherein said prede-

termined divisor value is greater than or equal to 4 and less
than or equal to 32.

14

15. A method according to claim 13, wherein said step (b)
receives said memory requests at a plurality of bank data
paths corresponding to addresses sorted at said step (a).

16. A method according to claim 15, further comprising

5 the steps of:

(c) arbitrating between said memory requests based on the
previous request to the synchronous DRAM when
conflicting memory requests are queued in one of said
bank data paths; and

(d) decoding the decisions at said step (c) and simulta-
neously updating scheduling constraints of the syn-
chronous DRAM.

17. A method according to claim 16, further comprising

the steps of:

(e) qualifying said memory requests based on scheduling
constraints of the synchronous DRAM; and

(f) developing a command stack of said memory requests
in a plurality of update queues, where each of said
update queues corresponds to one of said bank data
paths, and modifying said update queues in response to
qualifying at said step (e).

18. A method according to claim 11, further comprising
the step of detecting the order of data returning from the
synchronous DRAM on a return data path with respect to
said sending order of the tagged memory requests.

19. A method according to claim 12, further comprising
the step of detecting the order of data returning from the
synchronous DRAM on a return data path with respect to
said received order of the tagged memory request.

20. A method for interfacing a processing device with a
synchronous DRAM, comprising the steps of:

(a) developing memory requests from the processing

device;

(b) tagging said memory requests to indicate the order in
which they are provided by the processing device; and

(c) maximizing throughput of said memory requests from
the processing device to the synchronous DRAM based
on scheduling constraints of the synchronous DRAM
and arbitrating between conflicting memory requests so
that the data slots used by the synchronous DRAM are
maximized.

US005630096C1

12y EX PARTE REEXAMINATION CERTIFICATE (6429th)

United States Patent

Zuravleff et al.

(10) Number: US 5,630,096 C1
45) Certificate Issued: Sep. 16, 2008

(54) CONTROLLER FOR A SYNCHRONOUS
DRAM THAT MAXIMIZES THROUGHPUT
BY ALLOWING MEMORY REQUESTS AND
COMMANDS TO BE ISSUED OUT OF ORDER

(75) Inventors: William K. Zuravleff, Mountainview,
CA (US); Timothy Robinson, Boulder
Creek, CA (US)

(73) Assignee: Microunity Systems Engineering, Inc.,
Sunnyvale, CA (US)

Reexamination Request:
No. 90/007,611, Jun. 30, 2005

Reexamination Certificate for:

Patent No.: 5,630,096

Issued: May 13, 1997

Appl. No.: 08/437,975

Filed: May 10, 1995
(51) Imt.ClL

GO6F 13/16 (2006.01)

GO6F 13/20 (2006.01)

GO6F 13/28 (2006.01)
(52) US.CL ... 711/154; 711/105; 711/150;

711/151; 711/158; 711/167; 711/169

(58) Field of Classification Search 711/105,

711/150, 151, 154, 158, 167, 169; 365/233
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

3,814,924 A 6/1974 Tate
3,916,388 A 10/1975 Shimp
4,509,119 A 4/1985 Gumaer
4,527,232 A 7/1985 Bechtolsheim
4,583,199 A 4/1986 Boothroyd
4,685,076 A 8/1987 Yoshida
4,796,232 A 1/1989 House
4,803,621 A 2/1989 Kelly
4,814,976 A 3/1989 Hansen
4,825,361 A 4/1989 Omoda
4,825,401 A 4/1989 Ikumi

/10 [-zo

BAK
DATA PATH

m%%ﬁ%

BANK
DATA PATH

/-60

4,833,599 A 5/1989 Colwell
4,843,543 A 6/1989 Isobe
4,852,098 A 7/1989 Brechard
4,875,161 A 10/1989 Lahti
4,884,190 A 11/1989 Ngai
4,888,679 A 12/1989 Fossum

(Continued)
FOREIGN PATENT DOCUMENTS

EP 0427425 A2 5/1991
EP 0468820 A2 1/1992
JP S60-217435 10/1985

(Continued)
OTHER PUBLICATIONS

U.S. Appl. No. 08/340,740, filed Nov. 16, 1994, Wulf.
Asprey et al., “Performance Features of the PA7100 Micro-
processor,” IEEE Micro, 22-35 (Jun. 1993).

(Continued)

Primary Examiner—Woo H. Choi
57 ABSTRACT

A controller for a synchronous DRAM is provided for maxi-
mizing throughput of memory requests to the synchronous
DRAM. The controller maintains the spacing between the
commands to conform with the specifications for the syn-
chronous DRAMs while preventing gaps from occurring in
the data slots to the synchronous DRAM. Furthermore, the
controller allows memory requests and commands to be
issued out of order so that the throughput may be maximized
by overlapping required operations which do not specifically
involve data transfer. To achieve this maximized throughput,
memory requests are tagged for indicating a sending order.
Thereafter, the memory requests may be arbitrated when
conflicting memory requests are queued and this arbitration
process is then decoded for simultaneously updating sched-
uling constraints. The memory requests may be further
qualified based on the scheduling constraints and a com-
mand stack of memory request is then developed for modi-
fying update queues. The controller also functions by receiv-
ing a controller clock signal and generating an SDRAM
clock signal by dividing this controller clock signal.

40

fso f-|00

1 DRIVER SORAM

REURN DATA
WM< mupy ——
0
-
CONTROLLER CONIROL
awx] B

US 5,630,096 C1

Page 2
U.S. PATENT DOCUMENTS 5467,131 A 11/1995 Bhaskaran
5,471,628 A 11/1995 Phillips

4,888,682 A 12/1989 Ngai 5,477,181 A 12/1995 Li
4,899,272 A 2/1990 Fung 5477543 A 12/1995 Purcell
4,910,667 A 3/1990 Tanaka 5,499,385 A 3/1996 Farmwald
4920477 A 4/1990 Colwell 5,511,024 A 4/1996 Ware
4924375 A 5/1990 Fung 5513327 A 4/1996 Farmwald
4,937,791 A 6/1990 Steele 5,513,366 A 4/1996 Agarwal
4943919 A 7/1990 Aslin 5,515,520 A 5/1996 Hatta
4,949,250 A 8/1990 Bhandarkar 5,521,856 A 5/1996 Shiraishi
4,949,294 A 8/1990 Wambergue 5,521,879 A 5/1996 Takasugi
4,953,073 A 8/1990 Moussouris 5,522,054 A 5/1996 Gunlock
4,953,119 A 8/1990 Wong 5,530,960 A 6/1996 Parks
4,959,779 A 9/1990 Weber 5,533,185 A 7/1996 Lentz
4,980,817 A 12/1990 Fossum 5,537,606 A 7/1996 Byrne
5,008,812 A 4/1991 Bhandarkar 5,541,865 A 7/1996 Ashkenazi
5,034917 A 7/1991 Bland 5,577,236 A 11/1996 Johnson
5,040,153 A 8/1991 Fung 5,586,070 A 12/1996 Purcell
5,043,867 A 8/1991 Bhandarkar 5,590,350 A 12/1996 Guttag
5,051,889 A 9/1991 Fung 5,590,365 A 12/1996 Ide
5,081,698 A 1/1992 Kohn 5,602,994 A 2/1997 Ferron
5,113,506 A 5/1992 Moussouris 5,615,355 A 3/1997 Wagner
5,113,521 A 5/1992 McKeen 5,636,351 A 6/1997 Lee
5,155,816 A 10/1992 Kohn 5,638,534 A 6/1997 Mote
5,157,388 A 10/1992 Kohn 5,640,528 A 6/1997 Harney
5,161,247 A 11/1992 Murakami 5,649,142 A 7/1997 Lavelle
5,168,547 A 12/1992 Miller 5,654,769 A 8/1997 Ohara
5,168,573 A 12/1992 Fossum 5,659,782 A 8/1997 Senter
5,179,651 A 1/1993 Taaffe 5,666,298 A 9/1997 Peleg
5,179,667 A 1/1993 Iyer 5,666,494 A 9/1997 Mote
5,187,796 A 2/1993 Wang 5,673,321 A 9/1997 Lee
5,197,130 A 3/1993 Chen 5,680,338 A 10/1997 Agarwal
5,201,043 A 4/1993 Crawford 5701434 A 12/1997 Nakagawa
5208914 A 5/1993 Wilson 5,713,011 A 1/1998 Satohetal.coo...... 713/501
5,212,777 A 5/1993 Gove 5,717,639 A 2/1998 Williams
5,231,646 A 7/1993 Heath 5,732,236 A 3/1998 Nguyen
5,233,690 A 8/1993 Sherlock 5,734,874 A 3/1998 Van Hook
5,241,636 A 8/1993 Kohn 5,793,661 A 8/1998 Dulong
5,245,564 A 9/1993 Quek 5,801,975 A 9/1998 Thayer
5,253,342 A 10/1993 Blount 5,805,912 A 9/1998 Johnson
5,256,994 A 10/1993 Langendorf 5,812,829 A 9/1998 Ito
5,260,889 A 11/1993 Palaniswami 5,819,101 A 10/1998 Peleg
5,265,213 A 11/1993 Weiser 5,825,677 A 10/1998 Agarwal
5,268,995 A 12/1993 Diefendorff 5,826,106 A 10/1998 Pang
5,278,974 A 1/1994 Lemmon 5,828,869 A 10/1998 Johnson
5287327 A 2/1994 Takasugi 5,872,965 A 2/1999 Petrick
5,301,278 A 4/1994 Bowater 5.881,275 A 3/1999 Peleg
5,303,364 A 4/1994 Mayer 5,883,824 A 3/1999 Lee
5323489 A 6/1994 Bird ...cocoververrnnnennn, 711/167 5,887,162 A 3/1999 Williams
5,327,369 A 7/1994 Ashkenazi 5,887,182 A 3/1999 Kinoshita
5,327,570 A 7/1994 Foster 5,887,183 A 3/1999 Agarwal
5,339,276 A 8/1994 Takasugi 5,893,145 A 4/1999 Thayer
5,347,481 A 9/1994 Williams 5,896,551 A 4/1999 Williams
5357,606 A 10/1994 Adams 5,909,572 A 6/1999 Thayer
5361370 A 11/1994 Sprague 5,996,057 A 11/1999 Scales, III
5367,705 A 11/1994 Sites 6,008,850 A 12/1999 Sumihiro
5371,772 A 12/1994 Al-Khairi 6,009,505 A 12/1999 Thayer
5375,208 A 12/1994 Pitot 6,016,538 A 1/2000 Guttag
5,390,135 A 2/1995 Lee 6,058,465 A 5/2000 Nguyen
5410,669 A 4/1995 Biggs 6,154,826 A 11/2000 Wulf
5,410,682 A 4/1995 Sites 6,173,366 Bl 1/2001 Thayer
5,416,743 A 5/1995 Allan 6,175,901 Bl 1/2001 Williams
5,424,967 A 6/1995 Lee 6,381,690 Bl 4/2002 Lee
5,426,600 A 6/1995 Nakagawa 6,516,406 Bl 2/2003 Peleg
5,430,676 A 7/1995 Ware 6,807,609 Bl 10/2004 Lemmon
5,430,688 A 7/1995 Takasugi
5,434,817 A 7/1995 Ware FOREIGN PATENT DOCUMENTS
5,440,713 A 8/1995 Lin
5,442,799 A 8/1995 Murakami Jp 3268024 1171991
5,446,696 A 8/1995 Ware P 06189292 A 7/1994
5,448,509 A 9/1995 Lee P 8111090 A2 5/1996
5,450,130 A 9/1995 Foley Jp 8115069 A2 5/1996

US 5,630,096 C1
Page 3

WO WO 91/16680 10/1991

WO WO 93/01565 1/1993

WO WO 93/11500 6/1993

WO WO 97/07450 2/1997
OTHER PUBLICATIONS

Beckerle, “Overview of the START (*T) Multithreaded
Computer,” IEEE COMPON, 148-56 (Feb. 22-26, 1993).
BSP and BSP Customer Attributes, Inclosure 5, Burroughs
Corporation (Aug. 1, 1977).

BSP Floating Point Arithmetic, Burroughs Corporation,
(Dec. 1978).

BSP Implementation of Fortran, Burroughs Corporation,
(Feb. 1978).

BSP, Burroughs Scientific Process, Burroughs Corporation,
1-29 (Jun. 1977).

Bursky, “Synchronous DRAMs Clock At 100 MHz,” Elec-
tronic Design, vol. 41, No. 4, 45-49 (Feb. 18, 1993).
Diefendortf et al., “Organization of the Motorola 88110
Superscalar RISC Microprocessor,” IEEE Micro, 40-63
(Apr. 1992).

D. D. Gajski and L. P. Rubinfeld, “Design of Arithmetic
Elements for Burroughs Scientific Processor,” Proceedings
of the 4th Symposium on Computer Arithmetic, Santa
Monica, CA, 245-56 (1978).

“System Architecture.”” ELXSI (2d Ed. Oct. 1983).

“System Foundation Guide,” ELXSI (1** Ed. Oct. 1987).
Grimes et al., The Intel i860 64-Bit Processor: A Gener-
al-Purpose CPU with 3D Graphics Capabilities, IEEE Com-
puter Graphcis & Applications, 85-94 (Jul. 1989).

Guttag et al., “A Single—Chip Multiprocessor For Multime-
dia: The MVP,” IEEE Computer Graphics & Applications,
53-64 (Nov. 1992).

Gwennap, “New PA-RISC Processor Decodes MPEG
Video: HP’s PA-7100LC Uses New Instructions to Elimi-
nate DecoderChip,” Microprocessor Report, 16-17 (Jan. 24,
1994).

L. Higbie, “Applications of Vector Processing,” Computer
Design, 139-45 (Apr. 1978).

K. Hwang & F. Briggs, “Computer Architecture and Parallel
Processing,” McGraw Hill Book Co., Singapore (1988).

Ide et al., “A 320-MFLOPS CMOS Floating—Point Process-
ing Unit for Superscalar Processors,” IEEE Journal of
Solid-State Circuits, vol. 28, No. 3, 352-61 (Mar. 1993).
“IEEE Standard for Communicating Among Processors and
Peripherals Using Shared Memory (Direct Memory
Access—DMA),” IEEE (1994).

Kohn et al., “Introducing the Intel 1860 64-Bit Microproces-
sor,” IEEE Micro, 15-30 (Aug. 1989).

D.A. Kuck & R. Stokes, “The Burroughs Scientific Proces-
sor (BSP),” IEEE Transactions on Computers, vol. C-31,
No. 5,363-76 (May 1982).

Kurpanek et al., “PA7200: A PA-RISC Processor with Inte-
grated High Performance MP Bus Interface,” IEEE COMP-
CON 94, 375-82 (Feb. 28-Mar. 4, 1994).

Lee, “Accelerating Multimedia with Enhanced Microproces-
sors,” IEEE Micro, vol. 15, No. 2, 22-32 (Apr. 1995).

Lion Extension Architecture (Oct. 12, 1991).

Margulis, “i1860 Microprocessor Architecture,” Intel Corpo-
ration (1990).

“MC88110 Second Generation RISC Microprocessor User’s
Manual,” Motorola (1991).

N15 External Architecture Specification (Dec. 14, 1990).
N15 Micro Architecture Specification (Apr. 29, 1991).

“Paragon User’s Guide,” Intel Corporation (Oct. 1993).
PA-RISC 1.1 Architecture and Instruction Set Reference
Manual, Third Edition, Hewlett-Packard (Feb. 1994).
Spaderna et al., “An Integrated Floating Point Vector Proces-
sor for DSP and Scientific Computing,” IEEE International
Conference on Computer Design: VLSI in Computers and
Processors, 8-13 (Oct. 1989).

Sprunt et al., “Priority—Driven, Preemptive 1/O Controllers
for Real-Time Systems,” IEEE (1988).

“TMS320C80 (MVP) Parallel Processor User’s Guide,”
Texas Instruments (Mar. 1995).

Turcotte, “A Survey of Software Environments for Exploit-
ing Networked Computing Resources,” Engineering
Research Center for Computational Field Simulation (Jun.
11, 1993).

Undy et al., “A Low—Cost Graphics and Multimedia Work-
station Chip Set,” IEEE Micro, 10-22 (Apr. 1994).

Watkins et al., “A Memory Controller with an Integrated
Graphics Processor,” IEEE, 324-36 (1993).

The 82C302 Page/Interleave Memory Controller.

AT386 CHIPSet Functional Specification, Chips and Tech-
nologies, Inc. (May 8, 1986).

82C302 Page/Interleave Memory Controller Data Sheet,
Chips and Technologies, Inc. (1987).

J.E. Thornton, Design of a Computer: The Control Data
6600 (1970).

CS4031 CHIPSet Advance Product Information (May 10,
1993).

MPCI105 PCI Bridge/Memory Controller Technical Sum-
mary, Motorola, Inc. (Jan. 1995).

Karl Wang et al, “Designing the MPC105 PCI Bridge/
Memory Controller,” IEEE Micro 44—49 (Apr. 1995).
Michael J. Garcia & Brian K. Reynolds, “Single Chip PCI
Bridge and Memory Controller for PowerPC™ Micropro-
cessors,” IEEE International Conference on Computer
Design: VLSI in Computers and Processors 409-12 (Oct.
1994).

Micron MT48LC2MS8S1 (S) 2 MEG x8 SDRAM Advance
Data Sheet (Apr. 1994).

DJ. Lang et al, “Enhanced Refresh Mechanism for Higher
Performance in Memory Subsystems,” /BM Technical Dis-
closure Bulletin vol. 37, No. 10 (Oct. 1994).

R.E. Busch et al., “Dynamic Random Accesss Memory Data
Burst Control,” IBM Technical Disclosure Bulletin vol. 37,
No. 9 (Sep. 1994).

M.J. Carnevale et al., “Fast Data Access of DRAMs by Uti-
lizing and Queued Memory Command Buffer,” IBM Techni-
cal Disclosure Bulletin vol. 35, No. 7 (Dec. 1992).
Configurations for Solid States Memories, JEDEC Standard
No. 21-C, release 4 (Nov. 1993).

Robert Adams and Gregory Scavone, “Design a DRAM con-
troller from the top down,” Electronic Design News, pp.
183188 (Apr. 27, 1989).

Dave Bursky, Synchrounous DRAMs Clock at 100MHz,
Electronic Design 45, 48 (Feb. 18, 1993).

Betty Prince et al., “Synchronous dynamic RAM,” /EEE
Spectrum 44—-46 (Oct. 1992).

Sean w. McGee et al., “Design of a Processor Bus Interface
ASIC for the Stream Memory Controller,” Proceedings of
the IEEE International SIC Conference, Rochester, NY
(Sep. 1994).

T. C. Landon et al., “An Approach for Optimizing Synthe-
sized High-Speed ASICs,” Proc. IEEE Int’l ASIC Confer-
ence, Austin, TX (Sep. 1995).

US 5,630,096 C1
Page 4

Sally A. McKee, “Hardware Support for Dynamic Access
Ordering: Performance of Some Design Options,” Computer
Science Report No. CS—93-08 (Aug. 9, 1993).

S. A. McKee et al., “Experimental Implementation of
Dynamic Access Ordering,” Proceedings of the Twenty—Sev-
enth Hawaii International Conference (Jan. 1994), Com-
puter Science Report No. CS-93-42 (Aug. 1, 1993).

Sally A. McKee, “Maximizing Memory Bandwidth for
Streamed Computations,” Ph.D. dissertation (May 1995).
The AMD-K6 3D Processor: Revolutionary Multimedia
Performance, Abacus (1998).

“AMD to Co-Sponsor Microsoft Professional Developers
Conference,” http://www.amd.com/usen/ Corporate/Virtual-
PressRoom/0,,51_51_104_ 543 555~953,00.html (Oct.
12, 1997).

Alvarez et al, “A 450MHz PowerPC Microprocessor with
Enhanced Instruction Set and Copper Interconnect,” ISSCC
(Feb. 1999).

“AltiVec™ Technology Programming Environments
Manual” (1998).

Tyler et al., “AltiVec™ : Bringing Vector Technology to the
PowerPC™ Processor Family,” IEEE (Feb. 1999).

BSP and BSP Customer Attributes, Inclosure 5, 1-5, Bur-
roughs Corporation (Aug. 1, 1977).

BSP Floating Point Arithmetic, Burroughs Corporation,
1-27 (Dec. 1978).

BSP, Burroughs Scientific Processor, Burroughs Corpora-
tion, 1-29 (Jun. 1977).

Foley, “The Mpact™ Media Processor Redefines the Multi-
media PC,” IEEE, Proceedings of COMPON (Spring 1996).
Epstein, “Chromatic Raises the Multimedia Bar,” Micropro-
cessor Report (Oct. 23, 1995).

Mpact Media Processor: Preliminary Data Sheet, Chromatic
Research, Inc. (Sep. 11, 1996).

Kalapathy, “Hardware—Software Interactions on Mpact,”
IEEE Micro (1997).

“The Vector Coprocessor Unit (VU) for the CM-5,” Hot
Chip IV Symposium (Aug. 11, 1992).

“Connection Machine CM-5 Techmical Summary,” Think-
ing Machines Corp. (Nov. 1993).

“CMMD User’s Guide: Version 3, Thinking Machines
Corp. (May 1993).

“CMMD Reference Manual: Version 3,” Thinking Machines
Corp. (May 1993).

Michielse, “Programming the Convex Exemplar Series SPP
System,” Proceedings of Parallel Scientific Computing, First
Intl Workshop, PARA 94, pp. 375-382 (Jun. 20-23, 1994).
Wadleigh et al., “High Performance FFT Algorithms for the
Convex C4/XA Supercomputer,” Poster, Conference on
Supercomputing, Washington, D.C. (Nov. 1994).

Wadleigh et al., “High—Performance FFT Algorithms for the
Convex C4/XA Supercomputer,” Journal of Super Comput-
ing, vol. 9, pp. 163—-178 (1995).

Saturn Architecture Specification (Apr. 29, 1993).

Saturn Overview (Nov. 11, 1993 & Feb. 4, 1994).

Saturn Assembly Level Performance Tuning Guide (Jan. 1,
1994).

Saturn Differences from C Series, 1-8, (Feb. 6, 1994).
“GaAs Supercomputer Vendors Hit Hard,” Electronic News
(Jan. 31, 1994).

Convex Architecture Reference Manual, Sixth Edition
(1992).

Convex Assembly Language Reference Manual, First Edi-
tion (Dec. 1991).

Convex 3400 Supercomputer System Overview (Jul. 24,
1991).

Convex Data Sheet, “C4/XA High—Performance Program-
ming Environment,” Convex Computer Corporation (1994).
Rubinfeld, et al., “Motion Video Instruction Extensions for
Alpha” (Oct. 18, 1996).

“Alpha Architecture Reference Manual,” Digital Equipment
Corporation (1992).

Awaga et al., “The nVP 64-bit Vector Coprocessor: A New
Implementation of High—Performance Numerical Computa-
tion,” IEEE Micro, vol. 13, No. 5, pp. 24-36 (Oct. 1993).
Kimura et al., “Development of Gmicro 32-bit Family of
Microprocessors, Fujitsu Semiconductor Special Collec-
tion,” vol. 43, No. 2, pp. 89-97 (Feb. 1992).

Takahashi et al., “A 289 MFLOPs Single Chip Vector Pro-
cessing Unit,” The Institute of Electronics, Information, and
Communication Engineers Technical Research Report, pp.
17-22 (May 28, 1992).

Uchiyama et al., “The Gmicro/500 Superscalar Micropro-
cessor with Branch Buffers,” IEEE Micro, pp. 12-21 (Oct.
1993).

Lee, “Accelerating Multimedia with Enhanced Microproces-
sors,” IEEE Micro, vol. 15, No. 2, pp. 22-32 (Apr. 1995).
Undy et al., “A Low—Cost Graphics and Multimedia Work-
station Chip Set,” IEEE Micro, pp. 10-22 (Apr. 1994).
Asprey et al., “Performance Features of the PA7100 Micro-
processor,” IEEE Micro, pp. 22-35 (Jun. 1993).

Knebel et al., “HP’s PA7100LC: A Low—Cost Superscalar
PA-RISC Processor,” IEEE, pp. 441-447 (1993).

Gwennap, “New PA-RISC Processor Decodes MPEG
Video: HP’s PA-7100LC Uses New Instructions to Elimi-
nate Decoder Chip,” Microprocessor Report (Jan. 24, 1994).
Kurpanek et al., “PA7200: A PA-RISC Processor with Inte-
grated High Performance MP Bus Interface,” IEEE COMP-
CON 94, pp. 375-382 (Feb. 28-Mar. 4, 1994).

Bass, “The PA 7100L.C Microprocessor: A Case Study of IC
Design Decisions in a Competitive FEnvironment,”
Hewlett—Packard Journal, vol. 46, No. 2, pp. 12-22 (Apr.
1995).

Bowers et al., “Development of a Low—Cost, High Perfor-
mance, Multiuser Business Server System,” Hewlett—Pack-
ard Journal, vol. 46, No. 2, p. 79 (Apr. 1995).

Gwennap, “Digital, MIPS Add Multimedia Extensions,”
Microdesign Resources, pp. 24-28 (Nov. 18, 1996).

Lee et al., “Pathlength Reduction Features in the PA-RISC
Architecture,” IEEE COMPCON, pp. 129-135 (Feb. 24-28,
1992).

Lee et al., “Real-Time Software MPEG Video Decoder on
Multimedia—Enhanced PA 7100LC Processors,”
Hewlett—Packard Journal, vol. 46, No. 2, pp. 60-68 (Apr.
1995).

Lee, “Realtime MPEG Video via Software Decompression
on a PARISC Processor,” IEEE, pp. 186-192 (1995).
Martin, “An Integrated Graphics Accelerator for a Low—Cost
Multimedia Workstation,” Hewlett—Packard Journal, vol. 46,
No. 2, pp. 43-50 (Apr. 1995).

“HP 9000 Series 700 Workstations Techmical Reference
Manual: Model 712 (System),” Hewlett—Packard (Jan.
1994).

PA RISC 2.0 Architecture and Instruction Set Reference
Manual, Hewlett—Packard (1995).

Case, “Low-End PA7100LC Adds Dual Integer ALUs,”
Microprocessor Report (Nov. 19, 1992).

US 5,630,096 C1
Page 5

Gwennap, “PA-8000 Combines Complexity and Speed,”
Microprocessor Report (Nov. 14, 1994).

Crawford, “The 1486 CPU: Executing Instructions in One
Clock Cycle,” IEEE Micro (Feb. 1990).

“i486™ Processor Programmer’s Reference Manual,”
Osborne McGraw—Hill (1990).

“Intel486™ Microprocessor Family Programmer’s
Manual,” Intel Corp. (1995).
“Understanding x86 Microprocessors,” MicroDesign

Resources, 1993 [pp. 3—16 through 3-20, Wharton, Parallel
486 Pipelines Product Peak Processor Performance Micro-
processor Report (Jun. 1989)].

Kohn et al., “Introducing the Intel 1860 64 Bit Microproces-
sor,” IEEE Micro, pp. 15-30 (Aug. 1989).

Grimes et al., “A New Processor with 3—D Graphics Capa-
bilities,” NCGA ’89 Conference Proceedings vol. 1, pp.
275-284 (Apr. 17-20, 1989).

“Paragon User’s Guide” (Oct. 1993).

Atkins, “Performance and the i860 Microprocessor,” IEEE
Micro, pp. 24-27, 72-78 (Oct. 1991).

Grimes et al., “The Intel 1860 64-Bit Processor: A Gener-
al-Purpose CPU with 3D Graphics Capabilities,” IEEE
Computer Graphics & Applications, pp. 85-94 (Jul. 1989).
Kohn et al., “A 1,000,000 Transistor Microprocessor,” 1989
IEEE International Solid-State Circuits Conference Digest
of Technical Papers, pp. 5455, 290 (Feb. 15, 1989).

Kohn et al., “A New Microprocessor With Vector Processing
Capabilities,” Electro/89 Conference Record, pp. 1-6 (Apr.
11-13, 1989).

Kohn et al., “The 1860 64-Bit Supercomputing Micropro-
cessor,” AMC, pp. 450-456 (1989).

Mittal et al.,, “MMX Technology Architecture Overview,”
Intel Technology Journal Q3 *97, pp. 1-12 (1997).

Patel et al., “Architectural Features of the i860—Micropro-
cessor RISC Core and On-Chip Caches,” IEEE, pp.
385-390 (1989).

Rhodehamel, “The Bus Interface and Paging Units of the
1860 Microprocessor,” IEEE, pp. 380-384 (1989).

Perry, “Intel’s secret is out,” IEEE Spectrum, pp. 22-28
(Apr. 1989).

Sit et al.,, “An 80 MFLOPS Floating—point Engine in the
Intel 1860 Processor,” IEEE, pp. 374-379 (1989).

Intel Corporation, “i860 XP Microprocessor Data Book”
(May 1991).

N12 Performance Analysis dated Sep. 21,1990.

Deposition of Leslie Kohn on Sep. 9, 2005; MicroUnity Sys-
tems Engineering, Inc. v. Dell, Inc. f/k/a/ Dell Computer and
Intel Corporation; C.A. No. 2—4CV-120; In the United
States District Court of the Eastern District of Texas, Mar-
shall Division.

Padegs et al., “The IBM System/370 Vector Architecture:
Design Considerations,” IEEE (1988).

Moore et al., “Concepts of the System/370 Vector Architec-
ture,” ACM (1987).

Buchholz, “The IBM System/370 Vector Architecture,” IBM
Systems Journal, vol. 25, No. 1, 1986.

Tucker, “The IBM 3090 System: An Overview,” IBM Sys-
tems Journal, vol. 25, No. 1, 1986.

Clark et al., “Vector System performance of the IBM 3090,”
IBM Systems Journal, vol. 25, No. 1, 1986.

Gibson et al., “Engineering and scientific processing on the
IBM 3090,” IBM Systems Journal, vol. 25, No. 1, 1986.
“Enterprise Systems Architecture/390: Vector Operations,”
IBM Corp., First Edition (Sep. 1991).

Ide et al., “A 320-MFLOPS CMOS Floating—Point Process-
ing Unit for Superscalar Processors,” IEEE Journal of
Solid-State Circuits, vol. 28, No. 3, pp. 352-361 (Mar.
1993).

Ide et al., “A 320 MFLOPS CMOS Floating—Point Process-
ing Unit for Superscalar Processors,” IEEE 1992 Custom
Integrated Circuits Conference, 1992.

“Iliac IV Quarterly Progress Report: Oct., Nov., Dec. 1969,”
Illiac IV Document No. 238, Department of Computer Sci-
ence, University of Illinois at Urbana—Champaign (Jan. 15,
1970).

“Illiac IV Systems Characteristics and Programming
Manual,” Institute for Advanced Computation, Ames
Research Center, NASA (Jun. 1, 1972).

Knapp et al., “Bulk Storage Applications in the Illiac IV
System,” [lliac IV Document No. 250, Center for Advanced
Computation, University of Illinois at Urbana—Champaign
(Aug. 3, 1971).

Abel et al., “Extensions to FORTRAN for Array Process-
ing,” Illiac IV Document No. 235, Department of Computer
Science, University of Illinois at Urbana—Champaign (Sep.
1, 1970).

Barnes et al., “The Illiac IV Computer,” IEEE Transactions
on Computers, vol. C—17, No. 8, pp. 746-757 (Aug. 1968).
“Multimedia Extension Unit for the X86 Architecture,”
Compaq Computer Corp., Revision 0.8b (Jun. 20, 1995).
“Multimedia Extension Unit for the X86 Architecture,”
Compaq Computer Corp., Revision 0.9 (Jul. 31, 1995).
“Multimedia Extension Unit for the X86 Architecture,”
Compaq Computer Corp., Revision 0.6b (May 26, 1995).
Gwennap, “Nx686 Goes Toe—to—Toe with Pentium Pro,”
Microprocessor Report (Oct. 23, 1995).

Silicon Graphics Introduces Enhanced MIPS—Architecture
to Lead the Interactive Digital Revolution, Silicon Graphics
Press Release (Oct. 21, 1996).

MDMX Digital Media Extension, MIPS.

Gwennap, “Digital, MIPS Add Multimedia Extensions,”
Microprocessor Report (Nov. 18, 1996).

“MIPS R4000 User’s Manual,” MIPS Computer Systems,
Inc. (1991).

“MIPS R4000 Microprocessor User’s Manual: Second Edi-
tion,” MIPS Technologies, Inc. (1994).

Shanley, Tom, Pentium Pro Processor System Architecture,
MindShare, Inc., Addison—Wesley Developers Press (1997).
Intel MMX Technology Overview (Mar. 1996).

“Intel Architecture MMX TM Technology: Programmer’s
Reference Manual,” Intel Corp, (Mar. 1996).

Gwennap, “Intel’s MMX Speeds Multimedia,” Micropro-
cessor Report (Mar. 5, 1996).

Diefendorff et al., “Organization of the Motorola 88110
Superscalar RISC Microprocessor,” IEEE Micro, © IEEE
1992, pp. 40-63.

MC 88110 Second Generation RISC Microprocessor User’s
Manual published in 1991.

Gipper, “Designing Systems for Flexibility, Functionality,
and Performance with the 88110 Symmetric Superscalar
Microprocessor,” IEEE (1992).

Papadopoulos et al., “*T: Integrated Building Blocks for
Parallel Computing,” ACM, pp. 624-635 (1993).

Beckerle, “Overview of the START (*T) Multithreaded
Computer,” IEEE COMPCON, pp. 148-156 (Feb. 22-26,
1993).

US 5,630,096 C1
Page 6

Ang. “StarT Next Generation: Integrating Global Caches
and Dataflow Architecture,” Proceedings of the ISCA 1992
Dataflow Workshop (1992).

Diefendortf et al., “The Motorola 88110 Superscalar RISC
Microprocessor,” IEEE, pp. 157-162 (1992).

Nikhil et al., “*T: A Multithreaded Massively Parallel Archi-
tecture,” Computation Structures Group Memo 325-2,
Laboratory for Computer Science, Massachusetts Institute
of Technology (Mar. 5, 1992).

Patterson, “Motorola Announces First High Performance
Single Board Computer Using Superscalar Chip,” Motorola
Computer Group (1992).

Shipnes, “Graphics Processing with the 88110 RISC Micro-
processor,” IEEE COMPCON, pp. 167-174 (Feb. 24-28,
1992).

Lowney et al., “The Multiflow Trace Scheduling Compiler,”
published Oct. 30, 1992.

Colwell et al., “A VLIW Architecture for a Trace Scheduling
Compiler,” IEEE Transactions on Computers, Aug. 1988.
Colwell et al., “Architecture and Implementation of a VLIW
Supercomputer,” IEEE, published in 1990.

“BIT Product Summary: B3110/B3120/B2110/B2120
Floating Point Chip Set,” Bipolar Integrated Technology,
Inc., published Dec. 1986.

“TRACE/300 Series: F Board Architecture,” Multiflow
Computer, Dec. 9, 1988.

N15 External Architecture Specification dated Dec. 14,
1990.

N15 Product Requirements Document dated Dec. 21, 1990.
N15 Product Implementation Plan dated Dec. 21, 1990.
N15 External Architecture Specification (EAS) dated Oct.
22,1990.

N15 Micro Architecture Specification dated Apr. 30, 1991.
Broomell et al., “Classification Categories and Historical
Development of Circuit Switching Topologies,” Computing
Surveys, vol. 15, No. 2, pp. 95-133 (Jun. 1983).

Watkins et al., “A Memory Controller with an Integrated
Graphics Processor,” IEEE pp. 324-336 (1993).

Iwaki, “Architecture of a High Speed Reed Solomon
Decoder,” IEEE Consumer Electronics (Jan. 1994).
Le-Ngoc, “A Gate—Array—Based Programmable Reed—So-
lomon Codec: Structure-Implementation—Applications,”
IEEE Military Communications (1990).

Eisig, “The Design of a 64-bit Integer Multiplier/Divider
Unit” (1993).

Feng, “Data Manipulating Functions in Parallel Processors
and Their Implementations,” IEEE Transactions on Comput-
ers (Mar. 1974).

Tullsen et al., “Simultaneous Multithreading: Maximizing
On—Chip Parallelism,” Proceedings of the 22nd Annual
International Symposium on Computer Architecture (Jun.
1995).

Culler et al., “Analysis Of Multithreaded Microprocessors
Under Multiprogramming,” Report No. UCB/CSD 92/687
(May 1992).

Laudon et al., “Architectural And Implementation Tradeoffs
In The Design Of MultipleContext Processors,”
CSL-TR-92-523 (May 1992).

Kuck, “The Structure of Computers and Computation: vol.
1,” John Wiley & Sons, Inc. (1978).

Arnould et al., “The Design of Nectar: A Network Back-
plane for Heterogeneous Multicomputers,” ACM (1989).
Bell, “Ultracomputers: A Teraflop Before its Time,”
Comm.’s of the ACM (Aug. 1992) pp. 27-47.

Donovan et al., “Pixel Processing in a Memory Controller,”
IEEE Computer Graphics and Applications, pp. 51-61 (Jan.
1995).

Fields, “Hunting for Wasted Computing Power: New Soft-
ware for Computing Networks Puts Idle PC’s to Work,”
Univ. of Wisconsin—Madison (1993).

Geist, “Cluster Computing: The Wave of the Future?,” Oak
Ridge National Laboratory, 840R21400 (May 30, 1994).
Ghafoor, “Systolic architecture for finite field exponentia-
tion,” IEEE Proceedings, vol. 136 (Nov. 1989).

Gilot, “Parallel Programming Models and Their Interdepen-
dence with Parallel Architectures,” IEEE Proceedings (Sep.
1993).

Hwang et al., “Parallel Processing for Supercomputers &
Artificial Intelligence” (1993).

Hwang, “Advanced Computer Architecture: Parallelism,
Scalability, Programmability,” (1993).

Hwang, “Computer Architecture and Parallel Processing,”
McGraw Hill (1984).

Jain, “Square-Root, Reciprocal, Sine/Cosine, Arctangent
Cell for Signal and Image Processing,” IEEE ICASSP*94,
pp. 11-521-11-524 (Apr. 1994).

Kissell, “The Dead Supercomputer Society—The Passing of
A Golden Age?,” www.paralogos.com/DeadSuper/ (1998).
Lawrie, “Access and Alignment of Data in an Array Proces-
sor,” IEEE Transactions on Computers, vol. c-24, No. 12,
pp. 99-109 (Dec. 1975).

Litzkow et al., “Condor—A Hunter of Idle Workstations,”
IEEE (1988).

Markstein, “Computation of Elementary Functions on the
IBM RISC System/6000 Processor,” IBM J. Res. Develop.,
vol. 34, No. 1, pp. 111-119 (Jan. 1990).

Nienhaus, “A Fast Square Rooter Combining Algorithmic
and Lookup Table Techniques,” IEEE Proceedings South-
eastcon, pp. 1103-1105 (1989).

Renwick, “Building a Practical HIPPI LAN,” IEEE pp.
355-360 (1992).

Rohrbacher et al., “Image Processing with the Staran Paral-
lel Computer,” IEEE Computer, vol. 10, No. 8, pp. 54-59
(Aug. 1977) (reprinted version pp. 119-124).

Ryne, “Advanced Computers and Simulation,” IEEE, pp.
3229-3233 (1993).

Siegel, “Interconnection Networks for SIMD Machines,”
IEEE Computer, vol. 12, No. 6 (Jun. 1979) (reprinted ver-
sion pp. 110-118).

Singh et al., “A Programmable HIPPI Interface for a Graph-
ics Supercomputer,” ACM (1993).

Smith, “Cache Memories,” Computing Surveys, vol. 14, No.
3 (Sep. 1982).

Tenbrink et al., “HIPPI: The First Standard for High—Perfor-
mance Networking,” Los Alamos Science (1994).
Toyokura, “A Video DSP with a Macroblock-Level-Pipe-
line and a SIMD Type Vector—Pipeline Architecture for
MPEG2 CODEC,” ISSCC94, Section 4, Video and Commu-
nications Signal Processors, Paper WP 4.5, pp. 74-75
(1994).

Vetter et al., “Network Supercomputing,” IEEE Network
(May 1992).

Wang, “Bit-Level Systolic Array for Fast Exponentiation in
GF(2"'m),” IEEE Transactions on Computers, vol. 43, No. 7,
pp. 838-841 (Jul. 1994).

US 5,630,096 C1
Page 7

Ware et al., “64 Bit Monolithic Floating Point Processors,”
IEEE Journal Of Solid-State Circuits, vol. Sc-17, No. 5
(Oct. 1982).

“Bit Manipulator,” IBM Technical Disclosure Bulletin, pp.
1575-1576 (Nov. 1974).

“Using a Common Barrel Shifter for Operand Normaliza-
tion, Operand Alignment and Operand Unpack and Pack in
Floating Point,” IBM Technical Disclosure Bulletin, pp.
699-701 (Jul. 1986).

“Computational Science: Advances Through Collaboration,”

San Diego Supercomputer Center 1993 Science Report
(1993).

High Performance Computing & Communications: Toward
a National Information Infrastructure, ‘“National Science
Foundation (NSF)” (1994).

National Coordination Office for High Performance Com-
puting and Communications, “High Performance Comput-
ing and Communications: Foundation for America’s Infor-
mation Future” (1996).

“The History of the Development of Parallel Computing,”
http://punch.purdue.edu (1994).

IEEE Standard for Binary Floating—Point Arithmetic, Std
IEEE754-1985, © 1985.

* cited by examiner

US 5,630,096 C1

1
EX PARTE
REEXAMINATION CERTIFICATE
ISSUED UNDER 35 U.S.C. 307

THE PATENT IS HEREBY AMENDED AS
INDICATED BELOW.

Matter enclosed in heavy brackets [] appeared in the
patent, but has been deleted and is no longer a part of the
patent; matter printed in italics indicates additions made
to the patent.

AS A RESULT OF REEXAMINATION, IT HAS BEEN
DETERMINED THAT:

Claims 1, 3, 10, 11, 13 and 20 are determined to be patent-
able as amended.

Claims 2, 4-9, 12 and 14-19, dependent on an amended
claim, are determined to be patentable.

1. A controller for a synchronous DRAM comprising:

a sorting unit for receiving memory requests and sorting
said memory requests based on their addresses,
wherein said memory requests are tagged for indicating
a sending order thereof before said memory requests
are sent to said sorting unit and wherein the sending
order represents an order in which said memory
requests arve provided by a processor;

a throughput maximizing unit for processing said memory
requests and sending them to the synchronous DRAM
out of an order in which they are received by the sorting
unit, in response to scheduling which maximizes the
use of data slots by the synchronous DRAM.

3. A controller for a synchronous DRAM comprising:

a sorting unit for receiving ragged memory requests and
sorting said memory requests based on their address,
wherein the tags associated with said memory requests
indicate an order in which said memory requests are
provided by a processor and received by the controller;

a throughput maximizing unit for processing said memory
requests and sending them to the synchronous DRAM
out of an order received by the sorting unit, in response
to scheduling which maximizes the use of data slots by
the synchronous DRAM; and

a control block for receiving a controller clock signal and
developing an SDRAM clock signal by dividing said
controller clock signal with a programmable divisor
value.

10. A system for interfacing a [processing device] proces-

sor with a synchronous DRAM comprising:

means for developing memory requests from the [process-
ing device] processor;

w

15

25

30

45

50

2

means for tagging said memory requests to indicate the
order in which they are provided by the [processing
device] processor; and

a controller for maximizing throughput of said memory
requests from the [processing device] processor to the
synchronous DRAM and sending them out of the order
based on scheduling constraints of the synchronous
DRAM and arbitrating between conflicting memory
requests so that data slots used by the synchronous
DRAM are maximized.

11. A method for controlling a synchronous DRAM com-

prising the steps of:

(a) receiving memory requests and sorting said memory
requests based on their addresses;

(b) tagging said memory requests to indicate a sending
order thereof by a processor before said memory
requests are received at said step (a); and

(¢) maximizing throughput of said memory requests by
transmitting them out of the sending order to the syn-
chronous DRAM so that use of data slots by the syn-
chronous DRAM is maximized.

13. A method for controlling a synchronous DRAM com-

prising the steps of:

(a) receiving tagged memory requests from a processor
and sorting said memory requests based on their
addresses, wherein the tags associated with said
memory requests indicate an order in which such
memory requests are received from the processor;

(b) maximizing throughput of said memory requests by
transmitting them out of the received order, 10 the syn-
chronous DRAM so that use of data slots by the syn-
chronous DRAM is maximized; and

(c) receiving a controller clock signal and developing an
SDRAM clock signal by dividing said controller clock
signal with a programmable divisor value.

20. A method for interfacing a [processing device] proces-

sor with a synchronous DRAM, comprising the steps of:

(a) developing memory requests from the [processing
device] processor;

(b) tagging said memory requests to indicate the order in
which they are provided by the [processing device] pro-
cessor; and

(¢) maximizing throughput of said memory requests from
the [processing device] processor to the synchronous
DRAM by transmitting them out of the order provided
based on scheduling constraints of the synchronous
DRAM and arbitrating between conflicting memory
requests so that the data slots used by the synchronous
DRAM are maximized.

